I
nte
rna
t
io
na
l J
o
urna
l o
f
Ro
bo
t
ics a
nd
Aut
o
m
a
t
io
n
(
I
J
RA
)
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
2
0
1
6
,
p
p
.
24
4
~
25
4
I
SS
N:
2089
-
4856
244
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
RA
Dena
v
it
-
H
a
rtenb
erg Co
o
rdina
te
S
y
ste
m
f
o
r Robo
ts
w
ith
Tree
-
li
ke
K
i
ne
m
a
t
ic S
truc
tur
e
Ale
k
s
a
nd
er
K
.
K
o
v
a
lchu
k
,
F
a
niy
a
K
h.
Ak
h
m
et
o
v
a
Ba
u
m
a
n
M
o
sc
o
w
S
tate
Tec
h
n
ica
l
Un
iv
e
rsity
,
Ru
ss
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
13
,
2
0
1
6
R
ev
i
s
ed
Oct
3
,
2
0
1
6
A
cc
ep
ted
No
v
1
6
,
2
0
1
6
T
h
e
p
a
p
e
r
p
re
se
n
ts
a
m
o
d
if
ie
d
De
n
a
v
it
-
Ha
rten
b
e
rg
c
o
o
rd
in
a
te
s
y
st
e
m
re
su
lt
e
d
f
ro
m
jo
in
t
a
p
p
li
c
a
ti
o
n
o
f
g
ra
p
h
th
e
o
ry
a
n
d
th
e
De
n
a
v
it
-
Ha
rten
b
e
rg
c
o
o
rd
i
n
a
te
s
y
ste
m
,
w
h
ich
wa
s
d
e
v
e
lo
p
e
d
to
d
e
sc
rib
e
th
e
k
in
e
m
a
ti
c
s
o
f
ro
b
o
t
a
c
tu
a
to
rs
w
it
h
a
li
n
e
a
r
o
p
e
n
k
in
e
m
a
ti
c
c
h
a
in
.
It
a
ll
o
ws
f
o
r
m
in
g
m
a
th
e
m
a
ti
c
a
l
m
o
d
e
ls
o
f
a
c
tu
a
ti
n
g
m
e
c
h
a
n
is
m
s
f
o
r
th
e
ro
b
o
ts
w
it
h
tree
-
li
k
e
k
in
e
m
a
ti
c
stru
c
tu
re
s.
T
h
e
w
o
rk
in
tro
d
u
c
e
s
th
e
c
o
n
c
e
p
t
o
f
p
rim
a
r
y
a
n
d
a
u
x
il
iary
c
o
o
rd
i
n
a
te
sy
ste
m
s.
It
c
o
n
sid
e
rs
a
n
e
x
a
m
p
le
o
f
m
a
k
in
g
th
e
li
n
k
s’
re
a
c
h
a
b
il
it
y
m
a
tri
x
a
n
d
re
a
c
h
a
b
il
it
y
g
ra
p
h
fo
r
th
e
tree
-
li
k
e
a
c
tu
a
ti
n
g
m
e
c
h
a
n
ism
o
f
a
ro
b
o
ti
c
m
a
n
n
e
q
u
in
.
T
h
e
u
se
e
ff
icie
n
c
y
o
f
th
e
p
ro
p
o
se
d
m
o
d
if
ied
De
n
a
v
it
-
Ha
rten
b
e
rg
c
o
o
rd
i
n
a
te
sy
ste
m
i
s
il
lu
stra
ted
b
y
th
e
e
x
a
m
p
les
g
iv
in
g
th
e
m
a
th
e
m
a
ti
c
a
l
d
e
sc
rip
ti
o
n
o
f
th
e
k
in
e
m
a
ti
c
s
a
n
d
d
y
n
a
m
ics
o
f
sp
e
c
i
fic
ro
b
o
ts’
tree
-
li
k
e
a
c
tu
a
ti
n
g
m
e
c
h
a
n
ism
s
d
isc
u
ss
e
d
in
th
e
p
re
v
io
u
sly
p
u
b
li
sh
e
d
p
a
p
e
rs.
It
is
sh
o
w
n
th
a
t
t
h
e
p
ro
p
o
se
d
c
o
o
r
d
in
a
te
sy
ste
m
c
a
n
a
lso
b
e
su
c
c
e
ss
f
u
ll
y
a
p
p
li
e
d
t
o
d
e
sc
rib
e
th
e
a
c
tu
a
ti
n
g
m
e
c
h
a
n
is
m
s
o
f
ro
b
o
ts
w
it
h
a
li
n
e
a
r
o
p
e
n
k
in
e
m
a
ti
c
c
h
a
in
,
w
h
ich
is
a
p
a
rti
c
u
lar
c
a
se
o
f
th
e
tree
-
li
k
e
k
in
e
m
a
ti
c
stru
c
tu
re
.
T
h
e
a
b
se
n
c
e
o
f
b
ra
n
c
h
in
g
jo
in
ts
i
n
it
d
o
e
s
n
o
t
re
q
u
ire
i
n
tro
d
u
c
in
g
a
u
x
il
iar
y
c
o
o
rd
in
a
te
sy
ste
m
s
a
n
d
th
e
p
a
ra
m
e
ters
f
(
i)
a
n
d
n
s(
i)
a
r
e
n
e
c
e
ss
a
r
y
o
n
ly
f
o
r
th
e
f
o
r
m
a
l
n
o
tatio
n
o
f
e
q
u
a
ti
o
n
s,
w
h
ich
h
a
v
e
si
m
il
a
r
f
o
rm
s
f
o
r
th
e
tree
-
li
k
e
a
n
d
li
n
e
a
r
c
h
a
in
s.
In
th
is
c
a
se
,
th
e
m
o
d
if
ied
a
n
d
trad
it
io
n
a
l
c
o
o
rd
i
n
a
te sy
ste
m
s co
in
c
id
e
.
K
ey
w
o
r
d
:
T
r
ee
-
lik
e
ac
tu
ati
n
g
m
ec
h
a
n
is
m
Den
a
v
it
-
Har
ten
b
er
g
co
o
r
d
in
ate
s
y
s
te
m
R
o
b
o
t k
in
e
m
atic
s
R
o
b
o
tic
ac
tu
ati
n
g
m
ec
h
a
n
i
s
m
R
o
b
o
t d
y
n
a
m
ics
Co
p
y
rig
h
t
©
201
6
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
A
le
k
s
a
n
d
er
K.
Ko
v
alc
h
u
k
,
B
au
m
a
n
Mo
s
co
w
State
T
ec
h
n
ical
Un
i
v
er
s
it
y
,
5
/1
,
2
n
d
B
au
m
a
n
Str.
,
Mo
s
co
w
,
R
u
s
s
ia,
1
0
5
0
0
5
.
E
m
ail:
ed
ito
r
@
ac
ad
e
m
icp
ap
er
s
.
o
r
g
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
m
et
h
o
d
s
o
f
m
at
h
e
m
atic
al
d
escr
ip
tio
n
o
f
th
e
r
o
b
o
ts
’
ac
tu
ato
r
k
in
e
m
atic
s
an
d
d
y
n
a
m
ics
ar
e
ex
ten
s
i
v
el
y
d
escr
ib
ed
in
liter
a
tu
r
e
[
1
-
6
]
.
T
h
e
au
th
o
r
s
co
n
s
id
er
an
ac
tu
ati
n
g
m
ec
h
an
i
s
m
(
AM
)
as
a
lin
ea
r
o
p
en
k
in
e
m
at
ic
ch
ai
n
;
th
a
t
is
t
y
p
ica
l
f
o
r
in
d
u
s
tr
ial
r
o
b
o
ts
an
d
s
p
ec
ial
-
p
u
r
p
o
s
e
h
a
n
d
li
n
g
eq
u
ip
m
en
t.
T
h
er
e
ar
e
tw
o
m
o
s
t
w
id
el
y
u
s
ed
m
et
h
o
d
s
to
d
escr
ib
e
th
e
k
i
n
e
m
a
tics
a
n
d
d
y
n
a
m
ic
s
o
f
s
u
c
h
r
o
b
o
ts
’
A
Ms.
T
h
e
f
ir
s
t
m
et
h
o
d
is
b
ased
o
n
th
e
u
s
e
o
f
b
lo
ck
m
at
r
ices
[
7
,
8
]
.
I
t
allo
w
s
o
b
tain
i
n
g
k
in
e
m
at
ic
s
eq
u
atio
n
s
i
n
b
o
th
an
al
y
tic
an
d
alg
o
r
ith
m
ic
f
o
r
m
s
.
T
o
u
s
e
th
is
m
et
h
o
d
in
p
r
ac
tice,
th
e
au
th
o
r
s
d
ev
elo
p
ed
s
o
f
t
w
ar
e
t
h
at
al
lo
w
s
e
x
p
lo
r
in
g
an
d
d
es
ig
n
i
n
g
r
o
b
o
tic
ac
tu
a
tin
g
s
y
s
te
m
s
,
i
n
clu
d
i
n
g
t
h
o
s
e
w
it
h
f
le
x
ib
le
li
n
k
s
.
T
h
e
w
o
r
k
o
f
A
.
G.
L
es
k
o
v
et
al.
[
9
]
h
as
an
ex
a
m
p
le
o
f
u
s
in
g
t
h
is
m
et
h
o
d
to
b
u
ild
a
m
o
d
el
o
f
th
e
ac
tu
ato
r
k
in
e
m
at
ics i
n
an
i
n
d
u
s
tr
ial
r
o
b
o
t
w
it
h
a
b
r
an
ch
i
n
g
k
i
n
e
m
atic
s
tr
u
ct
u
r
e
(
KS)
o
f
g
r
ip
p
in
g
.
T
h
e
s
ec
o
n
d
m
et
h
o
d
to
d
escr
ib
e
th
e
r
o
b
o
tic
ac
tu
ato
r
k
in
e
m
a
t
ic
s
w
a
s
o
f
f
er
ed
b
y
J
.
Den
av
it
an
d
R
.
S.
Har
ten
b
er
g
[
1
0
]
.
I
t
is
b
ased
o
n
u
s
i
n
g
h
o
m
o
g
en
eo
u
s
tr
a
n
s
f
o
r
m
atio
n
m
atr
ices
(
4
4
)
g
iv
i
n
g
u
n
a
m
b
i
g
u
o
u
s
a
n
d
clea
r
r
u
les
f
o
r
m
a
k
i
n
g
a
r
o
b
o
t’
s
ac
tu
a
to
r
m
at
h
e
m
atica
l
m
o
d
el.
T
h
e
n
u
m
b
er
o
f
p
ar
a
m
eter
s
in
t
h
e
m
atr
i
x
A
i
o
f
th
e
ac
tu
ato
r
s
er
ial
li
n
k
s
’
r
elati
v
e
p
o
s
itio
n
is
m
in
i
m
a
l
an
d
n
at
u
r
all
y
d
ef
in
e
s
th
e
m
u
tu
al
ar
r
an
g
e
m
e
n
t
o
f
ac
t
u
ato
r
s
er
ial
lin
k
s
.
