Intern
ati
o
n
a
l Jo
urn
a
l
o
f
R
o
botics
a
nd Au
tom
a
tion
(I
JR
A)
Vol.
3, No. 4, Decem
ber
2014, pp. 259~
267
I
S
SN
: 208
9-4
8
5
6
2
59
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJRA
A mini-UAV VTOL Pl
atform
for Surveying Applications
Kuldeep S. Rawa
t*,
Ellis
E. La
wrence
* Department of
Techno
log
y
/Aviation
,
Elizabet
h
Ci
ty
St
at
e Uni
v
ersi
ty
,
Nort
h Ca
rol
i
n
a,
USA
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 9, 2013
Rev
i
sed
Ju
l 19
,
20
14
Accepted Aug 10, 2014
In this paper we discuss im
plem
entati
on of a mini-Unmanne
d Aerial Vehicle
(UAV) vertical take-off
and landing
(VTOL) platform for survey
ing
act
iviti
es re
lat
e
d
to highwa
y
co
nstructio
n
.
Recent advan
ces in
sensor and
communication
techno
logies have allowe
d scaling sizes of unmanned aerial
platforms, and explore th
em for task
s that are economical an
d safe over
populated or
inh
a
bited ar
eas. In
highway
constru
c
tion
the capability
of
mini-
UAVs to
survey
in hostile
and/o
r
hard
ly
accessible ar
eas can gr
eatly
r
e
duce
human risks. Th
e project fo
cused on deve
loping
a cos
t
effe
ctiv
e
,
rem
o
te
l
y
piloted,
fuel powered mi
ni-UAV VTOL (helicopter)
platform w
ith certain
pay
l
oad
capacity
and configur
ation a
nd d
e
monstrated
its us
e in survey
ing
and monitoring
activities
requir
e
d for highway planning
and construction
.
With an on-board flight r
ecord
er
global positioning s
y
stem (
G
PS) device,
s
t
orage, t
e
lem
e
tr
y, in
ert
i
al nav
i
g
a
ti
on sensors, an
d a video camer
a the mini-
UAV can record fly
i
ng coordinates and re
lay
live
video imag
es to a remote
ground rece
iver
and surve
y
or. A
f
ter a
ll n
ecessar
y
in
tegr
ation
an
d flight
tests
were done the
mini-UAV he
licopter was tested
to oper
a
te and
relay
video
from the areas where constru
c
tion was underway
. The min
i
-UAV can
provide a platf
o
rm for a range of se
nsors and instruments that directly
support the oper
a
tion
a
l r
e
quir
e
ments of
transportation
sector
.
Keyword:
Helico
p
t
er
Sm
a
ll UAV
Su
rv
eying
Transpo
r
tation
VTO
L
Re
m
o
tely Pilo
t
e
d
Aircraft
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Kul
d
eep
S.
Ra
wat,
Depa
rt
m
e
nt
of
Tech
nol
ogy
/
A
vi
at
i
on,
Elizabeth City State Uni
v
ersit
y
,
1
704
Weeksv
il
le Rd
, Elizab
eth
City, No
rt
h
Caro
lin
a
27
909
,
USA.
Em
a
il: k
s
rawat
@
ecsu.edu
1.
INTRODUCTION
Unm
a
nne
d
Ae
ri
al
Vehi
cl
es
(
U
A
V
s
)
re
pre
s
e
n
t
o
n
e
of t
h
e
m
o
st
im
port
a
nt
t
echn
o
l
o
gi
es i
n
t
h
e
fi
el
d
of
aeron
au
tics due to
th
eir
ran
g
e o
f
app
licatio
n
s
, m
i
ssio
n
flex
ib
ility, an
d
hig
h
p
e
rfo
rm
an
ce at lo
w
o
p
e
ratin
g
cost
s.
U
AVs
a
r
e ai
rc
raft
wi
t
h
o
u
t
cre
w
a
n
d
passe
n
g
ers t
h
at
coul
d ei
t
h
e
r
be
rem
o
t
e
l
y
pi
l
o
t
e
d
by
gr
o
u
n
d
or
autonom
ously carry out an a
pplicatio
n. Their effective
n
e
ss is due to
t
h
e possibility to reach
hostile and
inaccessible areas without e
x
posi
ng
hum
ans to
hazards
and
da
nge
rous
situations. M
o
re
over, t
h
e internal
space
ca
n be fully
designe
d
i
n
order
to place payload
(s
e
n
s
o
rs a
n
d /or cam
e
r
as) and t
h
e
on-board
syste
m
s.
