I
nte
rna
t
io
na
l J
o
urna
l o
f
Ro
bo
t
ics a
nd
Aut
o
m
a
t
io
n
(
I
J
RA
)
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
,
p
p
.
2
69
~2
83
I
SS
N:
2089
-
4856
269
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
RA
T
w
o
Deg
ree
of
Fr
eedo
m
PID
Co
ntr
o
ller
,
Its Eq
uiv
a
lent
For
m
s
a
nd Special
Ca
ses
H
a
re
s
h A.
Su
t
ha
r*
,
Dr.
J
a
g
ru
t
G
a
dit*
*
*
D
e
p
a
rt
m
e
n
t
o
f
El
e
c
tro
n
ics
&
Co
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
,
P
a
ru
l
Un
iv
e
rsity
,
In
d
ia
*
*
De
p
a
rt
m
e
n
t
o
f
El
e
c
tri
c
a
l
En
g
i
n
e
e
rin
g
,
t
h
e
M
.
S
.
U
n
iv
e
rsity
o
f
Ba
ro
d
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l
1
7
,
2
0
1
5
R
ev
i
s
ed
Oct
2
9
,
2
0
1
5
A
cc
ep
ted
No
v
1
8
,
2
0
1
5
T
h
e
d
e
sig
n
o
f
c
o
n
tro
l
sy
st
e
m
s
is
a
m
u
lt
i
-
o
b
jec
ti
v
e
p
ro
b
lem
so
,
a
t
w
o
-
d
e
g
re
e
-
of
-
f
r
e
e
d
o
m
(
a
b
b
re
v
iate
d
a
s
2
DO
F
)
c
o
n
tr
o
l
sy
ste
m
n
a
tu
ra
ll
y
h
a
s
a
d
v
a
n
tag
e
s
o
v
e
r
a
o
n
e
d
e
g
re
e
-
of
-
f
re
e
d
o
m
(a
b
b
re
v
iate
d
a
s
1
DO
F
)
c
o
n
tr
o
l
sy
ste
m
.
T
h
e
m
a
in
o
b
jec
ti
v
e
o
f
2
DO
F
c
o
n
tro
l
is
to
c
o
n
tro
l
b
o
t
h
se
t
p
o
i
n
t
tra
c
k
in
g
a
n
d
d
istu
r
b
a
n
c
e
re
jec
ti
o
n
s.V
a
ri
o
u
s
2
DO
F
P
ID
c
o
n
tr
o
ll
e
rs
a
n
d
it
s
e
q
u
iv
a
len
t
tran
sf
o
r
m
a
ti
o
n
s
w
e
r
e
p
ro
p
o
se
d
f
o
r
in
d
u
strial
u
se
b
y
d
iffere
n
t
re
se
a
rc
h
e
rs.
M
o
st
o
f
th
e
a
b
o
v
e
re
se
a
rc
h
e
s
w
e
re
p
u
b
li
sh
e
d
in
Ja
p
a
n
e
se
lan
g
u
a
g
e
a
n
d
h
a
v
e
n
o
t
b
e
e
n
tran
sla
te
d
in
t
o
En
g
li
sh
l
a
n
g
u
a
g
e
y
e
t.
A
n
o
b
jec
ti
v
e
h
e
re
is
to
p
ro
v
id
e
d
e
tail
a
n
a
ly
sis
re
g
a
rd
in
g
stru
c
tu
re
o
f
2
DO
F
c
o
n
tro
ll
e
r,
it
s
e
q
u
iv
a
len
t
f
o
r
m
s
a
n
d
it
s
sp
e
c
ial
c
a
se
s.
A
s
y
ste
m
t
ra
n
sf
e
r
f
u
n
c
ti
o
n
h
a
v
in
g
tran
sp
o
r
t
d
e
lay
a
n
d
lo
a
d
d
ist
u
rb
a
n
c
e
is
c
o
n
sid
e
re
d
a
s
a
tes
t
b
e
n
c
h
to
v
e
ri
fy
v
a
rio
u
s
2
DO
F
c
o
n
tro
l
stra
teg
ies
.
M
AT
LAB
is
u
se
d
a
s
so
f
t
w
a
re
to
o
l
to
v
e
rify
th
e
v
a
ri
o
u
s
2
DO
F
c
o
n
tro
l
stra
teg
ies
.
T
h
e
a
n
a
l
y
sis
w
il
l
b
e
h
e
lp
f
u
l
to
th
e
e
n
g
i
n
e
e
rs
a
n
d
re
se
a
rc
h
e
rs t
o
u
n
d
e
rsta
n
d
t
h
e
to
p
i
c
in
d
e
tail
f
o
r
f
u
rth
e
r
e
x
p
lo
ra
ti
o
n
.
K
ey
w
o
r
d
:
T
w
o
d
eg
r
ee
o
f
f
r
ee
d
o
m
co
n
tr
o
l
On
e
d
eg
r
ee
o
f
f
r
ee
d
o
m
co
n
tr
o
l
P
I
D
co
n
tr
o
l
E
q
u
iv
ale
n
t
f
o
r
m
s
Var
ian
ts
o
f
co
n
tr
o
l
Co
p
y
rig
h
t
©
201
5
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Har
esh
A
.
S
u
t
h
ar
,
Dep
ar
te
m
en
t o
f
E
lectr
o
n
ics
&
C
o
m
m
u
n
ica
tio
n
E
n
g
i
n
ee
r
in
g
,
P
ar
u
l U
n
iv
er
s
it
y
,
P
O:
L
i
m
d
a,
T
a
-
W
ag
h
o
d
ia,
Va
d
o
d
ar
a,
Gu
j
ar
at,
I
n
d
ia
.
E
m
ail:
h
ar
es
h
s
u
th
ar
@
r
ed
if
f
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
p
r
o
ce
s
s
o
f
o
p
ti
m
izi
n
g
s
i
m
u
lta
n
eo
u
s
l
y
a
co
llectio
n
o
f
o
b
j
ec
tiv
e
f
u
n
ctio
n
s
is
ca
lled
m
u
lt
io
b
j
ec
tiv
e
o
p
tim
izatio
n
.
Desi
g
n
o
f
co
n
tr
o
l
s
y
s
te
m
s
is
a
m
u
l
ti
-
o
b
j
ec
tiv
e
p
r
o
b
lem
b
ec
a
u
s
e;
it
i
n
v
o
lv
e
s
t
h
e
o
p
ti
m
izatio
n
o
f
m
o
r
e
th
a
n
o
n
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
s
li
k
e
s
et
p
o
in
t
r
e
s
p
o
n
s
e,
lo
ad
d
is
t
u
r
b
an
ce
s
an
d
r
o
b
u
s
tn
e
s
s
to
m
o
d
el
u
n
ce
r
tai
n
t
y
.
I
n
co
n
tr
o
l
s
y
s
te
m
,
th
e
d
eg
r
ee
o
f
f
r
ee
d
o
m
is
d
ef
in
ed
as
th
e
n
u
m
b
er
o
f
clo
s
ed
-
lo
o
p
tr
an
s
f
er
f
u
n
ctio
n
s
t
h
at
ca
n
b
e
ad
j
u
s
ted
in
d
ep
en
d
en
tl
y
[
1
]
,
[
1
3
]
.