T
h
e
f
o
r
m
o
f
th
e
m
atr
ix
A
i
is
s
i
m
ilar
f
o
r
b
o
th
r
o
tatio
n
al
an
d
tr
an
s
latio
n
al
j
o
in
ts
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Den
a
vit
-
Ha
r
ten
b
erg
C
o
o
r
d
in
a
te
S
ystem
fo
r
R
o
b
o
ts
w
ith
Tr
ee
-
like
K
in
ema
tic
S
tr
u
ctu
r
e
(
A
le
ksa
n
d
er K
)
245
T
h
e
s
ig
n
i
f
ican
t
ad
v
a
n
tag
e
o
f
t
h
is
m
et
h
o
d
d
ev
elo
p
ed
to
co
n
s
tr
u
ct
r
elate
d
co
o
r
d
in
ate
s
y
s
te
m
s
(
C
S)
i
s
th
at
y
o
u
m
a
y
s
p
ec
i
f
y
o
n
l
y
f
o
u
r
p
ar
am
eter
s
d
eter
m
in
i
n
g
th
e
r
elativ
e
p
o
s
itio
n
o
f
t
w
o
s
er
ial
C
Ss
i
-
1
an
d
i
a
n
d
,
as
a
co
n
s
eq
u
e
n
ce
,
th
e
tr
an
s
f
o
r
m
a
tio
n
m
atr
i
x
A
i
.
T
h
e
r
esu
ltin
g
m
atr
ix
A
i
j
o
in
i
n
g
th
e
C
S
s
i
-
1
an
d
i
h
as t
h
e
f
o
ll
o
w
i
n
g
f
o
r
m
[
1
0
]
:
|
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
|
(
1
)
Ou
t
o
f
t
h
e
f
o
u
r
p
ar
a
m
eter
s
(
,
,
,
)
f
r
o
m
ex
p
r
es
s
io
n
(
1
)
,
th
e
t
w
o
p
ar
a
m
eter
s
an
d
ar
e
al
w
a
y
s
co
n
s
ta
n
t
an
d
d
eter
m
i
n
ed
b
y
th
e
r
o
b
o
t’
s
ac
t
u
ati
n
g
m
e
ch
an
i
s
m
d
e
s
ig
n
.
On
e
o
f
th
e
o
t
h
er
t
w
o
p
ar
a
m
eter
s
(
o
r
)
is
v
ar
iab
le.
Fo
r
a
r
o
tatio
n
al
j
o
in
t,
th
e
v
alu
e
s
p
ec
if
ie
s
t
h
e
an
g
le
o
f
r
elati
v
e
r
o
tatio
n
o
f
th
e
li
n
k
s
i
-
1
an
d
I
,
th
e
lin
ea
r
v
al
u
e
is
co
n
s
ta
n
t.
Fo
r
a
telesco
p
ic
jo
in
t
it
is
v
ice
v
er
s
a,
t
h
e
v
ar
iab
le
v
alu
e
i
s
.
T
h
e
v
ar
iab
le
v
al
u
e
o
f
t
h
e
i
-
th
j
o
i
n
t
(
o
r
)
is
co
m
m
o
n
l
y
r
e
f
er
r
ed
to
as
th
e
g
e
n
er
alize
d
co
o
r
d
in
ate
o
f
th
e
r
o
b
o
t’
s
ac
tu
ati
n
g
m
ec
h
an
is
m
.
I
n
b
u
ild
in
g
r
o
b
o
tic
k
in
e
m
atic
m
o
d
els,
t
h
is
m
et
h
o
d
is
m
o
s
t
p
r
ev
alen
t
a
m
o
n
g
d
ev
elo
p
er
s
d
u
e
to
its
clar
it
y
an
d
r
ef
er
e
n
ce
to
ac
tu
at
o
r
s
’
d
esig
n
p
ar
a
m
eter
s
.
Ho
w
e
v
er
,
t
h
e
atte
m
p
ts
o
f
u
s
i
n
g
t
h
is
m
eth
o
d
o
f
d
escr
ib
i
n
g
th
e
r
o
b
o
ts
w
i
th
a
tr
ee
-
li
k
e
K
S
r
ev
ea
led
ce
r
tain
d
if
f
ic
u
ltie
s
in
it
s
ap
p
licatio
n
.
2
.
AP
P
L
I
CAB
I
L
I
T
Y
Du
r
in
g
t
h
e
p
r
o
ce
s
s
o
f
cr
ea
tin
g
w
a
lk
i
n
g
r
o
b
o
ts
(
W
R
)
ex
ten
s
iv
el
y
elab
o
r
ated
lately
,
t
h
e
d
ev
elo
p
er
s
ca
m
e
ac
r
o
s
s
a
p
r
o
b
lem
-
h
o
w
to
m
at
h
e
m
atica
ll
y
d
escr
ib
e
th
e
k
i
n
e
m
atics
a
n
d
d
y
n
a
m
ic
s
o
f
th
eir
ac
tu
a
tin
g
m
ec
h
a
n
i
s
m
s
,
w
h
ic
h
ar
e
s
p
atial
tr
ee
-
li
k
e
k
i
n
e
m
a
tic
s
tr
u
ct
u
r
es
w
it
h
a
lar
g
e
n
u
m
b
er
o
f
f
r
ee
d
o
m
m
o
tio
n
d
e
g
r
ee
s
.
W
ell
-
k
n
o
w
n
m
et
h
o
d
s
p
r
o
v
id
in
g
g
o
o
d
r
esu
lts
i
n
th
e
d
escr
i
p
tio
n
o
f
r
o
b
o
ts
’
A
M
s
w
it
h
li
n
ea
r
o
p
en
k
in
e
m
at
ic
ch
ain
s
ar
e
n
o
t a
l
w
a
y
s
ac
ce
p
ta
b
le
to
d
escr
ib
e
th
e
A
Ms
w
it
h
t
r
ee
-
lik
e
k
i
n
e
m
atic
ch
a
in
s
.
I
t
is
also
i
m
p
o
r
tan
t
th
at
t
h
e
m
ath
e
m
atica
l
m
o
d
el
s
o
f
ac
t
u
ato
r
k
in
e
m
atic
s
o
b
tain
ed
b
y
th
e
s
e
m
et
h
o
d
s
ar
e
to
b
e
u
s
ed
in
co
n
s
tr
u
ct
in
g
d
y
n
a
m
ical
eq
u
at
io
n
s
a
n
d
alg
o
r
ith
m
s
f
o
r
r
o
b
o
t m
o
tio
n
co
n
tr
o
l
.
T
h
er
ef
o
r
e,
th
e
d
ev
elo
p
m
e
n
t
o
f
n
e
w
e
f
f
ec
tiv
e
m
e
th
o
d
s
to
co
n
s
tr
u
ct
t
h
e
m
at
h
e
m
atica
l
m
o
d
el
s
o
f
r
o
b
o
tic
tr
ee
-
lik
e
ac
tu
ato
r
k
i
n
e
m
atic
s
an
d
d
y
n
a
m
ics is
a
n
i
m
p
o
r
tan
t scien
ti
f
ic
a
n
d
tech
n
ica
l c
h
alle
n
g
e.
3.
RE
S
E
ARCH
M
E
T
H
O
D
T
h
e
au
th
o
r
s
s
u
g
g
est a
m
et
h
o
d
o
f
b
u
ild
i
n
g
a
m
o
d
i
f
ied
Den
a
v
i
t
-
Har
te
n
b
er
g
(
DH)
co
o
r
d
in
ate
s
y
s
te
m
; i
t
allo
w
s
f
o
r
m
in
g
m
at
h
e
m
atica
l
m
o
d
el
s
f
o
r
th
e
ac
t
u
ato
r
s
o
f
r
o
b
o
ts
w
it
h
ar
b
itra
r
y
tr
ee
-
li
k
e
K
Ses
.
T
h
is
m
eth
o
d
is
b
ased
o
n
jo
in
t
ap
p
licatio
n
o
f
th
e
g
r
ap
h
t
h
eo
r
y
[
1
1
]
an
d
DH
co
o
r
d
in
ate
s
y
s
te
m
p
r
o
p
o
s
ed
b
y
De
n
av
it
an
d
Har
ten
b
er
g
[
1
0
]
to
d
escr
ib
e
th
e
k
in
e
m
atic
s
o
f
r
o
b
o
ts
w
ith
li
n
ea
r
o
p
en
k
in
e
m
atic
c
h
ain
.
T
h
is
s
av
e
s
th
e
k
n
o
wn
b
en
ef
it
s
o
f
th
e
DH
C
S
an
d
g
i
v
es
a
p
o
s
s
ib
ilit
y
to
d
escr
ib
e
th
e
k
i
n
e
m
atics
o
f
t
h
e
ar
b
itra
r
y
tr
ee
-
lik
e
KS
u
s
i
n
g
th
e
g
r
ap
h
t
h
eo
r
y
m
et
h
o
d
s
.
4.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
L
et
u
s
co
n
s
id
er
a
k
i
n
e
m
a
tics
s
ch
e
m
e
o
f
a
r
o
b
o
t’
s
ac
tu
atin
g
m
ec
h
a
n
i
s
m
(
Fi
g
.
1
)
in
a
tr
ee
-
li
k
e
d
ir
ec
ted
g
r
ap
h
(
Fi
g
.
2
)
[
1
1
]
.
I
n
th
is
g
r
a
p
h
,
th
e
ac
t
u
ati
n
g
lin
k
s
ar
e
v
er
t
ices
an
d
t
h
e
co
n
n
ec
ti
n
g
j
o
in
ts
ar
e
ed
g
es
[
1
2
]
.
L
et
u
s
a
s
s
u
m
e
th
at
th
e
tr
ee
r
o
o
t
(
th
e
li
n
k
n
u
m
b
er
0
)
is
t
h
e
r
o
b
o
t'
s
s
u
r
r
o
u
n
d
i
n
g
s
p
ac
e.
T
h
e
r
o
b
o
tic
ac
tu
ati
n
g
lin
k
s
s
tar
t
f
r
o
m
n
u
m
b
er
1
;
t
h
en
t
h
e
ir
n
u
m
b
er
s
i
n
cr
ea
s
e
f
r
o
m
t
h
e
r
o
o
t
o
f
th
e
tr
ee
to
its
lea
v
es
w
it
h
o
u
t
g
ap
s
.
T
h
er
e
m
u
s
t
b
e
a
co
n
d
itio
n
th
a
t
th
e
lin
k
’
s
o
w
n
n
u
m
b
er
i
s
s
m
aller
th
an
th
e
n
u
m
b
er
o
f
its
a
n
y
l
in
k
-
s
u
cc
e
s
s
o
r
.
T
h
e
n
u
m
b
er
o
f
t
h
e
A
M
’
s
g
en
er
aliz
ed
co
o
r
d
in
ate
(
as
w
ell
as
t
h
e
n
u
m
b
er
o
f
t
h
e
co
r
r
esp
o
n
d
in
g
j
o
in
t)
is
t
h
e
s
a
m
e
a
s
th
e
n
u
m
b
er
o
f
t
h
e
li
n
k
co
n
n
ec
ted
b
y
t
h
is
j
o
in
t
to
th
e
p
r
ev
io
u
s
li
n
k
.
Fo
r
w
al
k
i
n
g
r
o
b
o
ts
,
th
e
b
o
d
y
o
f
w
h
ic
h
is
n
o
t
atta
ch
ed
to
a
f
i
x
ed
b
ase,
th
e
to
tal
n
u
m
b
er
o
f
it
s
f
r
ee
d
o
m
d
eg
r
ee
s
is
eq
u
al
to
N
+6
,
wh
er
e
N
i
s
th
e
n
u
m
b
er
o
f
m
o
tio
n
f
r
ee
d
o
m
d
eg
r
ee
s
f
o
r
its
ac
tu
ati
n
g
m
ec
h
an
is
m
s
.
T
o
“
b
in
d
”
th
e
W
R
’
s
A
M
s
to
an
ab
s
o
lu
te
C
S
an
d
d
escr
ib
e
its
m
o
t
io
n
i
n
s
p
ac
e,
w
e
in
tr
o
d
u
ce
a
d
u
m
m
y
k
i
n
e
m
atic
c
h
ai
n
t
h
at
co
n
n
ec
t
s
t
h
e
r
o
b
o
t’
s
b
o
d
y
w
it
h
a
s
tatio
n
ar
y
(
in
t
h
e
ab
s
o
lu
te
C
S
)
d
u
m
m
y
s
tan
d
.