Du
e to th
e h
i
gh
co
st and
h
i
gh
risk to
op
erate trad
ition
a
l aircraft m
i
ssio
n
s und
er h
azardo
u
s
flying
co
nd
itio
ns,
research
ers are beg
i
nn
ing
to
t
u
rn
t
o
un
m
a
n
n
e
d
aerial veh
i
cl
es (UAVs) as
a lo
w-co
st
, low-risk
altern
ativ
e.
UAVs h
a
v
e
b
e
en
a top
i
c of exten
s
iv
e
res
earch
fo
r m
i
litary
ap
p
lication
s
si
n
ce
1
950
s.
UAVs
were
u
s
ed
as
p
r
o
t
o
t
yp
es in
World
W
a
r I and
II
for in
tellig
en
ce g
a
th
ering
.
In th
e last d
ecade, Defense Adv
a
n
ced
Research
Pro
j
ects Ag
en
cy (DARPA) in
it
iated
sev
e
ral
p
r
oj
ects to
increase u
s
e
o
f
UAVs in
military
ap
p
lication
s
[1].
Th
e in
terest in
m
i
n
i
-UAV fo
r ci
v
ilian
app
licati
o
n
s
h
a
s rap
i
d
l
y g
r
own
in
last few
years du
e to
em
ergence
o
f
sop
h
i
s
t
i
cat
ed
h
a
rd
ware
an
d s
o
ft
ware sy
st
em
s/
al
gori
t
h
m
s
t
o
su
pp
o
r
t
sem
i
-
a
ut
o
nom
ous
o
r
ful
l
y
-
au
ton
o
m
o
u
s
co
n
t
ro
l [2
] [3
].
In
add
itio
n
,
t
h
e av
ailab
ility o
f
low cost min
i
atu
r
ized
g
l
ob
al p
o
s
ition
i
ng
syste
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
259 – 267
26
0
(GP
S
)
de
vi
ce,
i
n
ert
i
a
l
sens
o
r
s
,
com
put
at
i
o
na
l
har
d
ware
,
po
wer
pl
a
n
t
,
ai
r
f
r
a
m
e
m
a
t
e
ri
al
s and
ot
her
i
n
t
e
g
r
at
ed
syste
m
s h
a
s mad
e
sm
all UAVs affo
rd
ab
le fo
r civ
ilian
ap
p
l
icatio
n
s
[4
].
UA
Vs ca
n b
e
equi
ppe
d
wi
t
h
a vari
et
y
o
f
i
m
agi
n
g de
vi
ces
i
n
cl
udi
ng
day
and
ni
g
h
t
real
-
t
im
e vi
deo
cam
e
ras t
o
capt
u
re real
-t
i
m
e vi
de
o;
sens
or
s such as
di
gi
t
a
l
vi
deo, t
h
e
r
m
a
l
and i
n
fra
r
e
d cam
eras, hy
per-
sp
ectral sen
s
o
r
s, rad
a
r, and
ch
em
ical an
d
b
i
o
l
og
ical se
n
s
ors.
W
i
t
h
real
-time d
a
ta
tran
sfer cap
a
b
ilities to
th
e
g
r
ou
nd
statio
n, U
A
V
s
can
r
e
co
rd
n
ece
ssary
inform
ation, such as
weathe
r, fire a
nd
flo
od in
f
o
rm
ation, and
relay d
a
ta to the groun
d statio
n
.
UA
V
desi
g
n
a
nd m
a
nu
fact
u
r
i
ng c
o
m
p
ani
e
s
are n
o
w
worki
ng with
c
o
mmercial
cust
om
ers t
o
devel
o
p
m
i
ni and/or s
m
all UAVs a
n
d ass
o
ciated te
chnologies t
h
at are
well suite
d for m
y
riad of civilian a
p
plications.