1
DOF
P
I
D
o
f
f
er
s
a
f
ea
s
ib
le
o
u
tco
m
e
eit
h
e
r
f
o
r
r
ef
er
en
ce
tr
ac
k
in
g
o
p
er
atio
n
o
r
d
is
tu
r
b
an
ce
r
ej
ec
tio
n
o
p
er
atio
n
[
1
2
]
.
T
h
e
p
r
o
b
lem
w
it
h
t
h
e
co
n
v
en
t
io
n
a
l
co
n
tr
o
l
s
y
s
te
m
w
h
ic
h
h
as
1
D
OF
co
n
tr
o
l
s
tr
u
ct
u
r
e
is
t
h
at
wh
en
t
h
e
d
is
t
u
r
b
an
ce
r
esp
o
n
s
e
i
s
o
p
ti
m
ized
,
th
e
n
th
e
s
et
-
p
o
in
t
r
esp
o
n
s
e
i
s
f
o
u
n
d
to
b
e
p
o
o
r
,
an
d
v
ice
v
er
s
a.
Fo
r
th
is
r
ea
s
o
n
s
o
m
e
o
f
t
h
e
cla
s
s
ic
al
r
esear
ch
es
o
n
th
e
o
p
tim
a
l
t
u
n
i
n
g
o
f
P
I
D
co
n
tr
o
ller
s
h
a
v
e
s
h
o
w
n
t
w
o
tab
les
:
o
n
e
f
o
r
th
e
“
d
is
tu
r
b
an
ce
o
p
ti
m
al”
p
ar
a
m
eter
s
,
a
n
d
th
e
o
t
h
er
f
o
r
th
e
“
s
e
t
p
o
in
t
o
p
ti
m
al”
p
ar
a
m
eter
s
[
2
]
,
[
3
]
.
T
w
o
o
b
j
ec
tiv
es
i.e
.
s
et
p
o
in
t
r
esp
o
n
s
e
a
n
d
d
is
tu
r
b
an
ce
r
esp
o
n
s
e
co
n
f
lict,
an
d
h
en
ce
tr
ad
e
-
o
f
f
ex
i
s
t
w
h
ic
h
r
esu
lts
i
n
P
ar
eto
s
et.
I
f
w
e
tr
y
to
co
n
tr
o
l
s
i
m
u
lta
n
e
o
u
s
l
y
t
w
o
co
n
tr
o
l
s
y
s
te
m
o
b
j
ec
tiv
es
i.e
.
s
et
p
o
in
t
a
n
d
lo
ad
d
is
tu
r
b
an
ce
th
en
it
r
esu
lts
i
n
s
tr
u
ct
u
r
e
o
f
t
w
o
-
de
g
r
ee
-
of
-
f
r
ee
d
o
m
co
n
tr
o
l
s
y
s
te
m
.
T
h
e
v
ar
io
u
s
co
n
tr
o
l
tech
n
iq
u
es
u
s
i
n
g
2
DOF
co
n
tr
o
ller
h
a
v
e
b
ee
n
d
ev
is
ed
b
y
v
ar
io
u
s
r
esear
c
h
er
s
lik
e,
A
f
ee
d
b
ac
k
li
n
ea
r
izatio
n
-
b
ased
t
w
o
-
d
e
g
r
ee
-
of
-
f
r
ee
d
o
m
co
n
s
tr
ain
ed
co
n
tr
o
ller
[
1
4
]
,
C
o
n
tr
o
l
o
f
Un
ce
r
t
ain
I
n
p
u
t
-
d
ela
y
S
y
s
te
m
s
b
y
u
s
i
n
g
I
n
p
u
t
/o
u
tp
u
t
L
i
n
ea
r
izatio
n
w
i
th
A
T
w
o
-
d
eg
r
ee
-
of
-
f
r
ee
d
o
m
Sc
h
e
m
e[
1
5
]
,
Data
-
d
r
iv
en
d
esi
g
n
o
f
t
w
o
-
d
eg
r
ee
-
of
-
f
r
ee
d
o
m
co
n
tr
o
ller
s
u
s
i
n
g
r
ein
f
o
r
ce
m
en
t
lear
n
i
n
g
tec
h
n
iq
u
e
s
[
1
6
]
,
tw
o
-
d
e
g
r
ee
-
of
-
f
r
ee
d
o
m
in
ter
n
al
m
o
d
el
co
n
tr
o
l(
2
DOF
-
I
MC)
[
1
7
]
,
a
m
o
d
el
r
ef
er
en
ce
d
esig
n
p
r
o
ce
d
u
r
e
to
th
e
r
o
b
u
s
t
t
u
n
in
g
o
f
t
w
o
-
d
eg
r
ee
-
of
-
f
r
ee
d
o
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
2
69
–
2
83
270
p
r
o
p
o
r
tio
n
al
in
te
g
r
al
d
er
i
v
ati
v
e
co
n
tr
o
ller
s
w
it
h
fi
lter
[
1
8
]
,
T
w
o
d
e
g
r
ee
o
f
f
r
ee
d
o
m
b
a
s
ed
r
o
b
u
s
t
i
ter
ativ
e
L
ea
r
n
i
n
g
co
n
tr
o
l
f
o
r
u
n
ce
r
tai
n
L
T
I
s
y
s
te
m
s
[
1
9
]
.
An
o
b
j
ec
tiv
e
h
er
e
i
s
to
p
r
o
v
id
e
d
etail
an
al
y
s
i
s
r
eg
ar
d
i
n
g
s
tr
u
ct
u
r
e
o
f
2
DOF
co
n
tr
o
ller
,
its
eq
u
iv
a
len
t
f
o
r
m
s
an
d
its
s
p
ec
ial
ca
s
es
s
o
th
at,
it
w
i
ll
b
e
h
elp
f
u
l
to
th
e
en
g
i
n
ee
r
s
a
n
d
r
esear
ch
er
s
to
u
n
d
er
s
tan
d
t
h
e
to
p
ic
in
d
etail
f
o
r
f
u
r
t
h
er
ex
p
lo
r
atio
n
.
T
h
e
p
ap
er
is
o
r
g
an
ized
as
f
o
ll
o
w
s
;
f
ir
s
t a
n
al
y
s
is
o
f
co
n
v
e
n
ti
o
n
al
1
DOF
f
ee
d
b
ac
k
co
n
tr
o
l s
y
s
te
m
w
i
th
its
co
n
s
tr
ai
n
t
s
w
a
s
ca
r
r
ied
o
u
t.
Nex
t
s
ec
tio
n
d
escr
ib
es
d
eta
iled
an
al
y
s
is
o
f
2
DO
F
co
n
tr
o
ller
,
d
er
iv
atio
n
s
o
f
s
tead
y
s
ta
te
er
r
o
r
f
o
r
b
o
th
r
ef
er
en
ce
a
n
d
d
is
tu
r
b
a
n
ce
in
p
u
t
f
o
r
s
tep
f
u
n
ctio
n
.
T
h
is
s
e
cti
o
n
also
d
er
iv
e
s
co
n
s
tr
ain
s
o
n
d
esi
g
n
o
f
2
DO
F
co
n
tr
o
ller
,
p
lan
t
a
n
d
d
etec
to
r
.