T
h
is
d
u
m
m
y
ch
ain
co
n
s
i
s
ts
o
f
w
eig
h
tle
s
s
lin
k
s
(
0
5
)
,
(
th
r
ee
tr
an
s
latio
n
al
a
n
d
th
r
ee
r
o
tatio
n
al
k
in
e
m
atic
p
air
s
,
5
th
g
r
ad
e)
an
d
ch
ar
ac
ter
izes
t
h
e
p
o
s
itio
n
an
d
o
r
ien
ta
tio
n
o
f
th
e
r
o
b
o
t’
s
b
o
d
y
i
n
t
h
e
ab
s
o
lu
t
e
C
S.
Su
c
h
a
d
escr
ip
tio
n
o
f
t
h
e
r
o
b
o
t’
s
tr
ee
-
li
k
e
ac
t
u
ati
n
g
m
ec
h
an
i
s
m
k
in
e
m
atic
s
c
h
e
m
e
p
r
esu
m
e
s
d
if
f
er
e
n
t
v
ar
ian
ts
o
f
t
h
e
li
n
k
s
’
n
u
m
b
er
i
n
g
.
T
h
e
q
u
an
tit
y
o
f
n
u
m
b
er
in
g
v
ar
ian
t
s
d
ep
en
d
s
o
n
t
h
e
tr
ee
-
li
k
e
k
in
e
m
at
ic
s
t
r
u
ct
u
r
e’
s
co
m
p
le
x
it
y
.
Her
e,
ev
er
y
n
u
m
b
er
i
n
g
v
ar
ian
t
co
r
r
esp
o
n
d
s
to
it
s
o
wn
d
ir
ec
ted
g
r
ap
h
,
it
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
24
4
–
25
4
246
r
ea
ch
ab
ilit
y
m
atr
i
x
an
d
its
o
wn
b
lo
ck
v
ec
to
r
̅
d
eter
m
in
i
n
g
th
e
s
eq
u
en
ce
o
f
b
asi
s
v
ec
to
r
s
o
f
th
e
ax
e
s
̅
,
w
h
ic
h
m
atc
h
th
e
j
o
in
ts
co
n
n
ec
ti
n
g
th
e
ac
tu
ati
n
g
li
n
k
s
w
i
th
t
h
eir
an
ce
s
to
r
lin
k
s
.
A
d
e
v
elo
p
er
is
g
i
v
e
n
t
h
e
r
i
g
h
t
to
ch
o
o
s
e
a
s
p
ec
i
f
ic
n
u
m
b
er
i
n
g
v
ar
ia
n
t
b
ased
o
n
h
i
s
p
r
io
r
ities
.
Ho
w
e
v
er
,
w
e
m
u
s
t r
e
m
e
m
b
er
th
at
all
n
u
m
b
er
in
g
o
p
tio
n
s
ar
e
eq
u
iv
ale
n
t a
n
d
lead
to
th
e
d
esire
d
r
esu
lt.
Fig
u
r
e
1
.
Kin
e
m
atic
s
c
h
e
m
e
o
f
a
r
o
b
o
tic
m
a
n
n
eq
u
in
’
s
ac
tu
a
tin
g
m
ec
h
a
n
is
m
w
it
h
d
u
m
m
y
l
in
k
s
Fig
u
r
e
2
.
T
r
ee
-
lik
e
g
r
ap
h
r
ep
r
e
s
en
ti
n
g
th
e
k
i
n
e
m
atic
s
tr
u
ctu
r
e
o
f
a
r
o
b
o
tic
m
a
n
n
eq
u
i
n
’
s
ac
tu
ati
n
g
m
ec
h
an
is
m
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Den
a
vit
-
Ha
r
ten
b
erg
C
o
o
r
d
in
a
te
S
ystem
fo
r
R
o
b
o
ts
w
ith
Tr
ee
-
like
K
in
ema
tic
S
tr
u
ctu
r
e
(
A
le
ksa
n
d
er K
)
247
I
n
th
e
m
at
h
e
m
atica
l
d
escr
ip
tio
n
o
f
t
h
e
k
in
e
m
at
ic
s
tr
u
ctu
r
e
o
f
r
o
b
o
tic
A
Ms
r
ep
r
esen
ted
i
n
t
h
e
f
o
r
m
o
f
tr
ee
-
li
k
e
d
ir
ec
ted
g
r
ap
h
s
,
w
e
u
s
e
th
e
f
o
llo
w
in
g
d
ef
i
n
it
io
n
s
[
1
2
]
:
L={
1
,
2
…,
N
}
–
th
e
ir
r
eg
u
lar
s
e
t,
th
e
ele
m
e
n
t
s
o
f
w
h
ich
ar
e
t
h
e
n
u
m
b
er
s
o
f
A
M
’
s
l
in
k
s
;
f(
i
)
–
th
e
n
u
m
b
er
o
f
an
ce
s
to
r
o
f
th
e
l
in
k
i
;
s
(
i,k
)
–
th
e
n
u
m
b
er
o
f
th
e
l
in
k
-
k
-
t
h
s
u
cc
es
s
o
r
o
f
th
e
li
n
k
i
;
dg
+
(
i
)
–
th
e
o
u
td
eg
r
ee
o
f
t
h
e
li
n
k
i
; i
t d
eter
m
i
n
es t
h
e
n
u
m
b
er
o
f
s
u
cc
e
s
s
o
r
s
o
f
t
h
e
li
n
k
i
;
Γ
(
i
)
–
th
e
s
eq
u
e
n
ce
o
f
li
n
k
s
’
n
u
m
b
er
s
,
w
h
ic
h
ar
e
th
e
s
u
cc
es
s
o
r
s
o
f
th
e
l
in
k
i
;
Γ
(
i)
={
(
s
(
i
,
1
)
,
s(
i
,
2
)
,
…s
(
i
,
k
)
,
…s
(
i
,
dg
+
(
i
)
)
)
};
n
s
(
i
)
d
eter
m
i
n
es t
h
e
o
r
d
er
n
u
m
b
er
o
f
t
h
e
s
u
cc
es
s
o
r
lin
k
i
r
elativ
el
y
it
s
an
ce
s
to
r
;
*
+
–
th
e
co
ef
f
icie
n
t to
d
ef
i
n
e
t
h
e
j
o
in
t ty
p
e
o
f
t
h
e
li
n
k
i
(
1
–
r
o
t
atio
n
al,
0
–
tr
an
s
latio
n
al)
;
*
+
–
th
e
d
iag
o
n
al
m
atr
ix
d
e
f
in
in
g
th
e
j
o
in
t t
y
p
es o
f
t
h
e
tr
ee
-
li
k
e
A
M
’
lin
k
s
.
L
et
u
s
co
n
s
id
er
th
e
p
r
o
ce
d
u
r
e
o
n
s
ettin
g
th
e
co
o
r
d
in
ate
s
y
s
te
m
s
r
elate
d
to
th
e
tr
ee
-
li
k
e
A
M
’
s
li
n
k
s
[
1
3
,
1
4
]
.
E
v
er
y
A
M
’
s
li
n
k
i
s
co
n
n
ec
ted
w
it
h
t
h
e
q
u
a
n
tit
y
o
f
co
o
r
d
in
ate
s
y
s
te
m
s
eq
u
al
to
th
e
q
u
a
n
tit
y
o
f
its
s
u
cc
e
s
s
o
r
s
.
On
e
C
S
co
n
n
ec
te
d
w
ith
t
h
e
lin
k
is
r
eg
ar
d
ed
as
p
r
im
ar
y
,
o
th
er
C
Ses
ar
e
au
x
i
liar
y
.
Fig
.
3
s
h
o
w
s
th
r
ee
s
a
m
p
le
co
o
r
d
in
ate
s
y
s
te
m
s
co
n
n
ec
ted
w
ith
t
h
e
lin
k
i
,
w
h
ic
h
h
as
t
h
r
ee
s
u
cc
e
s
s
o
r
s
.
All
C
Ses
ar
e
ass
i
g
n
ed
in
ac
co
r
d
an
ce
w
ith
De
n
a
v
it
-
H
ar
ten
b
er
g
[
1
0
]
r
u
les.
Fig
u
r
e
3.
Desig
n
atio
n
o
f
co
o
r
d
in
ate
s
y
s
te
m
s
co
n
n
ec
ted
w
it
h
a
b
r
an
ch
in
g
li
n
k
T
h
e
tr
an
s
itio
n
o
f
th
e
li
n
k
i
f
r
o
m
th
e
p
r
i
m
ar
y
C
S
to
th
e
co
r
r
esp
o
n
d
in
g
C
S
o
f
i
ts
a
n
ce
s
to
r
lin
k
f(
i
)
i
s
d
ef
in
ed
b
y
t
h
e
tr
an
s
f
o
r
m
atio
n
m
atr
i
x
A
i
:
|
|
(
)
(
)
̅
(
)
(
)
|
|
.
(
2
)
T
h
e
tr
an
s
itio
n
s
o
f
t
h
e
li
n
k
i
f
r
o
m
a
u
x
iliar
y
C
Se
s
to
t
h
e
p
r
im
ar
y
C
S
i
s
d
eter
m
i
n
ed
b
y
t
h
e
co
n
s
ta
n
t
m
atr
ices o
f
h
o
m
o
g
e
n
eo
u
s
tr
a
n
s
f
o
r
m
a
tio
n
s
M
i,
ns(j)
,
w
h
er
e
j
is
t
h
e
n
u
m
b
er
o
f
t
h
e
i
-
li
n
k
’
s
s
u
cc
ess
o
r
s
:
(
)
|
|
(
)
(
)
|
|
.
(
3
)
T
h
e
ex
p
r
ess
io
n
s
(
2
)
an
d
(
3
)
allo
w
w
r
it
in
g
r
ec
u
r
r
en
t
r
elati
o
n
s
to
d
eter
m
i
n
e
t
h
e
m
atr
i
x
T
,
w
h
ic
h
s
p
ec
if
ie
s
th
e
tr
a
n
s
it
io
n
f
r
o
m
p
r
i
m
ar
y
l
i
n
k
s
’
C
Ses
to
t
h
e
ab
s
o
lu
te
C
S.
T
i
= T
f(i)
M
i,
ns(j)
A
i
.
T
h
e
m
atr
i
x
M
i,
ns(j)
is
al
w
a
y
s
c
o
n
s
ta
n
t
an
d
p
er
f
o
r
m
s
a
s
u
p
p
o
r
tin
g
f
u
n
ct
io
n
d
u
r
i
n
g
t
h
e
tr
a
n
s
itio
n
f
r
o
m
th
e
s
u
cc
es
s
o
r
’
s
p
r
i
m
ar
y
C
S
t
o
th
e
an
ce
s
to
r
’
s
p
r
i
m
ar
y
C
S.
I
n
ca
s
e
j
∈
Γ
(i)
a
n
d
it
co
r
r
esp
o
n
d
s
to
th
e
p
r
i
m
ar
y
C
S
o
f
th
e
li
n
k
i,
th
e
n
M
i,
ns(j)=
E
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
24
4
–
25
4
248
C
o
o
r
d
in
ate
s
y
s
te
m
s
eq
u
e
n
ce
o
r
d
er
in
th
e
tr
ee
-
li
k
e
k
i
n
e
m
atic
s
tr
u
ct
u
r
e
o
f
r
o
b
o
ts
’
A
M
s
is
s
e
t
w
it
h
t
h
e
h
elp
o
f
th
e
b
lo
ck
v
ec
to
r
̅
.