These areas include oil and gas survey and
m
onitoring
re
q
u
irem
ents, fore
stry
m
a
nagem
e
nt, law en
fo
rce
m
ent,
ag
ricu
ltu
re, traffic m
o
n
ito
ri
n
g
, an
d in
su
ran
ce
u
n
d
e
rwri
tin
g
an
d asset
m
a
n
a
g
e
m
e
n
t
[5
]-[8
].
All th
ese
ap
p
lication
share th
e co
mmo
n
req
u
i
rem
e
n
t
fo
r surv
eillan
ce cap
a
b
ilities o
v
e
r larg
e areas an
d
/
o
r
lo
ng
t
i
me
f
r
a
me
s
.
Civ
ilian
U
AVs h
a
v
e
already d
e
m
o
n
s
trated
po
ten
tial in a w
i
d
e
v
a
riety o
f
ap
p
licatio
n
s
. In
2
005
researc
h
ers at
the National
Oceanogr
aphic
& Atm
o
spheri
c Adm
i
nistration
(NOAA) fl
ew a
6-ft.-long UAV,
kn
o
w
n a
s
Ae
r
o
so
n
d
e i
n
t
o
t
h
e heart
of
t
r
o
p
i
cal
st
orm
Ophel
i
a
[6]
.
Suc
h
fl
i
ght
s a
r
e c
u
rre
nt
l
y
con
d
u
c
t
ed by
p
ilo
ted
tran
sp
ort p
l
an
es at a relativ
ely safe altitu
d
e
o
f
1
0
,00
0
ft. Bu
t b
ecau
s
e a UAV pu
ts n
o
crew at ri
sk
, t
h
e
Aeros
o
nde ca
n be fl
own a fe
w hundre
d
feet
above
wate
r,
whe
r
e
wi
n
d
s
whi
p
at
1
75 m
ph a
n
d wa
ves
can t
o
p
60
ft
.
UA
Vs
have
pr
ove
n t
o
be i
d
e
a
l
for ac
q
u
i
r
i
n
g i
m
agery
ove
r da
nge
r
ous e
n
vi
r
onm
ent
s
su
ch as f
o
re
st
fi
res,
w
h
ere l
o
ng
en
d
u
ra
nce
m
i
ssi
ons can
m
oni
t
o
r si
t
u
at
i
on
wi
t
h
o
u
t
ri
s
k
i
n
g
hum
an fl
i
ght
cre
w
s
.
T
h
e U.S
.
f
o
r
e
st serv
ice i
n
co
llab
o
r
a
tion w
ith
NA
SA
f
l
ew
a m
o
d
i
f
i
ed Pr
ed
ator
B,
kn
own
as t
h
e
Altair
, ov
er
a 40,20
0-
acre fire near Palm
Springs
, California [8]. T
h
e Pre
d
at
o
r
B
UA
V fl
e
w
fo
r
16
ho
u
r
s rel
a
y
i
ng
do
w
n
i
m
ag
es t
h
at
allowed the
fire m
a
nagem
e
nt
tea
m
to pinpoint the
pe
ri
m
e
te
r
of a
da
ngerous blaze t
h
at killed
five
firefi
ghters
.
The law e
n
forc
e
m
ent comm
u
n
ity has bee
n
i
n
fore
fr
ont of
using
UAVs in civilian air space, and
has
success
f
ully re
aped its enorm
ous be
nefits
[9]. For law e
n
forcem
ent ap
plications UAVs ha
ve prove
n to be
m
o
re econom
i
cal to operate
and can cove
r m
o
re territo
r
y
than m
a
nne
d airc
raft
.
The Sacram
ento
Police
Dep
a
rtm
e
n
t
d
e
m
o
n
s
trated
th
eir UAV, d
e
si
gn
ed
an
d
b
u
ilt in
-h
ou
se to
enh
a
n
ce th
e
d
e
partm
e
n
t
’s ex
ist
i
ng
ai
rb
or
ne t
ech
n
o
l
o
gy
pr
o
g
ra
m
[10]
. The
UA
V wi
t
h
vi
deo
do
w
n
l
i
n
k com
m
uni
cat
i
ons
has gi
ve
n t
h
e
depa
rt
m
e
nt
an
aff
o
r
d
a
b
l
e
an
d
a q
u
i
e
t
e
r al
t
e
r
n
at
i
v
e t
o
t
h
e m
a
nne
d
h
ove
ri
n
g
hel
i
c
opt
e
r
du
ri
ng
i
n
ci
de
nt
s.