T
h
e
s
ec
tio
n
I
I
I
,
I
V
&
V
co
n
tai
n
s
a
n
al
y
s
i
s
r
eg
ar
d
in
g
v
ar
ia
n
ts
o
f
2
DO
F
co
n
tr
o
ller
,
it
s
eq
u
i
v
ale
n
t
f
o
r
m
s
a
n
d
s
p
ec
ial
ca
s
es
o
f
2
DOF
co
n
tr
o
ller
r
esp
ec
tiv
el
y
.
Sectio
n
VI
&
VI
I
co
n
tain
s
s
i
m
u
la
tio
n
r
es
u
lts
a
n
d
co
n
clu
s
io
n
.
2.
CO
NVENT
I
O
NA
L
1
DO
F
F
E
E
DB
ACK
CO
N
T
RO
L
S
YST
E
M
Fig
u
r
e
1
.
C
o
n
v
e
n
tio
n
al
1
DOF
C
o
n
tr
o
l S
y
s
te
m
C
o
n
s
id
er
th
e
co
n
v
en
t
io
n
al
co
n
tr
o
l
s
y
s
te
m
o
f
F
ig
u
r
e
1
,
h
av
in
g
1
DO
F
s
tr
u
ct
u
r
e.
W
h
er
e
„
„
is
s
e
t
p
o
in
t,
„
„
is
er
r
o
r
b
etw
ee
n
s
et
p
o
in
t
&
p
r
o
ce
s
s
v
ar
iab
le,
„
’
is
co
n
tr
o
ller
o
u
tp
u
t,
„
’
is
d
is
tu
r
b
an
ce
in
p
u
t,
„
’
is
p
r
o
ce
s
s
v
ar
iab
le,
is
co
n
tr
o
ll
er
,
is
p
r
o
ce
s
s
o
r
p
lan
t a
n
d
f
ee
d
b
ac
k
g
ain
.
I
n
o
r
d
er
to
s
im
p
li
f
y
th
e
p
r
o
b
le
m
,
w
e
in
tr
o
d
u
ce
t
h
e
n
ex
t
t
w
o
as
s
u
m
p
tio
n
s
t
h
at
ar
e
ap
p
r
o
p
r
iate
f
o
r
m
a
n
y
p
r
ac
tical
d
esig
n
p
r
o
b
le
m
s
w
i
t
h
s
o
m
e
e
x
ce
p
tio
n
s
.
A
s
s
um
p
tio
n
1
:
T
h
e
d
etec
to
r
h
as
s
u
f
f
icie
n
t
ac
cu
r
ac
y
a
n
d
s
p
ee
d
f
o
r
th
e
g
i
v
e
n
co
n
tr
o
l
p
u
r
p
o
s
e,
i.e
.
H(
s
)
=
1
,
an
d
n
o
d
etec
to
r
n
o
is
e
p
r
esen
t.
A
s
s
um
p
tio
n 2
:
T
h
e
m
ai
n
d
is
t
u
r
b
an
ce
en
ter
s
at
t
h
e
m
a
n
ip
u
la
ti
n
g
p
o
in
t,
i.e
.
= P
(
s
)
.
(
1
)
T
h
e
r
esp
o
n
s
es
o
f
th
e
co
n
tr
o
ll
ed
v
ar
iab
le
„
’
to
th
e
u
n
i
t
ch
a
n
g
e
o
f
th
e
s
et
-
p
o
i
n
t
v
ar
iab
le
„
„
an
d
to
th
e
u
n
it
s
tep
d
is
tu
r
b
an
ce
„
’
ar
e
ca
lled
“
s
et
-
p
o
in
t
r
esp
o
n
s
e”
an
d
“
d
is
tu
r
b
an
ce
r
esp
o
n
s
e,
”
r
esp
ec
tiv
el
y
.
T
h
e
y
h
av
e
b
ee
n
tr
ad
itio
n
all
y
u
s
ed
a
s
m
ea
s
u
r
e
s
o
f
t
h
e
p
er
f
o
r
m
a
n
c
e
in
t
u
n
in
g
t
h
e
P
I
D
co
n
tr
o
ller
s
.
T
h
e
clo
s
ed
-
lo
o
p
tr
an
s
f
er
f
u
n
ctio
n
o
f
th
i
s
co
n
tr
o
l
s
y
s
te
m
f
r
o
m
t
h
e
s
et
-
p
o
in
t
v
ar
iab
le
„
„
to
t
h
e
co
n
tr
o
lled
v
ar
iab
le
„
’
an
d
th
a
t
f
r
o
m
t
h
e
d
is
t
u
r
b
an
ce
„
’
to
„
’
ar
e
an
d
r
esp
ec
tiv
el
y
.
He
r
e,
th
e
s
u
b
s
cr
ip
t
“
1
”
m
ea
n
s
t
h
at
t
h
e
q
u
an
tit
ies ar
e
o
f
t
h
e
1
DOF
co
n
tr
o
l s
y
s
te
m
.
C
o
n
s
id
er
f
o
llo
w
in
g
t
w
o
ca
s
es
f
o
r
s
t
r
u
ct
u
r
e
o
f
1
DO
F
co
n
tr
o
ller
to
d
er
iv
e
tr
an
s
f
er
f
u
n
ctio
n
an
d
r
esp
ec
tiv
el
y
.
C
a
s
e
1
:
T
r
an
s
f
er
f
u
n
ctio
n
,
ass
u
m
i
n
g
d
=
0
.
W
h
er
e,
=
(
2
)
Fro
m
Fi
g
u
r
e.
1
,
(
)
(
3
)
[
]
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Tw
o
Deg
r
ee
o
f F
r
ee
d
o
m
PID
C
o
n
tr
o
ller
,
I
ts
E
q
u
iva
len
t F
o
r
ms
a
n
d
S
p
ec
i
a
l Ca
s
es
(
Ha
r
e
s
h
A
.
S
u
th
a
r
)
271
B
y
,
r
ea
r
r
an
g
in
g
ab
o
v
e
eq
u
atio
n
s
(
3
)
&
(
4
)
to
d
er
iv
e
tr
an
s
f
er
f
u
n
ctio
n
as i
n
(
5
)
(
5
)
C
a
s
e
2
:
T
r
an
s
f
er
f
u
n
ctio
n
,
ass
u
m
i
n
g
r
=
0
.
W
h
er
e,
(
6
)
Fro
m
Fi
g
u
r
e
1
,
(
)
(
7
)
[
]
(
8
)
B
y
,
r
ea
r
r
an
g
in
g
ab
o
v
e
eq
u
atio
n
(
8
)
to
d
er
iv
e
tr
an
s
f
er
f
u
n
ctio
n
as i
n
(
9
)
=
(
9
)
No
w
,
m
u
l
tip
l
y
i
n
g
b
y
P
(
s
)
&
ad
d
in
g
w
it
h
,
ass
u
m
in
g
=
P
(
s
)
.
=
+
(
1
0
)
=
*
+
(
1
1
)
=
(
1
2
)
T
h
ese
t
w
o
tr
a
n
s
f
er
f
u
n
ctio
n
s
i
n
clu
d
e
o
n
l
y
o
n
e
t
u
n
ab
le
ele
m
en
t,
i.e
.