I
t
d
e
f
i
n
es
th
e
s
eq
u
e
n
ce
o
f
th
e
b
asi
s
v
ec
to
r
s
o
f
th
e
ax
es
z
,
w
h
ic
h
co
r
r
esp
o
n
d
t
o
th
e
j
o
in
ts
co
n
n
ec
ti
n
g
th
e
ac
t
u
ati
n
g
li
n
k
s
w
it
h
th
e
ir
an
ce
s
to
r
s
.
F
o
r
th
e
ac
tu
ati
n
g
m
ec
h
an
is
m
,
t
h
e
k
i
n
e
m
atic
s
c
h
e
m
e
o
f
w
h
ic
h
is
p
r
ese
n
ted
in
F
ig
.
1
,
th
e
b
lo
ck
v
ec
to
r
̅
h
as t
h
e
f
o
ll
o
w
i
n
g
f
o
r
m
:
̅
(
(
4
)
)
T
h
e
f
ir
s
t
ele
m
e
n
t
(
it
co
r
r
esp
o
n
d
s
to
th
e
f
ir
s
t
lin
k
)
i
s
z
0
in
th
e
ab
s
o
lu
te
C
S.
T
h
e
s
ec
o
n
d
ele
m
en
t
i
s
th
e
b
asis
v
ec
to
r
o
f
t
h
e
f
ir
s
t
li
n
k
’
s
ax
i
s
z
.
Fo
r
in
s
ta
n
ce
,
f
o
r
L
i
n
k
1
9
,
th
er
e
is
th
e
b
asis
v
ec
to
r
o
f
t
h
e
ax
is
z
o
f
t
h
e
s
ix
t
h
l
in
k
’
s
a
u
x
iliar
y
C
S.
T
h
e
ax
es
o
f
t
h
e
li
n
k
s
-
lea
v
es
'
co
o
r
d
in
ate
s
y
s
te
m
s
ar
e
n
o
t
i
n
cl
u
d
ed
in
to
th
i
s
b
lo
ck
v
ec
to
r
.
I
t sh
o
u
ld
b
e
n
o
ted
th
at
i
n
t
h
e
c
o
n
s
id
er
ed
ex
a
m
p
le,
t
h
e
̅
b
lo
ck
v
ec
to
r
’
s
d
i
m
e
n
s
io
n
is
(
2
4
х
2
4
)
,
an
d
th
e
̅
b
lo
ck
v
ec
to
r
’
s
d
i
m
en
s
io
n
i
s
(
2
1
х
2
1
)
–
d
u
e
to
th
e
f
ac
t
th
at
t
h
e
ele
m
e
n
t
s
,
,
o
f
th
e
v
ec
to
r
̅
ar
e
n
o
t
th
e
A
M
’
s
k
i
n
e
m
a
ti
c
p
air
ax
es
b
u
t
ar
e
r
elate
d
w
it
h
t
h
e
r
o
b
o
t’
s
au
x
iliar
y
co
o
r
d
in
ate
s
y
s
te
m
s
d
eter
m
in
i
n
g
th
eir
p
o
s
itio
n
a
n
d
o
r
ien
tatio
n
i
n
t
h
e
m
ai
n
co
o
r
d
in
ate
s
y
s
te
m
.
Fo
r
a
lin
ea
r
o
p
e
n
k
i
n
e
m
atic
ch
ai
n
,
th
e
d
i
m
e
n
s
io
n
s
o
f
th
e
v
ec
to
r
s
̅
an
d
̅
co
in
cid
e.
Fo
r
th
e
m
at
h
e
m
a
tical
d
escr
ip
tio
n
o
f
th
e
A
M
’
s
tr
ee
-
lik
e
k
in
e
m
atic
s
tr
u
ct
u
r
e,
it
is
n
ec
ess
ar
y
t
o
d
eter
m
in
e
th
e
li
n
k
s
’
o
r
d
er
r
elativ
e
to
ea
ch
o
t
h
er
.
I
t
is
f
o
u
n
d
b
y
t
h
e
r
ea
ch
ab
il
it
y
m
atr
ix
D
–
th
e
s
q
u
ar
e
m
a
tr
ix
,
ev
er
y
ele
m
e
n
t
o
f
w
h
ich
if
t
h
e
i
-
th
v
er
tex
o
f
th
e
d
ir
ec
te
d
g
r
ap
h
d
escr
ib
in
g
t
h
e
A
M
’
s
k
i
n
e
m
atic
s
tr
u
ct
u
r
e
is
r
ea
ch
ab
le
f
r
o
m
t
h
e
v
er
tex
j
a
n
d
if
th
e
i
-
t
h
v
er
tex
is
n
o
t r
ea
ch
a
b
le
f
r
o
m
th
e
v
er
te
x
j
.
Up
o
n
n
u
m
b
er
in
g
t
h
e
r
o
b
o
t’
s
ac
tu
ati
n
g
li
n
k
s
in
ac
co
r
d
an
ce
w
it
h
t
h
e
ab
o
v
e
r
u
le
s
,
t
h
e
r
ea
ch
ab
ilit
y
m
atr
i
x
D
t
u
r
n
s
o
u
t
to
b
e
a
lo
w
er
tr
ia
n
g
u
lar
m
atr
i
x
,
it
s
d
i
m
en
s
io
n
is
eq
u
al
to
t
h
e
ac
t
u
a
tin
g
li
n
k
s
’
n
u
m
b
er
.
T
h
er
ef
o
r
e,
b
o
th
th
e
tr
ee
-
li
k
e
g
r
ap
h
r
ep
r
esen
tin
g
th
e
r
o
b
o
t’
s
tr
ee
-
lik
e
k
i
n
e
m
at
ic
s
tr
u
ct
u
r
e
an
d
th
e
r
ea
ch
ab
ilit
y
m
atr
i
x
D
r
ef
lect
t
h
e
r
elati
v
e
p
o
s
itio
n
an
d
r
ea
ch
ab
ili
t
y
o
f
th
e
ac
tu
ati
n
g
m
ec
h
an
is
m
’
s
li
n
k
s
.
T
h
u
s
,
th
e
p
r
o
p
o
s
ed
m
e
th
o
d
o
f
co
n
s
tr
u
cti
n
g
a
m
o
d
if
ied
DH
co
o
r
d
in
ate
s
y
s
te
m
allo
w
s
d
e
f
i
n
in
g
t
h
e
v
alu
e
s
o
f
th
e
tr
ee
-
li
k
e
ac
tu
ati
n
g
m
ec
h
a
n
i
s
m
’
s
p
r
i
m
ar
y
an
d
au
x
i
liar
y
co
o
r
d
in
ate
s
y
s
te
m
s
.
T
ab
les
1
an
d
2
g
iv
e
th
e
m
o
d
if
ied
DH
p
ar
a
m
eter
s
’
v
al
u
es
f
o
r
p
r
i
m
ar
y
an
d
au
x
il
iar
y
co
o
r
d
in
ate
s
y
s
te
m
s
o
f
th
e
r
o
b
o
tic
ac
tu
ati
n
g
m
ec
h
a
n
i
s
m
,
t
h
e
k
in
e
m
atic
s
ch
e
me
o
f
w
h
ic
h
is
p
r
esen
ted
i
n
F
ig
u
r
e
1
[
1
1
]
.
T
ab
le
1
.
Mo
d
if
ied
DH
p
ar
am
e
ter
s
’
v
alu
e
s
f
o
r
p
r
i
m
ar
y
co
o
r
d
in
ate
s
y
s
te
m
s
o
f
a
r
o
b
o
tic
ac
tu
atin
g
m
ec
h
a
n
is
m
C
S
N
o
.
θ,
r
a
d
d
, m
a
, m
α
,
r
a
d
f
(
i
)
n
s(
i
)
1
-
π/
2
0
0
-
π/
2
0
1
2
-
π/
2
0
0
-
π/
2
1
1
3
-
π/
2
0
0
-
π/
2
2
1
4
π/
2
0
0
π/
2
3
1
5
π/
2
0
0
π/
2
4
1
6
0
-
0
.
3
4
9
0
-
π/
2
5
1
7
π/
2
-
0
.
1
0
.
1
7
π/
2
6
1
8
0
0
0
-
π/
2
7
1
9
0
0
0
.
4
0
8
1
10
0
0
0
.
4
2
7
2
6
0
9
1
11
0
0
0
.
0
5
1
0
10
1
12
-
π/
2
0
0
-
π/
2
7
2
13
0
0
0
.
4
0
12
1
14
0
0
0
.
4
2
7
2
6
0
13
1
15
0
0
0
.
0
5
1
0
14
1
16
π
0
.
2
0
π/
2
6
2
17
π
0
0
.
2
6
2
-
π/
2
16
1
18
0
0
0
.
4
4
4
0
17
1
19
π
0
.
2
0
-
π/
2
6
3
20
π
0
0
.
2
6
2
-
π/
2
19
1
21
0
0
0
.
4
4
4
0
20
1
T
ab
le
2
.
Mo
d
if
ied
DH
p
ar
am
e
ter
s
’
v
alu
e
s
f
o
r
au
x
iliar
y
co
o
r
d
in
ate
s
y
s
te
m
s
o
f
a
r
o
b
o
tic
ac
t
u
ati
n
g
m
ec
h
an
i
s
m
C
S
N
o
.
θ,
r
a
d
d
, m
a
, m
α
,
r
a
d
f
(
i
)
n
s(
i
)
6
.
2
π/
2
0
-
0
.
3
4
9
π
6
2
6
.
3
π/
2
0
-
0
.
3
4
9
0
6
3
7
.
2
π/
2
0
0
.
2
0
7
2
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Den
a
vit
-
Ha
r
ten
b
erg
C
o
o
r
d
in
a
te
S
ystem
fo
r
R
o
b
o
ts
w
ith
Tr
ee
-
like
K
in
ema
tic
S
tr
u
ctu
r
e
(
A
le
ksa
n
d
er K
)
249
B
y
t
h
e
tr
ee
-
li
k
e
g
r
ap
h
(
Fi
g
.
2
)
p
r
esen
tin
g
th
e
r
o
b
o
tic
k
in
e
m
atic
s
tr
u
ct
u
r
e,
w
e
d
ef
i
n
e
th
e
r
ea
ch
ab
ilit
y
m
atr
i
x
D(
2
1
21)
o
f
th
e
r
o
b
o
t’
s
ac
tu
ati
n
g
l
in
k
s
.
I
ts
ele
m
e
n
ts
’
n
u
m
er
ica
l v
al
u
es c
a
n
b
e
f
o
u
n
d
i
n
T
ab
le
3
.
T
ab
le
3
.
Nu
m
er
ical
v
al
u
es o
f
t
h
e
m
atr
i
x
D
ele
m
e
n
ts
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D(
2
1
2
1
)
=
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
T
h
e
f
ir
s
t
s
ix
co
lu
m
n
s
o
f
th
e
m
atr
ix
D(
2
1
21)
co
r
r
esp
o
n
d
t
o
t
h
e
lin
k
s
o
f
th
e
d
u
m
m
y
k
i
n
e
m
atic
ch
ain
co
n
n
ec
ti
n
g
t
h
e
r
o
b
o
t’
s
b
o
d
y
w
it
h
a
d
u
m
m
y
s
ta
n
d
s
tatio
n
ar
y
i
n
t
h
e
ab
s
o
l
u
te
s
y
s
te
m
.