Ext
e
nsi
v
e re
se
arch
has
bee
n
con
d
u
ct
ed i
n
t
h
e past
few
y
ears o
n
dep
l
oy
i
ng m
i
ni
and/
or sm
al
l
u
n
m
an
n
e
d
p
l
atform
s fo
r civ
ilian
ap
p
lication
s
[1
1
]
. Research
ers h
a
v
e
tried
ex
p
e
rim
e
n
tin
g
on
fix
e
d
wing
aircraft, h
e
licop
ter, ob
serv
atio
n
b
a
lloon
s,
an
d
satellites.
Th
ese research
p
r
oj
ects
h
a
v
e
prov
en
th
at UAVs
m
a
y
be em
pl
oy
ed
f
o
r
a
wi
de
ran
g
e
o
f
a
ppl
i
cat
i
o
ns,
pa
rt
i
c
ul
arl
y
rel
a
t
e
d t
r
ans
p
ort
a
t
i
o
n
ope
rat
i
ons
a
n
d
pl
a
nni
ng
.
Ove
r
t
h
e
past
few y
ears
,
t
h
e
m
i
ssi
on of
r
o
adway
t
r
a
n
s
p
o
r
t
a
t
i
on a
g
enci
e
s
has e
vol
ved
fr
om
sol
e
l
y
p
r
ov
id
ing
ro
ad
way infrastructu
r
e to
fo
cu
sin
g
on
th
e need
s of th
e trav
eling
pub
lic,
m
a
n
a
g
e
m
e
n
t
an
d
ope
rat
i
o
ns, a
n
d i
m
prove
d
p
e
rf
orm
a
nce o
f
t
h
e su
rface
t
r
ans
p
ort
a
t
i
o
n
sy
st
em
. Thi
s
r
e
qui
res c
o
l
l
ect
i
on
of
preci
se a
nd acc
urat
e i
n
fo
rm
at
ion a
b
out
t
h
e st
at
e of t
h
e t
r
a
ffi
c and
roa
d
c
o
n
d
i
t
i
ons
. Ae
ri
al
vi
ew
pr
ovi
des
bet
t
e
r
p
e
rsp
ectiv
e wi
th
th
e ab
ility to
co
ver a large area
and
focu
s
reso
urces
on
the cu
rren
t
p
r
ob
lem
s
[1
1
]
. Th
e
Virg
in
ia Dep
a
rtm
e
n
t
o
f
Transp
ortatio
n
(VDOT) in
co
llab
o
ration
with
t
h
e Nation
a
l C
o
n
s
ortiu
m
o
n
Re
m
o
te
Sen
s
i
n
g
in
Tran
spo
r
tation
(NCRST)
t
o
d
e
m
o
n
s
trat
e t
h
e
feasib
ility of an
u
n
m
an
n
e
d
Airbo
r
ne Data
Acqu
isitio
n Sy
ste
m
(ADAS)
for real
-ti
m
e traffic su
rv
e
illance, m
o
n
ito
ring traffic i
n
cid
e
nts an
d sign
als, and
en
v
i
ron
m
en
tal co
nd
itio
n assessm
e
n
t
o
f
ro
ad
sid
e
areas [12
]
.
W
i
d
e
sp
read d
e
p
l
o
y
m
e
n
t
o
f
UAVs for tran
spo
r
tatio
n
ap
p
licatio
n
s
will requ
ire a nu
m
b
er
o
f
sp
eci
fic
issu
es su
ch as
safety, liab
ility
, and
p
r
iv
acy t
o
b
e
add
r
essed. Th
ese issu
es
p
r
o
m
p
t
ed
th
e
U.S. Dep
a
rtm
e
n
t
of
Tran
sp
ort
a
t
i
o
n
’
s
Vol
p
e C
e
nt
er t
o
sp
o
n
so
r
a co
nfe
r
e
n
ce
t
o
devel
o
p
a
roa
d
m
a
p f
o
r
de
pl
oy
i
n
g
U
AVs
i
n
Tran
sp
ort
a
t
i
o
n
[
13]
.
The
d
o
c
u
m
e
nt
depi
ct
i
n
g t
h
e
r
o
a
d
m
a
p
acknowledged that
th
ere
is
a
great deal of
interest
i
n
expa
n
d
i
n
g and
dem
onst
r
at
i
ng t
h
e
use o
f
UA
Vs.