,
C
(
s
)
,
s
o
t
h
e
y
ca
n
n
o
t
b
e
ch
an
g
ed
in
d
ep
en
d
en
tl
y
.
T
o
b
e
c
o
n
cr
ete,
th
e
t
w
o
f
u
n
ct
io
n
s
ar
e
b
o
u
n
d
b
y
= P
(
s
)
(
1
3
)
T
h
is
eq
u
atio
n
s
h
o
w
s
ex
p
lic
itl
y
t
h
at
f
o
r
a
g
i
v
en
P
(
s
)
,
(
s
)
is
u
n
iq
u
el
y
d
eter
m
i
n
ed
i
f
(
s
)
is
ch
o
s
en
,
a
n
d
v
ice
v
er
s
a.
T
h
is
f
ac
t
ca
u
s
es
t
h
e
f
o
llo
w
i
n
g
d
i
f
f
ic
u
lt
y
.
I
f
th
e
d
is
t
u
r
b
an
ce
r
esp
o
n
s
e
is
o
p
ti
m
ized
,
th
e
s
et
-
p
o
in
t
r
esp
o
n
s
e
is
o
f
ten
f
o
u
n
d
to
b
e
p
o
o
r
,
an
d
v
ice
v
er
s
a.
Fo
r
th
is
r
ea
s
o
n
,
s
o
m
e
o
f
th
e
class
ical
r
e
s
ea
r
ch
es
[
2
]
,
[
3
]
o
n
th
e
o
p
tim
al
t
u
n
i
n
g
o
f
P
I
D
co
n
tr
o
ller
s
g
av
e
t
w
o
tab
les:
o
n
e
f
o
r
t
h
e
“
d
is
tu
r
b
an
ce
o
p
ti
m
al
”
p
ar
am
eter
s
,
an
d
th
e
o
t
h
er
f
o
r
th
e
“set p
o
in
t o
p
ti
m
al”
p
ar
a
m
et
er
s
.
3.
T
WO
DE
G
R
E
E
O
F
F
RE
E
DO
M
CO
NT
RO
L
L
E
R
Fig
u
r
e
2
.
C
o
n
v
e
n
tio
n
al
2
DOF
C
o
n
tr
o
l S
y
s
te
m
.
A
g
e
n
er
al
f
o
r
m
o
f
th
e
2
DOF
co
n
tr
o
l
s
y
s
te
m
is
s
h
o
w
n
in
Fi
g
u
r
e
2
,
w
h
er
e
th
e
co
n
tr
o
ller
c
o
n
s
is
ts
o
f
t
w
o
co
m
p
en
s
ato
r
s
C
(
s
)
an
d
(
s
)
,
th
e
tr
an
s
f
er
f
u
n
ctio
n
f
r
o
m
t
h
e
d
is
t
u
r
b
an
ce
„
d
’
to
th
e
co
n
tr
o
lled
v
ar
iab
le
„
y’
is
ass
u
m
ed
to
b
e
d
if
f
er
e
n
t
f
r
o
m
t
h
e
tr
an
s
f
er
f
u
n
ctio
n
P
(
s
)
f
r
o
m
t
h
e
m
a
n
ip
u
l
ated
v
ar
iab
le
„
u
’
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
2
69
–
2
83
272
„
y’
.
C
(
s
)
is
ca
lled
th
e
s
er
ial
(
o
r
m
ain
)
co
m
p
e
n
s
ato
r
a
n
d
(
s
)
,
th
e
f
ee
d
f
o
r
w
ar
d
co
m
p
e
n
s
ato
r
.
T
h
e
clo
s
ed
-
lo
o
p
tr
an
s
f
er
f
u
n
c
tio
n
s
f
r
o
m
„
r
’
to
„
y’
an
d
„
d
’
to
„
y
’
ar
e,
r
esp
ec
tiv
el
y
,
g
i
v
en
b
y
an
d
d
er
iv
ed
b
elo
w
[
4
]
.
Her
e,
th
e
s
u
b
s
cr
ip
t
“
2
”
m
ea
n
s
th
at
t
h
e
q
u
a
n
titi
e
s
ar
e
o
f
th
e
2
DOF
co
n
tr
o
l
s
y
s
te
m
.
C
o
n
s
id
er
f
o
llo
w
in
g
t
w
o
ca
s
es
f
o
r
s
tr
u
ct
u
r
e
o
f
2
DOF
co
n
tr
o
ller
to
d
er
iv
e
tr
an
s
f
er
f
u
n
ctio
n
an
d
s
tead
y
s
ta
te
er
r
o
r
f
o
r
an
d
r
esp
ec
t
iv
el
y
.
C
a
s
e
1
:
T
r
an
s
f
er
f
u
n
ctio
n
,
ass
u
m
i
n
g
=
0
.
Fig
u
r
e
3
.
C
o
n
v
e
n
tio
n
al
2
DOF
C
o
n
tr
o
l S
y
s
te
m
w
it
h
r
ef
er
e
n
ce
in
p
u
t o
n
l
y
–
(
1
4
)
(
s
)
(
1
5
)
(
1
6
)
No
w
,
S
u
b
s
tit
u
ti
n
g
v
al
u
es o
f
eq
u
atio
n
s
(
1
4
)
&
(
1
5
)
in
(
1
6
)
a
n
d
th
e
n
m
a
n
ip
u
lati
n
g
eq
u
a
tio
n
s
as u
n
d
er
.
{
[
]
}
(
1
7
)
{
[
]
}
(
1
8
)
,
*
(
)
+
-
(
1
9
)
[
]
(
2
0
)
B
y
,
r
ea
r
r
an
g
in
g
ab
o
v
e
eq
u
ati
o
n
(
2
0
)
t
o
d
er
iv
e
2
DOF
co
n
tr
o
l
s
et
p
o
in
t
r
esp
o
n
s
e
tr
an
s
f
er
f
u
n
ctio
n
as
in
(
2
1
)
=
[
]
(
2
1
)
L
et
‟
s
d
er
iv
e
S
tead
y
s
ta
te
er
r
o
r
f
o
r
u
n
it
s
tep
in
p
u
t a
s
s
u
m
i
n
g
z
er
o
d
is
tu
r
b
an
ce
s
.
–
(
2
2
)
Su
b
s
ti
tu
t
in
g
v
a
lu
e
o
f
in
eq
u
at
io
n
(
2
2
)
in
ter
m
s
o
f
–
[
]
(
2
3
)
[
–
[
]
]
(
2
4
)
Fo
r
,
s
tep
in
p
u
t
s
u
b
s
tit
u
ti
n
g
v
a
lu
e
o
f
r
(
s
)
in
eq
u
a
tio
n
(
2
4
)
(
)
[
–
[
]
]
(
2
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Tw
o
Deg
r
ee
o
f F
r
ee
d
o
m
PID
C
o
n
tr
o
ller
,
I
ts
E
q
u
iva
len
t F
o
r
ms
a
n
d
S
p
ec
i
a
l Ca
s
es
(
Ha
r
e
s
h
A
.