T
h
e
1
-
v
al
u
e
ele
m
e
n
ts
o
f
th
e
f
ir
s
t
s
ix
co
l
u
m
n
s
i
n
d
icate
th
at
f
r
o
m
t
h
ese
lin
k
s
ar
e
r
ea
c
h
ab
le
all
t
h
e
o
th
er
li
n
k
s
o
f
th
e
r
o
b
o
t’
s
k
i
n
e
m
a
tic
ch
ain
.
T
h
e
s
e
v
en
t
h
co
lu
m
n
o
f
th
e
m
atr
i
x
D
(
2
1
21)
co
r
r
esp
o
n
d
s
to
L
i
n
k
7
,
f
r
o
m
w
h
ich
t
h
e
lin
k
s
8
1
5
ar
e
r
ea
ch
ab
le.
T
h
e
eig
h
t
h
co
r
r
esp
o
n
d
s
to
L
i
n
k
8
,
f
r
o
m
w
h
ich
o
n
l
y
t
h
e
lin
k
s
9
1
1
ar
e
r
ea
ch
ab
le.
L
i
n
k
1
1
(
th
e
1
1
th
co
lu
m
n
)
is
r
ea
ch
ab
le
o
n
l
y
f
r
o
m
its
e
lf
,
etc.
T
h
u
s
,
if
w
e
co
m
p
le
m
e
n
t
th
e
t
r
ad
itio
n
al
DH
p
ar
am
eter
s
,
,
,
w
it
h
th
e
p
ar
a
m
eter
s
f
(
i)
,
n
s
(
i
)
,
as
w
ell
as
t
h
e
b
lo
ck
v
ec
to
r
̅
,
th
e
d
iag
o
n
a
l
m
atr
i
x
σ
a
n
d
th
e
r
ea
ch
ab
ilit
y
m
atr
i
x
D
ch
ar
ac
te
r
izin
g
t
h
e
s
p
ec
i
f
ic
C
S
’
s
f
ea
t
u
r
es,
it
i
s
p
o
s
s
ib
le
to
f
o
r
m
alize
th
e
k
i
n
e
m
atic
eq
u
at
io
n
s
f
o
r
th
e
ac
t
u
ati
n
g
m
ec
h
a
n
i
s
m
o
f
a
r
o
b
o
t
w
it
h
an
ar
b
itra
r
y
tr
ee
-
li
k
e
k
i
n
e
m
ati
c
ch
ain
.
Usi
n
g
th
e
ab
o
v
e
-
p
r
o
p
o
s
ed
m
e
th
o
d
o
f
d
escr
ib
in
g
th
e
k
in
e
m
atics
o
f
a
tr
ee
-
lik
e
r
o
b
o
t’
s
AM
w
it
h
th
e
h
elp
o
f
th
e
m
o
d
i
f
ied
DH
co
o
r
d
in
ate
s
y
s
te
m
,
w
e
w
r
ite
k
in
e
m
atic
d
ep
en
d
en
cie
s
f
o
r
all
AM
’
s
li
n
k
s
in
a
b
lo
ck
m
atr
i
x
f
o
r
m
[
1
3
,
1
4
]
.
T
h
e
v
a
lu
es
’
s
y
m
b
o
ls
u
s
ed
in
th
e
b
elo
w
e
x
p
r
ess
io
n
s
(
5
)
(
1
4
)
co
r
r
es
p
o
n
d
to
th
o
s
e
i
n
Ko
v
alch
u
k
et
al.
[
1
4
]
.
T
h
e
ex
p
r
ess
io
n
s
to
d
ef
in
e
t
h
e
lin
k
s
’
an
g
u
lar
v
elo
citie
s
an
d
an
g
u
la
r
ac
ce
ler
atio
n
s
ca
n
b
e
f
o
r
m
ed
as f
o
llo
w
s
:
(
)
̇
;
(
5
)
(
̈
̇
̇
)
.
(
6
)
L
et
u
s
w
r
ite
t
h
e
ex
p
r
ess
io
n
s
d
ef
in
i
n
g
th
e
v
elo
cities
an
d
ac
ce
ler
atio
n
s
̇
o
f
th
e
lin
k
s
’
p
r
im
ar
y
C
S o
r
ig
i
n
s
:
.
(
)
(
)
/
̇
(
7
)
̇
.
(
)
(
)
/
̈
(
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
24
4
–
25
4
250
.
(
̇
)
̇
(
̇
)
̇
(
)
/
̇
.
T
h
e
A
M
li
n
k
s
’
ce
n
ter
o
f
m
as
s
ac
ce
ler
atio
n
ca
n
b
e
d
eter
m
i
n
e
d
w
it
h
th
e
f
o
llo
w
i
n
g
e
x
p
r
ess
io
n
:
̅
(
(
)
(
)
)
̈
(
)
(
̇
)
(
)
̇
(
(
)
̇
̇
(
)
(
(
)
̇
)
)
̇
(
)
(
)
̇
(
)
̇
.
(
9
)
E
ac
h
e
x
p
r
ess
io
n
(
5
9
)
co
n
tain
s
th
e
ab
o
v
e
d
ef
i
n
ed
r
ea
ch
ab
ili
t
y
m
atr
i
x
D
,
b
lo
ck
v
ec
to
r
z
(
it
d
escr
ib
es
th
e
s
eq
u
e
n
ce
o
f
th
e
b
asis
v
ec
to
r
s
o
f
t
h
e
li
n
k
s
-
r
elate
d
c
o
o
r
d
in
ate
s
y
s
te
m
s
’
z
)
a
n
d
d
i
ag
o
n
al
m
atr
i
x
σ
(
it
d
eter
m
in
e
s
t
h
e
j
o
in
ts
’
t
y
p
es
f
o
r
A
M
lin
k
s
–
tr
an
s
latio
n
al
o
r
r
o
tatio
n
al)
.
T
h
e
s
u
p
er
s
cr
ip
t
“0
”
in
d
icate
s
th
a
t
all
th
e
o
b
tain
ed
ex
p
r
ess
io
n
s
(5
9
)
ar
e
w
r
itte
n
in
t
h
e
r
ef
er
e
n
ce
C
S
“
0
”.
T
h
e
ab
o
v
e
-
p
r
o
p
o
s
ed
m
et
h
o
d
also
allo
w
s
w
r
iti
n
g
d
y
n
a
m
ic
r
el
atio
n
s
f
o
r
all
r
o
b
o
tic
ac
tu
atin
g
lin
k
s
in
a
b
lo
ck
-
m
atr
ix
f
o
r
m
.
T
h
e
d
iag
r
a
m
s
h
o
w
i
n
g
t
h
e
ap
p
licatio
n
o
f
f
o
r
ce
s
a
n
d
m
o
m
e
n
ts
ex
i
s
ti
n
g
b
et
w
ee
n
t
h
e
tr
ee
-
lik
e
A
M
’
s
li
n
k
s
i
s
r
ep
r
esen
ted
in
Fi
g
u
r
e
4.
Fig
u
r
e
4
.
Fo
r
ce
s
an
d
m
o
m
e
n
t
s
ex
is
ti
n
g
b
et
w
ee
n
t
h
e
r
o
b
o
tic
tr
ee
-
lik
e
ac
t
u
ati
n
g
m
ec
h
a
n
is
m
’
s
lin
k
s
W
e
ca
n
w
r
ite
t
h
e
ex
p
r
es
s
io
n
s
d
escr
ib
in
g
d
y
n
a
m
ic
r
elat
io
n
s
if
t
h
e
f
o
llo
w
in
g
co
n
d
it
io
n
s
ar
e
tr
u
e
[
1
3
,
1
4
]
:
the
fo
rce
s
an
d
m
o
m
ents
e
xisting
b
et
we
en
the
ro
b
o
t’
s
AM
li
n
ks
are
to
b
e
co
n
sid
ered
thro
u
g
h
the for
ces
and
m
o
m
ents
af
fect
in
g
t
h
e
lin
k
fr
o
m
its
an
c
est
o
r’s sid
e
;
the
fo
rc
es
ac
tin
g
o
n
the
li
n
ks
fro
m
their
an
ces
t
o
rs,
as
we
ll
as
th
e
li
n
k
-
affec
tin
g
ex
te
rn
al
fo
r
ces
are
b
ro
u
g
h
t
t
o
th
e
o
rig
in
s
o
f
the
c
o
o
rd
in
at
e
sy
s
te
m
s
o
f
the
an
ces
to
r
s
co
rr
espo
n
d
in
g
to
these
li
n
ks;
the
m
o
m
ents
acting
o
n
the
li
n
ks
in
clu
d
e
the
m
o
m
ents
o
b
tain
ed
after
b
rin
g
in
g
th
ese
fo
rc
es
t
o
the o
rig
in
s
o
f
co
rr
espo
n
d
in
g
c
o
o
rd
in
ate
sy
st
e
m
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Den
a
vit
-
Ha
r
ten
b
erg
C
o
o
r
d
in
a
te
S
ystem
fo
r
R
o
b
o
ts
w
ith
Tr
ee
-
like
K
in
ema
tic
S
tr
u
ctu
r
e
(
A
le
ksa
n
d
er K
)
251
T
h
en
th
e
b
lo
ck
-
m
atr
i
x
ex
p
r
e
s
s
io
n
s
d
ef
in
i
n
g
th
e
f
o
r
ce
s
0
f
an
d
th
e
m
o
m
en
ts
0
n
ex
is
t
in
g
b
et
w
ee
n
th
e
A
M
’
s
l
in
k
s
ca
n
b
e
w
r
it
ten
a
s
f
o
llo
w
s
:
;
(
1
0
)
[
(
)
]
(
)
(
)
(
)
(
)
;
(
1
1
)
T
h
e
ex
p
r
ess
io
n
s
f
o
r
d
eter
m
i
n
in
g
t
h
e
f
o
r
ce
s
a
n
d
m
o
m
e
n
ts
d
ev
elo
p
ed
b
y
r
o
b
o
tic
ac
tu
ato
r
s
ca
n
b
e
o
b
tain
ed
b
y
p
r
o
j
ec
tin
g
th
e
ab
o
v
e
-
d
e
f
i
n
ed
f
o
r
ce
s
0
f
an
d
m
o
m
en
ts
0
n
o
f
th
e
l
in
k
s
’
i
n
ter
ac
tio
n
o
n
to
th
e
a
x
es
z
o
f
th
e
co
o
r
d
in
ate
s
y
s
te
m
s
,
w
h
ich
co
r
r
esp
o
n
d
to
th
e
j
o
in
ts
co
n
n
ec
tin
g
th
e
s
e
li
n
k
s
w
it
h
th
eir
a
n
ce
s
to
r
s
.
(
)
,
.
(
)
/
(
)
.
(
)
(
)
(
)
-
(
)
(
)
(
)
.
(
1
2
)
I
f
w
e
d
escr
ib
e,
f
o
r
th
e
li
n
k
s
’
f
o
r
ce
s
in
t
h
e
e
x
p
r
ess
io
n
(
1
2
)
,
v
elo
cities
a
n
d
ac
ce
ler
atio
n
s
th
r
o
u
g
h
th
e
g
en
er
alize
d
co
o
r
d
in
ates
q
a
n
d
th
eir
d
er
iv
at
iv
e
s
an
d
g
r
o
u
p
th
e
s
u
m
m
an
d
s
at
ab
s
o
lu
te
v
e
lo
cities
a
n
d
ac
ce
ler
atio
n
s
,
w
e
g
e
t
t
h
e
f
o
ll
o
w
i
n
g
d
y
n
a
m
ic
eq
u
a
tio
n
f
o
r
t
h
e
ac
t
u
ati
n
g
m
ec
h
a
n
i
s
m
o
f
a
r
o
b
o
t
w
ith
t
h
e
tr
ee
-
lik
e
k
in
e
m
atic
s
tr
u
ct
u
r
e:
(
)
̈
(
̇
)
(
)
(
)
,
(
1
3
)
w
h
er
e:
(
)
(
)
(
.
(
)
/
(
(
)
(
)
)
)
(
)
(
)
(
(
)
(
)
)
;
(
̇
)
(
)
{
.
(
)
/
,
(
)
(
̇
)
(
)
.
(
)
̇
(
)
(
(
)
̇
)
/
(
(
)
̇
)
(
)
-
̇
(
)
(
)
(
̇
)
}
̇
(
)
(
)
,
(
)
(
̇
)
(
)
(
(
)
̇
)
(
)
(
(
)
̇
(
(
)
̇
(
)
.
(
)
̇
/
)
-
̇
;
(
)
(
)
.
(
)
(
)
(
)
/
(
)
(
)
;
(
)
(
)
;
̅
(
̅
̅
̅
)
и
̅
(
̅
̅
̅
)
T
h
e
b
lo
ck
m
atr
ices
o
f
ex
ter
n
al
f
o
r
ce
s
an
d
m
o
m
e
n
ts
ac
t
in
g
o
n
th
e
r
o
b
o
tic
tr
ee
-
lik
e
ac
tu
atin
g
m
ec
h
a
n
i
s
m
’
s
li
n
k
s
.
T
h
is
eq
u
atio
n
is
v
alid
u
n
d
er
th
e
f
o
l
lo
w
in
g
as
s
u
m
p
tio
n
s
:
the ac
tua
tin
g
m
echan
is
m
’s
li
n
ks
ab
so
lu
t
ely
rig
id
;
the j
o
in
ts’
c
o
n
n
ec
tio
n
s
are
h
o
lo
n
o
m
i
c;
the k
in
e
m
ati
c
cha
in
s
o
f
the
t
ree
-
li
ke
kin
e
m
atic
structu
re
are
o
p
en.
T
h
e
r
esu
ltin
g
eq
u
at
io
n
(
1
3
)
b
ased
o
n
th
e
m
o
d
i
f
ied
DH
co
o
r
d
in
ate
s
y
s
te
m
i
s
u
n
i
v
e
r
s
al
(
u
n
d
er
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
24
4
–
25
4
252
in
d
icate
d
as
s
u
m
p
tio
n
s
)
f
o
r
a
w
h
o
le
cla
s
s
o
f
ac
tu
ati
n
g
m
ec
h
an
i
s
m
s
o
f
th
e
r
o
b
o
ts
w
it
h
t
r
ee
-
lik
e
k
in
e
m
ati
c
s
tr
u
ct
u
r
es d
ef
i
n
i
n
g
b
y
r
ea
ch
ab
ilit
y
m
atr
ices
D
,
b
lo
ck
v
ec
to
r
s
̅
an
d
d
iag
o
n
al
m
a
tr
ices
σ
.
5.
DIS
CU
SS
I
O
N
A.
K.
Ko
v
alc
h
u
k
[
1
5
]
p
r
esen
ts
th
e
r
es
u
lts
o
f
s
tu
d
y
i
n
g
t
h
e
k
in
e
m
atic
s
an
d
d
y
n
a
m
ic
s
o
f
a
r
o
b
o
tic
d
o
g
’
s
tr
ee
-
li
k
e
ac
tu
ati
n
g
m
ec
h
an
is
m
.
Fo
r
th
e
A
M
w
it
h
2
2
d
e
g
r
ee
s
o
f
m
o
t
io
n
f
r
ee
d
o
m
,
t
h
e
au
th
o
r
o
b
tain
ed
th
e
n
u
m
er
ical
v
a
lu
e
s
o
f
th
e
m
o
d
if
ied
DH
p
ar
am
eter
s
,
th
e
r
e
ac
h
ab
ilit
y
m
atr
i
x
D
,
th
e
b
lo
ck
v
ec
to
r
̅
an
d
th
e
d
iag
o
n
al
m
atr
ix
σ
.
B
ased
o
n
t
h
e
eq
u
atio
n
(
1
3
)
an
d
u
s
i
n
g
a
s
p
ec
iall
y
d
ev
elo
p
ed
MA
T
L
A
B
s
o
f
t
w
ar
e
[
1
6
]
,
th
er
e
ar
e
d
ef
in
ed
m
o
m
en
t a
n
d
ca
p
ac
it
y
v
a
lu
e
s
in
t
h
e
f
r
ee
d
o
m
d
eg
r
ee
s
o
f
th
e
r
o
b
o
t d
o
g
.
T
h
e
w
o
r
k
o
f
A
.
K.
Ko
v
alch
u
k
[
1
7
]
is
d
ev
o
ted
to
KS
s
y
n
t
h
es
is
an
d
s
tu
d
y
in
g
t
h
e
d
y
n
a
m
ic
o
f
a
r
o
b
o
tic
cr
ab
tr
ee
-
lik
e
ac
tu
at
in
g
m
ec
h
a
n
is
m
w
it
h
6
2
d
eg
r
ee
s
o
f
m
o
ti
o
n
f
r
ee
d
o
m
.
T
h
e
m
o
d
i
f
ied
DH
co
o
r
d
in
ate
s
y
s
te
m
ca
n
b
e
ap
p
lied
in
b
u
ild
in
g
a
m
ath
e
m
atica
l
m
o
d
el
o
f
it
s
ac
tu
a
tin
g
m
ec
h
a
n
is
m
’
s
k
in
e
m
atic
s
an
d
d
y
n
a
m
ics.
T
h
e
d
ev
elo
p
ed
3
-
D
m
o
d
el
o
f
a
r
o
b
o
tic
cr
a
b
A
M
h
e
lp
ed
to
f
i
n
d
th
e
m
as
s
an
d
i
n
er
tia
c
h
ar
ac
ter
is
tic
s
o
f
it
s
co
n
s
tr
u
ct
io
n
ele
m
e
n
ts
.
B
y
m
e
an
s
o
f
t
h
e
s
o
f
t
w
ar
e
o
f
Ko
v
alc
h
u
k
et
al.
[
1
6
]
,
th
e
a
u
th
o
r
o
b
t
ain
ed
t
h
e
n
u
m
er
ic
v
alu
e
s
o
f
th
e
m
atr
i
ce
s
’
ele
m
en
ts
in
cl
u
d
ed
in
to
t
h
e
eq
u
ati
o
n
(
1
3
)
,
as
w
ell
a
s
t
h
e
v
alu
es
o
f
m
o
m
e
n
t
s
an
d
ca
p
ac
ities
in
t
h
e
f
r
ee
d
o
m
d
eg
r
ee
s
o
f
th
e
r
o
b
o
tic
cr
ab
.
A.
K.
Ko
v
alc
h
u
k
[
1
8
]
co
n
s
i
d
er
s
th
e
ex
a
m
p
le
o
f
u
s
i
n
g
th
e
m
o
d
i
f
ied
DH
C
S
i
n
f
o
r
m
in
g
t
h
e
m
at
h
e
m
a
tical
m
o
d
el
o
f
a
tr
ee
-
li
k
e
A
M
’
s
k
i
n
e
m
a
tics
a
n
d
d
y
n
a
m
ics
f
o
r
an
an
t
h
r
o
p
o
m
o
r
p
h
ic
r
o
b
o
t
h
av
in
g
1
1
4
d
eg
r
ee
s
o
f
m
o
tio
n
.
Fo
r
t
h
e
e
q
u
atio
n
(
1
3
)
,
s
cie
n
tis
t
s
r
ec
ei
v
ed
th
e
v
al
u
es
o
f
t
h
e
ele
m
e
n
t
s
o
f
its
co
n
s
t
itu
e
n
t
m
atr
ices
(
)
,
(
̇
)
,
(
)
,
(
)
an
d
ca
lcu
lated
,
w
it
h
t
h
e
h
elp
o
f
th
e
s
o
f
t
w
ar
e
(
Ko
v
alch
u
k
et
al.
,
2
0
1
2
)
,
th
e
m
o
m
e
n
t
a
n
d
ca
p
ac
it
y
v
al
u
es
in
th
e
m
o
tio
n
f
r
ee
d
o
m
d
eg
r
ee
s
o
f
t
h
e
r
o
b
o
t’
s
A
M.
T
h
e
o
b
tain
ed
r
esu
lt
s
ar
e
r
ec
o
m
m
e
n
d
ed
f
o
r
u
s
e
i
n
cr
ea
ti
n
g
m
o
d
er
n
p
iece
s
o
f
a
n
th
r
o
p
o
m
o
r
p
h
ic
w
al
k
in
g
r
o
b
o
ts
.
I
n
t
h
e
w
o
r
k
s
o
f
Ko
v
alc
h
u
k
[
1
9
,
2
0
]
,
it
is
s
h
o
w
n
t
h
at
t
h
e
m
o
d
if
ied
DH
C
S
is
a
n
e
f
f
ec
ti
v
e
m
ea
n
s
to
f
o
r
m
m
at
h
e
m
atica
l
m
o
d
els o
f
a
r
o
b
o
tic
A
M
w
it
h
a
li
n
ea
r
o
p
en
k
in
e
m
atic
ch
ai
n
,
w
h
ic
h
is
a
p
ar
ticu
lar
ca
s
e
o
f
a
tr
ee
-
li
k
e
KC
.
I
n
th
i
s
ca
s
e,
th
e
k
in
e
m
atic
s
c
h
e
m
e
m
a
y
b
e
r
ep
r
esen
ted
as
a
n
o
r
ien
ted
g
r
ap
h
th
a
t
h
as
n
o
cy
cles.
T
h
e
g
r
ap
h
’
s
v
er
tice
s
ar
e
co
n
n
ec
ted
in
s
er
ies,
b
ec
au
s
e
ea
ch
o
f
t
h
e
m
h
a
s
n
o
m
o
r
e
t
h
an
t
w
o
ad
j
ac
en
t v
er
tice
s
.
T
h
e
r
ea
ch
ab
ilit
y
m
atr
i
x
D
o
f
th
e
r
o
b
o
t’
s
A
M
l
in
k
s
i
s
th
e
d
eg
en
er
ated
in
to
a
lo
w
er
tr
ia
n
g
u
lar
u
n
i
t
m
atr
i
x
o
f
th
e
o
r
d
er
N
,
w
h
er
e
N
is
t
h
e
n
u
m
b
er
o
f
f
r
ee
d
o
m
d
eg
r
ee
s
f
o
r
t
h
e
r
o
b
o
t’
s
AM
.
I
f
th
e
g
r
ip
p
in
g
m
a
n
ip
u
lato
r
o
r
an
y
o
th
er
A
M
’
s
lin
k
is
i
m
p
o
s
ed
w
it
h
ex
ter
n
a
l
co
n
n
ec
tio
n
s
,
th
e
A
M
d
y
n
a
m
ic
eq
u
atio
n
is
w
r
itte
n
i
n
th
e
f
o
llo
w
i
n
g
f
o
r
m
[
1
4
]
:
(
(
)
(
)
(
)
)
(
̈
)
(
(
̇
)
(
)
)
(
(
)
)
.
/
.
(1
4
)
T
h
e
m
atr
i
x
co
ef
f
icie
n
ts
(
)
,
(
̇
)
,
(
)
,
(
)
,
,
(
)
,
(
)
,
ar
e
d
eter
m
i
n
ed
i
n
ac
co
r
d
an
ce
w
it
h
[
1
4
]
.