S
u
th
a
r
)
273
Der
iv
i
n
g
s
tead
y
s
ta
te
er
r
o
r
(
2
6
)
Ass
u
m
e
th
at,
=1
(
2
7
)
(
)
[
–
[
]
]
(
2
8
)
B
y
,
m
ath
e
m
atica
ll
y
m
a
n
ip
u
lat
in
g
r
i
g
h
t
h
an
d
s
id
e
o
f
eq
u
atio
n
(
2
8
)
an
d
ca
n
ce
lin
g
co
m
m
o
n
ter
m
s
,
w
e
g
et
s
tead
y
s
tate
er
r
o
r
as in
th
e
f
o
r
m
o
f
(
2
9
)
(
)
*
+
(
2
9
)
T
ak
in
g
,
an
d
C
(
s
)
f
r
o
m
n
u
m
er
ato
r
an
d
d
en
o
m
i
n
ato
r
p
ar
t
co
m
m
o
n
an
d
ca
n
ce
l
lin
g
co
m
m
o
n
ter
m
s
,
w
e
o
b
tain
eq
u
at
io
n
(
2
9
)
in
th
e
f
o
r
m
o
f
(
3
0
)
(
)
*
+
(
3
0
)
(
3
1
)
A
b
o
v
e
co
n
d
itio
n
s
i
m
p
o
s
es a
c
o
n
s
tr
ain
ts
o
n
t
h
e
d
esi
g
n
o
f
co
n
tr
o
ller
an
d
p
r
o
ce
s
s
.
T
h
e
ca
s
es
t
h
at
s
atis
f
y
ab
o
v
e
co
n
d
itio
n
s
ar
e
th
a
t,
C
(
s
)
in
cl
u
d
es
a
n
i
n
te
g
r
ato
r
an
d
(
s
)
d
o
es
n
o
t
in
cl
u
d
e
an
in
teg
r
ato
r
ter
m
an
d
d
etec
to
r
is
ac
cu
r
ate
in
th
e
s
tead
y
s
tate.
I
f
th
e
d
etec
to
r
is
n
o
t
ac
cu
r
ate
i.e
.
,
th
en
t
h
e
s
tead
y
-
s
tate
er
r
o
r
is
g
i
v
e
n
b
y
(
3
5
)
.
(
)
[
–
[
]
]
(
3
2
)
(
)
*
+
(
3
3
)
*
+
(
3
4
)
*
+
(
3
5
)
T
h
e
ab
o
v
e
eq
u
atio
n
g
i
v
es v
a
lu
e
o
f
s
tead
y
s
ta
te
er
r
o
r
f
o
r
u
n
it
s
tep
in
p
u
t
w
h
e
n
≠
1
.
Ca
s
e
2
:
T
r
an
s
f
er
f
u
n
ctio
n
,
ass
u
m
i
n
g
&
r
=
0
.
Fig
u
r
e
4
.
C
o
n
v
e
n
tio
n
al
2
DOF
C
o
n
tr
o
l S
y
s
te
m
w
it
h
d
is
t
u
r
b
an
ce
in
p
u
t o
n
l
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
2
69
–
2
83
274
[
]
[
]
(
3
6
)
[
]
[
]
(
3
7
)
B
y
,
r
ea
r
r
an
g
in
g
ab
o
v
e
eq
u
ati
o
n
(
3
7
)
to
d
er
iv
e
2
DOF
co
n
tr
o
l
d
is
tu
r
b
an
ce
r
esp
o
n
s
e
tr
a
n
s
f
er
f
u
n
ctio
n
as in
(
3
8
)
=
(
3
8
)
L
et
‟
s
d
er
iv
e
S
tead
y
s
ta
te
er
r
o
r
f
o
r
u
n
it
s
tep
d
is
tu
r
b
a
n
ce
in
p
u
t
ass
u
m
i
n
g
ze
r
o
r
ef
er
en
ce
in
p
u
t
.
(
3
9
)
*
+
(
4
0
)
*
+
(
4
1
)
Fo
r
,
s
tep
d
is
tu
r
b
an
ce
in
p
u
t
s
u
b
s
t
itu
t
in
g
v
a
lu
e
o
f
d
(
s
)
i
n
ab
o
v
e
eq
u
atio
n
(
4
1
)
*
+
(
4
2
)
[
]
(
4
3
)
=1
(
4
4
)
(
)
*
+
(
4
5
)
(
4
6
)
T
h
e
ab
o
v
e
eq
u
atio
n
s
p
u
t
co
n
d
itio
n
s
o
n
t
h
e
p
la
n
t,
w
h
er
e
t
h
e
d
en
o
m
i
n
ato
r
o
f
eq
u
atio
n
(
4
6
)
r
eq
u
ir
es
th
at
P
(
s
)
i
s
n
o
t
o
f
d
i
f
f
er
e
n
ti
atin
g
an
d
t
h
e
n
u
m
er
ato
r
eq
u
atio
n
(
4
6
)
r
eq
u
ir
es
th
at
th
e
d
is
tu
r
b
an
ce
i
s
n
o
t
in
te
g
r
ated
m
o
r
e
ti
m
e
s
th
a
n
t
h
e
m
an
ip
u
lated
v
ar
iab
le
i
n
o
r
d
er
ed
to
h
av
e
<
∞.
Fro
m
t
h
e
m
at
h
e
m
a
tical
s
tan
d
p
o
in
t,
co
n
d
itio
n
s
ar
e
n
o
th
in
g
b
u
t
s
u
f
f
icie
n
t
co
n
d
itio
n
s
th
at
m
ak
e
t
h
e
s
tead
y
-
s
tate
er
r
o
r
s
ze
r
o
r
o
b
u
s
tl
y
.
B
u
t
f
r
o
m
t
h
e
i
n
d
u
s
tr
ial
v
ie
w
p
o
in
t
th
e
y
ca
n
b
e
r
eg
ar
d
ed
as
n
ec
ess
ar
y
.
C
o
n
s
id
er
in
g
ab
o
v
e
c
o
n
d
itio
n
s
,
an
d
ar
e
d
er
iv
ed
as u
n
d
er
.
[
]
(
4
7
)
[
]
(
4
8
)
W
h
er
e
is
th
e
ap
p
r
o
x
i
m
ate
d
e
r
iv
ati
v
e
g
i
v
e
n
b
y
(
4
9
)
=
(
4
9
)
T
h
r
ee
p
ar
am
eter
s
o
f
i.e
.
,
th
e
p
r
o
p
o
r
ti
o
n
al
g
ain
,
th
e
in
teg
r
al
ti
m
e
,
an
d
th
e
d
e
r
iv
ativ
e
ti
m
e
,
ar
e
r
ef
er
r
ed
to
as
“
b
asi
c
p
ar
am
eter
s
,
”
an
d
t
w
o
p
ar
a
m
eter
s
o
f
i.e
.
,
an
d
ar
e
r
ef
er
r
ed
to
as
“
2
DOF
p
ar
a
m
e
ter
s
”.
T
h
e
ap
p
r
o
x
i
m
ate
d
er
iv
ati
v
e
eq
u
atio
n
(
4
9
)
is
s
et
as
τ
=
W
h
er
e,
is
ca
lled
t
h
e
d
er
iv
ati
v
e
g
ai
n
.