T
h
e
eq
u
atio
n
(
1
4
)
ca
n
d
eter
m
in
e
t
h
e
m
o
tio
n
o
f
t
h
e
r
o
b
o
tic
ac
tu
ati
n
g
m
ec
h
an
i
s
m
w
it
h
a
n
ar
b
itra
r
y
tr
ee
-
li
k
e
KS
w
it
h
i
m
p
o
s
ed
d
r
iv
e
co
n
n
ec
tio
n
s
a
n
d
ca
lcu
late
t
h
e
v
alu
e
s
o
f
th
e
co
n
n
ec
tio
n
s
’
ap
p
ea
r
in
g
r
ea
ctio
n
f
o
r
ce
s
an
d
m
o
m
e
n
ts
.
A.
A
.
Ver
e
y
k
in
e
t
al.
[
2
1
]
s
h
o
w
th
e
ef
f
ec
ti
v
e
n
es
s
o
f
th
e
p
r
o
p
o
s
ed
co
o
r
d
in
ate
s
y
s
te
m
f
o
r
c
o
n
s
tr
u
ct
in
g
eq
u
atio
n
s
o
f
k
i
n
e
m
atics
a
n
d
d
y
n
a
m
ic
s
f
o
r
th
e
tr
ee
-
lik
e
ac
t
u
atin
g
m
ec
h
an
is
m
o
f
an
ac
ti
v
e
ex
o
s
k
e
leto
n
.
Usi
n
g
th
e
eq
u
atio
n
(
1
4
)
m
ad
e
it
p
o
s
s
ib
le
n
o
t
o
n
l
y
to
d
eter
m
in
e
t
h
e
d
r
iv
in
g
p
o
w
er
v
a
lu
e
s
in
m
o
tio
n
d
eg
r
ee
s
o
f
its
A
M
w
i
th
i
m
p
o
s
ed
d
r
iv
e
co
n
n
ec
t
io
n
s
b
u
t
also
to
ca
lcu
l
ate
th
e
r
ea
ctio
n
f
o
r
ce
s
an
d
m
o
m
e
n
t
s
o
f
th
e
s
e
co
n
n
ec
tio
n
s
,
w
h
ic
h
ap
p
ea
r
u
p
o
n
i
n
ter
ac
ti
n
g
w
it
h
t
h
e
b
ase
s
u
r
f
ac
e
f
o
r
s
tep
s
.
T
h
e
s
p
ec
iall
y
d
ev
elo
p
ed
MA
T
L
A
B
-
b
ased
p
r
o
g
r
a
m
[
2
2
]
w
as a
n
ef
f
ec
ti
v
e
m
ea
n
s
o
f
t
h
e
p
er
f
o
r
m
ed
ca
lc
u
latio
n
s
an
d
r
esear
ch
.
T
h
e
s
tu
d
y
o
f
Ko
v
alc
h
u
k
et
al.
[
2
3
]
d
escr
ib
es
th
e
m
et
h
o
d
o
f
KS
s
y
n
t
h
es
is
f
o
r
a
w
al
k
i
n
g
r
o
b
o
t’
s
tr
ee
-
lik
e
ac
t
u
ati
n
g
m
ec
h
an
i
s
m
s
–
f
r
o
m
th
e
p
h
o
to
g
r
ap
h
ic
i
m
a
g
es
o
f
it
s
b
io
lo
g
ical
p
r
o
to
ty
p
e
’
s
s
k
eleto
n
.
T
h
e
m
eth
o
d
is
b
ased
o
n
a
KS
r
ec
o
n
s
tr
u
cti
o
n
alg
o
r
ith
m
[
2
4
-
2
6
]
an
d
th
e
m
o
d
i
f
ied
DH
C
S.
T
h
er
e
is
an
ex
a
m
p
le
ill
u
s
tr
atin
g
th
e
r
esu
lts
o
f
t
h
e
m
e
th
o
d
’
s
ap
p
licatio
n
–
cr
ea
tin
g
th
e
k
i
n
e
m
atic
s
tr
u
ct
u
r
e
o
f
an
ac
tu
a
tin
g
m
ec
h
a
n
is
m
f
o
r
a
r
o
b
o
t
-
Steg
o
s
a
u
r
u
s
.
T
h
u
s
,
th
e
ab
o
v
e
-
m
en
t
io
n
ed
r
esear
ch
r
es
u
lts
ca
n
lead
to
th
e
co
n
clu
s
io
n
t
h
at
th
e
p
r
o
p
o
s
ed
m
o
d
if
ied
Den
a
v
it
-
Har
ten
b
er
g
co
o
r
d
in
a
te
s
y
s
te
m
h
a
s
a
co
m
m
o
n
p
r
ac
tical
g
r
o
u
n
d
an
d
ca
n
b
e
u
s
ed
in
f
o
r
m
i
n
g
m
at
h
e
m
a
tical
m
o
d
els
o
f
k
i
n
e
m
atic
s
a
n
d
d
y
n
a
m
ics
f
o
r
th
e
ac
tu
ati
n
g
m
ec
h
a
n
i
s
m
s
o
f
r
o
b
o
t
w
ith
a
n
ar
b
itra
r
y
k
in
e
m
at
ic
s
tr
u
c
tu
r
e.
6.
CO
NCLU
SI
O
N
S
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Den
a
vit
-
Ha
r
ten
b
erg
C
o
o
r
d
in
a
te
S
ystem
fo
r
R
o
b
o
ts
w
ith
Tr
ee
-
like
K
in
ema
tic
S
tr
u
ctu
r
e
(
A
le
ksa
n
d
er K
)
253
C
r
ea
tin
g
m
o
d
er
n
w
a
lk
i
n
g
r
o
b
o
ts
is
co
n
s
tr
ai
n
ed
b
y
t
h
e
la
ck
o
f
ef
f
ec
t
iv
e
m
et
h
o
d
s
o
f
f
o
r
m
i
n
g
th
e
m
at
h
e
m
a
tical
m
o
d
els o
f
th
e
ir
ac
tu
ati
n
g
m
ec
h
an
is
m
s
w
i
th
tr
e
e
-
li
k
e
k
i
n
e
m
atic
s
tr
u
ct
u
r
es.
I
n
co
n
s
tr
u
cti
n
g
s
u
c
h
m
ec
h
an
i
s
m
s
’
m
ath
e
m
at
ical
m
o
d
els
o
f
k
in
e
m
at
ics
a
n
d
d
y
n
a
m
ic
s
,
it
i
s
p
r
o
p
o
s
ed
to
u
s
e
th
e
m
o
d
i
f
ied
De
n
av
it
-
Har
ten
b
er
g
co
o
r
d
in
ate
s
y
s
te
m
.
I
ts
ap
p
licatio
n
p
r
o
v
id
es
a
d
e
v
elo
p
er
даёт
w
it
h
a
clea
r
alg
o
r
ith
m
o
f
b
u
ild
in
g
m
at
h
e
m
a
tical
m
o
d
els
o
f
r
o
b
o
t
ic
ac
tu
ati
n
g
m
ec
h
a
n
i
s
m
s
w
it
h
ar
b
itra
r
y
tr
ee
-
lik
e
k
in
e
m
at
ic
s
tr
u
c
tu
r
e.
T
h
e
m
ath
e
m
at
ical
m
o
d
els
o
b
t
ain
ed
b
y
th
i
s
m
et
h
o
d
an
d
t
h
e
s
o
f
t
w
ar
e
d
ev
elo
p
ed
f
o
r
s
u
c
h
r
e
s
ea
r
ch
ca
n
b
e
ap
p
lied
in
cr
ea
tin
g
ad
v
an
ce
d
s
a
m
p
le
w
alk
in
g
r
o
b
o
ts
.
RE
F
E
R
E
NC
E
S
[1
]
V.
S
.
M
e
d
v
e
d
e
v
,
A
.
G
.
Les
k
o
v
,
a
n
d
A
.
S
.
Y
u
sh
c
h
e
n
k
o
,
Co
n
tro
l
S
y
ste
ms
o
f
Ro
b
o
ti
c
M
a
n
ip
u
l
a
to
rs
.
E.
P
.
P
o
p
o
v
,
e
d
.
M
o
sc
o
w
,
Ru
ss
ia:
Na
u
k
a
,
1
9
7
8
(in
Ru
ss
ian
).
[2
]
K.
V
.
F
ro
l
o
v
a
n
d
E.
I.
Vo
ro
b
y
o
v
,
e
d
s.,
T
h
e
M
e
c
h
a
n
ics
o
f
In
d
u
stri
a
l
Ro
b
o
ts
.
M
o
sc
o
w
,
Ru
ss
ia:
V
y
ss
h
a
y
a
S
h
k
o
la,
1
9
8
8
(i
n
R
u
ss
ian
).
[3
]
K.
F
u
,
R.
G
o
n
z
a
lez
,
a
n
d
C.
L
e
e
,
Ro
b
o
ti
c
s:
Co
n
tro
l,
S
e
n
sin
g
,
V
isio
n
a
n
d
In
tell
ig
e
n
c
e
.
Ne
w
Yo
rk
:
M
c
G
ra
w
-
Hill
,
1
9
8
7
.
[4
]
M
.
S
h
a
h
in
p
o
o
r,
A
R
o
b
o
t
E
n
g
i
n
e
e
rin
g
T
e
x
t
b
o
o
k
.
Ne
w
Yo
rk
:
Ha
rp
e
r
a
n
d
R
o
w
,
1
9
8
7
.
[5
]
P.
D.
Kru
t'
k
o
,
Ro
b
o
t
ic E
x
e
c
u
ti
v
e
S
y
ste
ms
Co
n
tro
l
.
M
o
sc
o
w
,
Ru
ss
ia:
Na
u
k
a
,
1
9
9
1
(
in
R
u
ss
ian
).
[6
]
S.
L.
Zen
k
e
v
ich
a
n
d
A
.
S.
Yu
s
h
c
h
e
n
k
o
,
F
u
n
d
a
me
n
ta
ls
o
f
M
a
n
ip
u
l
a
ti
o
n
R
o
b
o
ts
Co
n
tro
l
.
M
o
sc
o
w
,
Ru
ss
ia:
Ba
u
m
a
n
T
e
c
h
n
ica
l
Un
iers
it
y
,
2
0
0
4
(i
n
R
u
ss
ian
).
[7
]
A.
G.
L
e
sk
o
v
a
n
d
A
.
S
.
Yu
sh
c
h
e
n
k
o
,
M
o
d
e
li
n
g
a
n
d
An
a
ly
sis
o
f
Ro
b
o
ti
c
S
y
ste
ms
.
M
o
sc
o
w
,
Ru
ss
ia:
M
a
sh
in
o
str
o
y
e
n
i
y
e
,
1
9
9
2
(in
Ru
s
sia
n
).
[8
]
A.
G
.
L
e
s
k
o
v
,
T
h
e
o
re
ti
c
a
l
Fo
u
n
d
a
ti
o
n
s
t
o
M
o
d
e
li
n
g
a
n
d
A
n
a
l
y
sis
o
f
M
a
n
ip
u
la
ti
o
n
R
o
b
o
ts
D
y
n
a
mic
s,
T
h
e
ir
Ap
p
li
c
a
ti
o
n
in
Pro
b
lem
s
o
f
De
sig
n
i
n
g
a
n
d
Pre
p
a
ri
n
g
Op
e
ra
to
rs
.
Ha
b
il
it
a
ti
o
n
T
h
e
sis.
M
o
sc
o
w
,
R
u
ss
ia:
Ba
u
m
a
n
T
e
c
h
n
ica
l
Un
iers
it
y
,
2
0
0
2
(i
n
R
u
ss
ian
).
[9
]
A.
G.
L
e
sk
o
v
,
K.
V.
Ba
z
h
in
o
v
a
,
S
.
D.
M
o
ro
s
h
k
in
,
a
n
d
E.
V
.