I
t
h
as
b
ee
n
a
tr
ad
itio
n
al
p
r
ac
tic
e
to
u
s
e
a
f
i
x
ed
v
al
u
e.
W
e
f
o
llo
w
t
h
i
s
tr
ad
itio
n
,
it
h
a
s
b
ee
n
d
o
n
e
tr
ad
itio
n
al
l
y
b
ec
au
s
e
o
f
en
g
i
n
ee
r
in
g
co
n
v
e
n
ien
ce
a
n
d
p
ar
tl
y
b
ec
au
s
e
o
u
r
n
u
m
er
ical
ex
p
er
i
m
en
t
s
in
d
ica
ted
th
at
th
e
ch
a
n
g
e
o
f
d
o
es
n
o
t
in
f
l
u
en
ce
th
e
o
p
tim
al
v
al
u
es
o
f
th
e
o
th
er
f
i
v
e
p
ar
a
m
eter
s
d
r
asti
ca
ll
y
,
w
h
er
e
s
o
m
e
ca
r
e
m
u
s
t
b
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Tw
o
Deg
r
ee
o
f F
r
ee
d
o
m
PID
C
o
n
tr
o
ller
,
I
ts
E
q
u
iva
len
t F
o
r
ms
a
n
d
S
p
ec
i
a
l Ca
s
es
(
Ha
r
e
s
h
A
.
S
u
th
a
r
)
275
tak
en
f
o
r
ce
r
tain
t
y
p
es
o
f
p
lan
t
s
.
I
n
o
r
d
er
to
s
i
m
p
li
f
y
t
h
e
p
r
o
b
le
m
,
w
e
in
tr
o
d
u
ce
th
e
n
e
x
t
t
w
o
a
s
s
u
m
p
t
io
n
s
t
h
at
ar
e
ap
p
r
o
p
r
iate
f
o
r
m
an
y
p
r
ac
tical
d
esig
n
p
r
o
b
lem
s
w
it
h
s
o
m
e
ex
ce
p
tio
n
s
.
A
s
s
um
p
tio
n
1
:
T
h
e
d
etec
to
r
h
as
s
u
f
f
ic
ien
t
ac
c
u
r
ac
y
an
d
s
p
ee
d
f
o
r
th
e
g
iv
en
co
n
tr
o
l
p
u
r
p
o
s
e,
i.e
.
,
H
(
s
)
=
1
,
d
m
=
0.
A
s
s
um
p
tio
n
2
:
T
h
e
m
ai
n
d
is
t
u
r
b
an
ce
en
ter
s
at
th
e
m
a
n
ip
u
lat
in
g
p
o
in
t,
i.e
.
,
P
d
(
s
)
=
P
(
s
)
an
d
p
lan
t
o
r
p
r
o
ce
s
s
h
as to
b
e
n
o
n
d
if
f
er
en
t
ial
t
y
p
e.
4.
E
Q
U
I
VA
L
E
N
T
F
O
RM
S O
F
2
DO
F
CO
NT
RO
L
L
E
R
T
h
e
2
DOF
co
n
tr
o
ller
is
s
h
o
w
n
in
ab
o
v
e
Fig
u
r
e
2
.
,
d
er
iv
ed
u
n
d
er
ass
u
m
p
tio
n
s
as
ab
o
v
e.
T
r
an
s
f
o
r
m
i
n
g
t
h
is
co
n
tr
o
ller
p
ar
t,
Fig
u
r
e.
2
ca
n
b
e
ch
an
g
ed
eq
u
iv
alen
tl
y
i
n
Fi
g
u
r
e.
5
to
Fig
u
r
e.
9
.
T
h
e
co
n
tr
o
ller
s
i
n
t
h
ese
f
i
g
u
r
es
ar
e
n
o
t
h
in
g
b
u
t
d
if
f
er
en
t
e
x
p
r
es
s
io
n
s
o
f
t
h
e
s
a
m
e
2
DOF
P
I
D
co
n
tr
o
ller
s
h
o
w
n
in
ab
o
v
e
Fig
u
r
e
2
.
T
h
e
y
ar
e
r
ef
e
r
r
ed
as f
o
llo
w
s
:
4
.
1
.
F
ee
d
F
o
rwa
rd
T
y
pe
(
F
F
t
y
p
e)
T
h
e
co
n
v
en
tio
n
al
Feed
f
o
r
w
ar
d
t
y
p
e
o
f
2
DOF
co
n
tr
o
ller
is
s
h
o
w
n
in
f
o
llo
w
i
n
g
Fi
g
u
r
e.
5
.
I
t
is
ca
lled
as
f
ee
d
f
o
r
w
ar
d
t
y
p
e
(
FF
t
y
p
e
)
,
b
ec
au
s
e
it
is
o
b
tain
ed
b
y
a
d
d
in
g
a
f
ee
d
f
o
r
w
ar
d
p
ath
f
r
o
m
„
„
to
„
u
’
in
t
h
e
co
n
v
e
n
tio
n
al
P
I
D
as
s
h
o
w
n
b
e
lo
w
.
No
w
,
d
er
iv
i
n
g
th
e
o
u
tp
u
t
o
f
2
DOF
co
n
tr
o
ller
„
’
f
r
o
m
b
elo
w
Fi
g
u
r
e.
5
s
o
,
o
u
tp
u
t
„
’
is
ad
d
itio
n
o
f
t
w
o
co
n
tr
o
ller
o
u
tp
u
t
s
i.e
.
f
ee
d
f
o
r
w
a
r
d
an
d
n
o
r
m
al
P
I
D
co
n
tr
o
ller
.
Fig
u
r
e
5
.
Feed
f
o
r
w
ar
d
t
y
p
e
2
DOF
C
o
n
tr
o
ller
.
W
h
er
e,
n
o
r
m
al
P
I
D
co
n
tr
o
ller
is
m
u
ltip
lied
b
y
er
r
o
r
„
’
an
d
f
ee
d
f
o
r
w
ar
d
co
n
tr
o
ller
is
m
u
lt
ip
lied
b
y
r
ef
er
en
ce
in
p
u
t
„
’
r
esp
ec
tiv
ely
s
h
o
w
n
i
n
eq
u
atio
n
(
5
0
)
.
A
f
ter
m
at
h
e
m
a
tical
m
a
n
ip
u
la
ti
o
n
an
d
ca
n
ce
llin
g
co
m
m
o
n
ter
m
s
in
eq
u
a
tio
n
(
5
0
)
&
(
5
1
)
,
w
e
g
e
t r
esu
l
tan
t c
o
n
t
r
o
ller
o
u
tp
u
t „
‟
s
h
o
w
n
i
n
eq
u
at
io
n
(
5
2
)
.
[
]
–
[
]
(
5
0
)
*
+
–
[
]
–
*
+
(
5
1
)
*
+
–
*
+
(
5
2
)
4
.
2
.
Fee
d
b
a
c
k
Ty
p
e
(
FB
Ty
p
e
)
o
f
2
DO
F
Co
n
t
r
o
ll
e
r
I
t
is
ca
lled
as
f
ee
d
b
ac
k
t
y
p
e
(
FB
t
y
p
e)
,
b
ec
au
s
e
it
i
s
o
b
tain
ed
b
y
ad
d
in
g
a
f
ee
d
b
ac
k
p
ath
f
r
o
m
„
y’
d
ir
ec
tl
y
to
„
u
’
to
th
e
co
n
v
e
n
tio
n
al
P
I
D,
w
h
er
e
ca
lled
as “
f
ee
d
b
ac
k
co
m
p
e
n
s
ato
r
.
”
Fig
u
r
e
6
.
Feed
b
ac
k
t
y
p
e
2
DOF
C
o
n
tr
o
ller
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
2
69
–
2
83
276
Der
iv
i
n
g
th
e
o
u
tp
u
t
o
f
2
DOF
co
n
tr
o
ller
„
‟
f
r
o
m
ab
o
v
e
F
ig
u
r
e.
6
s
o
,
o
u
tp
u
t
„
‟
is
ad
d
itio
n
o
f
t
w
o
co
n
tr
o
ller
o
u
tp
u
ts
i.e
.
f
o
r
w
ar
d
an
d
f
ee
d
b
ac
k
co
n
tr
o
ller
.
W
h
er
e,
f
o
r
w
ar
d
co
n
tr
o
ller
is
m
u
l
tip
lied
b
y
er
r
o
r
„
‟
an
d
f
ee
d
b
ac
k
co
n
tr
o
ller
is
m
u
ltip
lied
b
y
p
r
o
ce
s
s
o
u
tp
u
t
„
‟
r
esp
ec
ti
v
el
y
s
h
o
w
n
i
n
eq
u
atio
n
(
5
3
)
.
Af
ter
m
at
h
e
m
a
tical
m
a
n
ip
u
latio
n
a
n
d
ca
n
ce
lli
n
g
co
m
m
o
n
ter
m
s
in
eq
u
atio
n
(
5
3
)
,
(
5
4
)
&
(
5
5
)
,
w
e
g
et
r
esu
ltan
t
co
n
tr
o
ller
o
u
tp
u
t „
‟
as
s
h
o
w
n
i
n
(
5
6
)
.
[
]
–
[
]
(
5
3
)
[
]
–
[
–
[
]
(
5
4
)
[
]
–
[
–
–
(
5
5
)
[
]
–
[
]
(
5
6
)
4
.
3
.
Set
P
o
int
F
ilte
r
T
y
pe
o
f
2
DO
F
Co
ntr
o
ller
Fig
u
r
e
7
.
Set
-
p
o
in
t
f
ilter
t
y
p
e
2
DOF
C
o
n
tr
o
ller
I
t
is
ca
lled
a
s
et
-
p
o
in
t
f
ilter
t
y
p
e
(
Fil
ter
t
y
p
e)
,
b
ec
au
s
e
i
t
i
s
o
b
tain
ed
b
y
in
s
er
tin
g
a
f
i
lte
r
in
t
h
e
s
e
t
p
o
in
t
p
ath
o
f
th
e
co
n
v
en
t
io
n
al
P
I
D
co
n
tr
o
ller
.
Der
iv
in
g
t
h
e
o
u
tp
u
t
o
f
2
D
OF
co
n
tr
o
ller
„
‟
f
r
o
m
ab
o
v
e
Fig
u
r
e.
7
s
o
,
o
u
tp
u
t
o
f
2
DOF
co
n
tr
o
ller
is
m
u
ltip
lied
b
y
er
r
o
r
„
‟
w
h
er
e,
er
r
o
r
„
‟
is
d
i
f
f
er
en
ce
b
et
w
ee
n
s
e
t
p
o
in
t
f
ilter
o
u
tp
u
t
a
n
d
p
r
o
c
ess
o
u
tp
u
t
s
h
o
w
n
i
n
eq
u
ati
o
n
(
5
7
)
.
A
f
ter
m
a
th
e
m
atica
l
m
a
n
ip
u
latio
n
a
n
d
ca
n
ce
lli
n
g
co
m
m
o
n
ter
m
s
in
eq
u
atio
n
(
5
8
)
,
(
5
9
)
&
(
6
0
)
,
w
e
g
et
r
esu
lta
n
t
co
n
tr
o
ller
o
u
tp
u
t
„
‟
as
s
h
o
w
n
i
n
(
6
1
)
.
[
*
+
–
]
*
+
(
5
7
)
[
*
+
]
[
]
(
5
8
)
[
]
–
[
]
(
5
9
)
*
+
–
[
]
(
6
0
)
[
]
–
[
]
(
6
1
)
4
.
4
.
F
ilte
r
Wit
h P
re
ce
ded
-
Der
iv
a
t
iv
e
T
y
pe
E
x
pre
s
s
io
n O
f
2
D
O
F
Co
ntr
o
ller
I
t
is
f
il
ter
an
d
p
r
ec
ed
ed
-
d
er
iv
ativ
e
t
y
p
e,
b
ec
au
s
e
it
is
o
b
tai
n
ed
b
y
in
s
er
tin
g
a
f
ilter
i
n
th
e
s
et
-
p
o
in
t
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Tw
o
Deg
r
ee
o
f F
r
ee
d
o
m
PID
C
o
n
tr
o
ller
,
I
ts
E
q
u
iva
len
t F
o
r
ms
a
n
d
S
p
ec
i
a
l Ca
s
es
(
Ha
r
e
s
h
A
.
S
u
th
a
r
)
277
p
ath
o
f
th
e
p
r
ec
ed
ed
-
d
er
iv
ativ
e
t
y
p
e
co
n
tr
o
ller
.
Der
iv
in
g
t
h
e
o
u
tp
u
t
o
f
2
DOF
co
n
tr
o
ller
„
‟
f
r
o
m
Fi
g
u
r
e.
8
s
o
,
o
u
tp
u
t
o
f
2
DOF
co
n
tr
o
ller
is
o
b
tain
ed
as
s
h
o
w
n
i
n
eq
u
at
io
n
(
6
2
)
.
Af
ter
m
ath
e
m
atica
l
m
a
n
ip
u
la
tio
n
a
n
d
ca
n
ce
lli
n
g
co
m
m
o
n
ter
m
s
i
n
eq
u
atio
n
(
6
3
)
,
(
6
4
)
,
(
6
5
)
,
(
6
6
)
&
(
6
7
)
,
w
e
g
e
t
r
esu
lta
n
t
co
n
t
r
o
ller
o
u
tp
u
t
„
‟
as
s
h
o
w
n
in
(
6
8
)
.
Fig
u
r
e
8
.
Fil
ter
w
i
th
p
r
ec
ed
ed
-
Der
iv
ati
v
e
T
y
p
e
2
DOF
co
n
tr
o
ller
(
-
)
(
-
)
(
6
2
)
[
–
]
[
]
–
(
6
3
)
[
*
+
–
*
+
–
]
(
6
4
)
[
]
–
[
]
(
6
5
)
,
*
(
-
)
(
-
)
+
*
+
–
*
+
-
(
6
6
)
,
*
(
-
)
+
–
*
+
-
(
6
7
)
[
]
–
*
+
(
6
8
)
4
.