F
e
o
k
ti
sto
v
a
,
“
Bu
il
d
i
n
g
Kin
e
m
a
ti
c
M
o
d
e
ls
o
f
Ro
b
o
ti
c
M
a
n
ip
u
lato
rs’
A
c
tu
a
ti
n
g
M
e
c
h
a
n
ism
s
Us
in
g
Blo
c
k
M
a
tri
c
e
s,”
I
n
zh
e
n
e
rn
y
i
Z
h
u
r
n
a
l:
Na
u
k
a
i
I
n
n
o
v
a
tsii
,
n
o
.
9
,
2
0
1
3
.
A
v
a
il
a
b
le f
ro
m
:
h
tt
p
:/
/en
g
jo
u
r
n
a
l.
ru
/ca
talo
g
/p
r
ib
o
r/ro
b
o
t
/9
5
4
.
h
tm
l
(in
R
u
ss
ian
).
[1
0
]
J.
De
n
a
v
it
a
n
d
R.
S
.
Ha
rten
b
e
rg
,
“
Kin
e
m
a
ti
c
n
o
tatio
n
f
o
r
lo
w
e
r
-
p
a
ir
m
e
c
h
a
n
is
m
s
b
a
se
d
o
n
m
a
tri
c
e
s,”
J.
Ap
p
l.
M
e
c
h
,
v
o
l.
7
7
,
p
p
.
2
1
5
-
2
2
1
,
1
9
5
5
.
[1
1
]
A.
K.
Ko
v
a
lch
u
k
,
“
De
v
e
lo
p
m
e
n
t
o
f
a
M
a
th
e
m
a
ti
c
a
l
M
o
d
e
l
o
f
th
e
A
c
tu
a
ti
n
g
M
e
c
h
a
n
is
m
o
f
Ro
b
o
ti
c
M
a
n
n
e
q
u
in
,
”
Na
u
c
h
n
y
i
Ves
tn
ik
M
o
sk
o
v
sk
o
g
o
Go
su
d
a
rs
tve
n
n
o
g
o
T
e
k
h
n
ich
e
sk
o
g
o
Un
ive
rs
it
e
ta
Gr
a
zh
d
a
n
sk
o
y
A
v
ia
tsii
,
v
o
l.
1
6
8
,
no.
6
,
p
p
.
1
0
3
-
1
0
9
,
2
0
1
1
(in
Ru
ss
ian
).
[1
2
]
V
.
E.
A
lek
se
e
v
a
n
d
V
.
A
.
T
a
lan
o
v
,
Gr
a
p
h
s
a
n
d
Al
g
o
ri
th
ms
.
D
a
t
a
S
tru
c
tu
re
s.
C
o
mp
u
ta
t
io
n
a
l
M
o
d
e
ls
.
M
o
sc
o
w
,
Ru
ss
ia:
Bin
o
m
,
2
0
0
6
(i
n
Ru
ss
ian
)
.
[1
3
]
A.
K.
Ko
v
a
lch
u
k
,
D.
B.
Ku
lak
o
v
,
a
n
d
S
.
E.
S
e
m
e
n
o
v
,
“
M
a
th
e
m
a
ti
c
a
l
De
sc
rip
ti
o
n
o
f
Kin
e
m
a
ti
c
s
a
n
d
Dy
n
a
m
ics
f
o
r
Ro
b
o
ti
c
A
c
tu
a
to
r
s
w
it
h
a
T
re
e
-
li
k
e
Kin
e
m
a
ti
c
S
tru
c
tu
re
,
”
Izv
e
stiya
Vys
sh
ikh
Uc
h
e
b
n
y
k
h
Z
a
v
e
d
e
n
ii
.
S
e
riy
a
M
a
sh
in
o
str
o
y
e
n
iye
,
v
o
l.
1
1
,
p
p
.
13
-
2
5
,
2
0
0
8
(i
n
R
u
ss
ian
).
[1
4
]
A.
K.
Ko
v
a
lch
u
k
,
B.
B.
K
u
lak
o
v
,
D.
B.
Ku
lak
o
v
,
S
.
E.
S
e
m
e
n
o
v
,
a
n
d
V.
V
.
Ya
r
o
ts.
B
a
sic
T
h
e
o
ry
o
f
W
a
lki
n
g
Ro
b
o
ts’
Actu
a
ti
n
g
M
e
c
h
a
n
isms
.
M
o
sc
o
w
,
Ru
ss
ia:
Ru
d
o
m
in
o
,
2
0
1
0
(in
Ru
ss
ian
).
[1
5
]
A.
K.
Ko
v
a
lch
u
k
,
“
T
h
e
S
e
lec
ti
o
n
o
f
a
Kin
e
m
a
ti
c
S
tru
c
tu
re
a
n
d
t
h
e
S
tu
d
y
o
f
th
e
T
re
e
-
li
k
e
A
c
tu
a
ti
n
g
M
e
c
h
a
n
ism
o
f
a
Ro
b
o
t
D
o
g
,
”
Izv
e
stiya
Vys
sh
ikh
Uc
h
e
b
n
y
k
h
Z
a
v
e
d
e
n
ii
.
S
e
riy
a
M
a
sh
in
o
st
r
o
y
e
n
iye
,
v
o
l.
8
,
p
p
.
65
-
7
3
,
2
0
1
1
(i
n
Ru
ss
ian
).
[1
6
]
A.
K.
Ko
v
a
lch
u
k
,
L
.
A.
Ka
rg
in
o
v
,
B.
B.
Ku
lak
o
v
,
D.
B.
Ku
lak
o
v
,
S
.
E.
S
e
m
e
n
o
v
,
a
n
d
V
.
V.
Ya
ro
ts,
“
T
h
e
P
ro
g
ra
m
to
S
im
u
late
T
re
e
-
li
k
e
A
c
tu
a
ti
n
g
M
e
c
h
a
n
ism
s
o
f
W
a
l
k
in
g
Ro
b
o
ts,
”
Ce
rtif
ica
te
o
f
sta
te
re
g
istra
ti
o
n
o
f
so
ft
w
a
re
,
n
o
.
2
0
1
2
6
1
0
3
9
8
,
1
0
.
0
1
.
2
0
1
2
.
[1
7
]
A.
K.
Ko
v
a
l
c
h
u
k
,
“
T
h
e
S
e
l
e
c
ti
o
n
o
f
a
Kin
e
m
a
ti
c
S
tru
c
tu
re
a
n
d
th
e
S
tu
d
y
o
f
th
e
T
re
e
-
li
k
e
A
c
tu
a
ti
n
g
M
e
c
h
a
n
ism
D
y
n
a
m
ics
o
f
a
Ro
b
o
t
Cra
b
,
”
Izv
e
stiya
Vys
sh
ikh
Uc
h
e
b
n
y
k
h
Z
a
v
e
d
e
n
ii
.
S
e
riy
a
M
a
sh
i
n
o
stro
y
e
n
iye
,
v
o
l.
7
,
p
p
.
73
–
7
9
,
2
0
1
3
(i
n
R
u
ss
ian
).
[1
8
]
A.
K.
Ko
v
a
lch
u
k
,
“
D
e
sig
n
in
g
o
f
a
n
A
c
tu
a
ti
n
g
M
e
c
h
a
n
is
m
f
o
r
a
n
A
n
th
ro
p
o
m
o
rp
h
ic
W
a
lk
in
g
Ro
b
o
t,
”
Y
e
ste
stv
e
n
n
iye
i
T
e
k
h
n
ich
e
sk
iye
Na
u
k
i
,
v
o
l.
2
,
n
o
.
7
0
,
p
p
.
1
6
2
-
1
6
6
,
2
0
1
4
(i
n
R
u
ss
ian
).
[1
9
]
A.
K.
Ko
v
a
lch
u
k
,
“
Ca
lcu
latio
n
o
f
a
Ro
b
o
t
Driv
in
g
P
o
w
e
r
Co
n
sid
e
rin
g
Its
A
c
tu
a
ti
n
g
M
e
c
h
a
n
ism
D
y
n
a
m
ic
s,”
Y
e
ste
stv
e
n
n
iye
i
T
e
k
h
n
ich
e
sk
iye
Na
u
k
i
,
v
o
l.
1
,
n
o
.
6
9
,
p
p
.
1
2
8
-
1
3
1
,
2
0
1
4
(i
n
R
u
ss
ian
).
[2
0
]
A.
K.
Ko
v
a
lch
u
k
,
“
D
e
sig
n
in
g
Dr
iv
e
s
o
f
a
M
e
d
ica
l
Ro
b
o
t
A
c
tu
a
t
o
r,
”
L
if
e
S
c
ien
c
e
J
o
u
rn
a
l
,
n
o
.
1
1
s,
p
p
.
3
3
7
-
3
4
0
,
2
0
1
4
.
[2
1
]
A.
A
.
V
e
re
y
k
in
,
A
.
K.
Ko
v
a
lch
u
k
,
a
n
d
L
.
A
.
Ka
rg
in
o
v
,
“
A
S
tu
d
y
o
f
T
h
e
D
y
n
a
m
ics
o
f
a
L
o
we
r
L
i
m
b
Ex
o
sk
e
leto
n
A
c
tu
a
ti
n
g
M
e
c
h
a
n
is
m
,
Tak
in
g
i
n
to
A
c
c
o
u
n
t
t
h
e
Re
a
c
ti
o
n
s
o
f
th
e
Be
a
rin
g
S
u
rf
a
c
e
,
”
Na
u
k
a
i
Ob
ra
zo
v
a
n
iye
.
El
e
c
tro
n
ic
J
o
u
r
n
a
l
o
f
B
a
u
m
a
n
T
e
c
h
n
ica
l
Un
ive
rs
it
y
,
M
o
sc
o
w
,
Ru
ss
ia,
v
o
l.
1
2
,
p
p
.
2
5
6
-
2
7
8
,
2
0
1
4
.
DO
I:
1
0
.
7
4
6
3
/
0
8
1
5
.
9
3
2
8
0
0
0
(i
n
Ru
ss
ian
)
.
[2
2
]
A.
K.
Ko
v
a
lch
u
k
,
L
.
A.
Ka
r
g
in
o
v
,
B.
B.
Ku
lak
o
v
,
D.
B.
Ku
lak
o
v
,
S
.
E.
S
e
m
e
n
o
v
,
V
.
V.
Ya
ro
ts,
a
n
d
A.
A.
V
e
re
y
k
in
,
“
S
im
u
latio
n
o
f
T
re
e
-
li
k
e
Walk
in
g
Ro
b
o
t
A
c
tu
a
t
in
g
M
e
c
h
a
n
i
sm
s,
T
a
k
in
g
in
to
A
c
c
o
u
n
t
Im
p
o
se
d
Ex
tern
a
l
Co
n
n
e
c
ti
o
n
s.
Ce
rtif
ica
te
o
f
st
a
te re
g
istra
t
io
n
o
f
so
ft
w
a
re
,
n
o
.
2
0
1
4
6
1
2
5
4
7
,
2
8
.
0
2
.
2
0
1
4
.
[2
3
]
A.
K.
Ko
v
a
lch
u
k
,
L
.
A.
Ka
rg
in
o
v
,
F
.
Kh
.
A
k
h
m
e
to
v
a
,
A
.
Y.
Us
t
y
u
z
h
a
n
in
,
S
.
S.
S
e
k
e
rin
,
a
n
d
A
.
A
.
V
e
re
y
k
in
,
“
T
h
e
S
y
n
th
e
sis
o
f
a
K
in
e
m
a
ti
c
S
c
h
e
m
e
f
o
r
th
e
T
re
e
-
li
k
e
A
c
tu
a
ti
n
g
M
e
c
h
a
n
ism
o
f
a
Ro
b
o
ti
c
S
teg
o
sa
u
ru
s
Us
in
g
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.