5
Co
m
po
nent
Sepa
ra
t
ed
T
y
pe
E
x
pre
s
s
io
n o
f
2
DO
F
Co
ntr
o
ller
I
t
is
co
m
p
o
n
en
t
-
s
ep
ar
ated
t
y
p
e,
b
ec
au
s
e
t
h
e
th
r
ee
f
u
n
c
tio
n
a
l
co
m
p
o
n
e
n
ts
(
i.e
.
,
p
r
o
p
o
r
tio
n
al,
in
te
g
r
al
an
d
d
er
iv
ati
v
e
co
m
p
o
n
en
ts
)
a
r
e
s
ep
ar
atel
y
b
u
ilt
in
an
d
co
n
n
ec
ted
as
s
h
o
w
n
in
f
o
llo
w
in
g
Fi
g
u
r
e
9
.
Der
i
v
i
n
g
th
e
o
u
tp
u
t
o
f
2
DOF
co
n
tr
o
ller
„
‟
f
r
o
m
Fi
g
u
r
e
9
s
o
,
o
u
tp
u
t
2
DOF
co
n
tr
o
ller
is
o
b
tai
n
ed
as
s
h
o
w
n
i
n
(
6
9
)
.
Af
ter
m
at
h
e
m
atica
l
m
an
ip
u
lat
io
n
an
d
ca
n
ce
lli
n
g
co
m
m
o
n
ter
m
s
in
eq
u
at
io
n
s
(
7
0
)
,
(
7
1
)
,
(
7
2
)
,
(
7
3
)
,
(
7
4
)
,
(
7
5
)
,
(
7
6
)
&
(
7
7
)
,
w
e
g
et
r
esu
ltan
t c
o
n
tr
o
ller
o
u
tp
u
t „
‟
a
s
s
h
o
w
n
i
n
(
7
8
)
.
Fig
u
r
e
9
.
C
o
m
p
o
n
e
n
t Sep
ar
ated
T
y
p
e
E
x
p
r
ess
io
n
o
f
2
DOF
C
o
n
tr
o
ller
[
]
(
6
9
)
[
]
(
7
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
2
69
–
2
83
278
–
(
7
1
)
[
–
]
(
7
2
)
*
+
(
7
3
)
–
–
*
+
(
7
4
)
–
–
(
7
5
)
*
+
–
*
+
(
7
6
)
[
]
–
[
]
(
7
7
)
*
+
–
*
+
(
7
8
)
T
h
e
ab
o
v
e
eq
u
iv
ale
n
t
tr
a
n
s
f
o
r
m
atio
n
s
o
f
2
DOF
co
n
tr
o
ller
g
iv
e
s
b
asic
u
n
d
er
s
ta
n
d
in
g
r
eg
ar
d
in
g
t
h
e
ef
f
ec
ts
o
f
th
e
2
DOF
s
tr
u
ct
u
r
e
f
r
o
m
v
ar
io
u
s
v
ie
w
p
o
i
n
ts
lik
e
it
is
u
s
e
f
u
l
f
o
r
d
ev
elo
p
in
g
an
ef
f
icie
n
t
al
g
o
r
ith
m
in
d
i
g
ital
i
m
p
le
m
en
tatio
n
[
5
]
[
8
]
[
6
]
[
9
]
in
tr
o
d
u
cin
g
n
o
n
lin
ea
r
o
p
er
atio
n
s
o
n
t
h
e
m
a
n
ip
u
late
d
v
ar
iab
le
s
u
ch
a
s
m
ag
n
it
u
d
e
l
i
m
itatio
n
,
r
ate
li
m
itatio
n
,
d
ir
ec
tio
n
al
g
ain
ad
j
u
s
t
m
e
n
t,
[
5
]
[
8
]
[
1
0
]
r
ea
lizin
g
b
u
m
p
les
s
s
w
itc
h
i
n
g
,
i
m
p
le
m
en
t
in
g
a
n
a
n
tire
s
et
-
w
i
n
d
u
p
m
ec
h
a
n
i
s
m
,
m
a
n
a
g
i
n
g
th
e
f
ee
d
f
o
r
w
ar
d
s
ig
n
al
s
c
o
m
in
g
f
r
o
m
o
th
er
s
y
s
te
m
s
,
u
tili
z
in
g
p
r
ed
ictab
l
e
d
is
tu
r
b
a
n
ce
s
,
etc.
[
5
]
[
6
]
[
7
]
[
8
]
[
9
]
,
an
d
co
n
v
er
ti
n
g
t
h
e
co
n
v
e
n
tio
n
al
P
I
D
co
n
tr
o
ller
alr
ea
d
y
b
u
il
t in
to
t
h
e
2
DOF
P
I
D
[
5
]
[
6
]
[
9
]
[
1
1
]
.
5.
SPECI
A
L
CAS
E
S O
F
2
DO
F
CO
NT
RO
L
L
E
R
Var
ian
ts
an
d
it
s
eq
u
iv
ale
n
t
f
o
r
m
s
o
f
2
DO
F
co
n
tr
o
ller
s
ar
e
d
i
s
cu
s
s
ed
ab
o
v
e
a
n
d
it
h
as
b
ee
n
o
b
s
er
v
ed
th
at
o
u
tp
u
t
o
f
c
o
n
tr
o
ller
r
em
a
in
s
s
a
m
e
ir
r
esp
ec
tiv
e
o
f
t
y
p
e
o
f
2
DOF
co
n
tr
o
ller
w
h
ic
h
is
as
b
elo
w
eq
u
atio
n
(
7
9
)
.
I
f
w
e
s
elec
t
v
al
u
es
o
f
α
an
d
β
ei
th
er
ze
r
o
o
r
o
n
e
t
h
e
n
f
o
u
r
co
m
b
i
n
atio
n
s
ar
e
p
o
s
s
ib
l
e,
s
u
b
s
t
itu
tin
g
t
h
e
s
e
co
m
b
i
n
atio
n
s
i
n
(
7
9
)
w
h
ic
h
r
esu
lt
s
i
n
s
p
ec
ial
ca
s
es o
f
2
DOF
co
n
tr
o
ller
.
*
+
–
*
+
(
7
9
)
Ca
s
e
1
:
α
=0
an
d
β =
0
,
P
I
D
C
o
n
tr
o
ller
.
I
f
w
e
s
u
b
s
tit
u
te
v
al
u
e
s
o
f
α
=0
an
d
β =
0
in
(
7
9
)
it r
e
d
u
ce
d
in
th
e
f
o
r
m
o
f
s
i
m
p
le
P
I
D
co
n
tr
o
ller
as
s
h
o
w
n
b
elo
w
i
n
(
8
0
)
&
(
8
1
)
.
*
+
–
*
+
(
8
0
)
*
+
(
8
1
)
Fig
u
r
e
1
0
.
Sp
ec
ial
ca
s
e
o
f
2
DOF
C
o
n
tr
o
ller
α
=0
an
d
β =
0
,
P
I
D
C
o
n
tr
o
ller
.
Ca
s
e
2
:
α
=0
an
d
β =
1
,
P
I
-
D
co
n
tr
o
ller
.
I
f
w
e
s
u
b
s
tit
u
te
v
al
u
e
s
o
f
α
=0
an
d
β =
0
in
eq
u
atio
n
(
7
9
)
it r
ed
u
ce
d
as sh
o
w
n
b
elo
w
i
n
(
8
2
)
&
(
8
3
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.