Ho
we
v
e
r, t
h
e r
o
adm
a
p d
o
cum
e
nt
, al
so n
o
t
e
d a n
u
m
ber of
b
a
rriers, m
o
st o
f
wh
ich
are institu
tio
n
a
l. Th
e effo
rt fo
rg
ed
a p
l
an
to
ad
dress th
ese b
a
rriers to
d
e
p
l
o
y
ing
UAVs
for tran
sp
ortatio
n app
licatio
n
s
.
The
rem
a
ining
section highlights UAV res
earch wo
rk in the area
of tran
s
p
ortation c
o
nducted at
u
n
i
v
e
rsities such
as
Un
i
v
ersity o
f
Florida, Geo
r
g
i
a-Tech
,
Oh
i
o
Stat
e Un
i
v
ersity, an
d Un
iv
ersity o
f
Was
h
in
gto
n
.
Th
e
Un
iv
ersity o
f
Florid
a (UFL) in
itiated Airbo
r
n
e
Traffic Surv
eillance System
(ATSS) pro
j
ect
foc
u
se
d
on a
p
r
o
o
f
-
o
f
-
co
nce
p
t
UA
V
pr
oject
fo
r m
oni
t
o
ri
n
g
rem
o
t
e
and r
u
r
a
l
areas o
f
t
h
e
st
at
e of Fl
ori
d
a
[1
4]
.
Th
e ATSS proo
f-of-con
cep
t
p
r
oj
ect also
evalu
a
ted
th
e
feasib
ility o
f
th
e wireless co
mmu
n
i
cation
system
s, a
s
wel
l
as s
w
i
t
c
hi
ng
o
f
t
h
e
vi
de
o
.
Georg
i
a
Tech
Research
Institu
te’s (GTR
I)
co
ndu
ct
ed
th
e
Traffic Surv
eillan
ce Dro
n
e
p
r
oject fun
d
e
d
by
t
h
e Geo
r
gi
a Depa
rt
m
e
nt
of Trans
p
ort
a
t
i
o
n an
d t
h
e Fe
de
ral
Hi
g
h
way
A
d
m
i
ni
st
rat
i
on’s
Pri
o
ri
t
y
Tech
n
o
l
o
gy
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
A mi
ni-UAV V
T
OL Platfor
m
for
Surveyi
ng
Applications (Kuldee
p
S. R
a
wat)
26
1
Pro
g
r
am
[15]
.
The
pr
o
j
ect
f
o
cuse
d o
n
t
h
e
d
e
vel
o
pm
ent
of
a ge
neri
c l
o
w
-
cost
vert
i
cal
t
a
ke-
o
f
f
a
nd l
a
ndi
ng
(
V
TO
L)
UAV testb
e
d
th
at
may b
e
u
s
ed
to
f
ligh
t
test o
t
h
e
r
r
e
sear
ch
pr
oj
ects su
ch
as ad
v
a
n
c
ed
co
ntr
o
ller
s
,
fau
lt-to
leran
c
e
alg
o
rith
m
s
an
d au
tono
m
o
u
s
op
eration
al
g
o
rith
m
s
.
Th
e Oh
i
o
State Un
i
v
ersity (OSU) in
co
llab
o
ratio
n
with
th
e Oh
io
Departm
e
n
t
o
f
Tran
sp
ortation
(O
DO
T)
pe
rf
o
r
m
e
d fi
el
d ex
peri
m
e
nt
s on
t
h
e u
s
e
of
U
AVs
t
o
c
o
l
l
e
c
t
dat
a
ab
o
u
t
free
w
ay
co
n
d
i
t
i
ons,
i
n
t
e
rsect
i
o
n m
ovem
e
nt
, net
w
o
r
k
pat
h
s,
and
pa
rki
ng l
o
t
m
oni
t
o
ri
n
g
.
They
we
re
usi
n
g t
h
e c
o
l
l
ect
ed
inform
ation for s
p
ace
planning
and
distribution as
well as
providi
n
g qu
a
s
i real-tim
e inform
ation to t
r
a
v
elers
[1
6]
.
The U
n
i
v
e
r
si
t
y
of
W
a
s
h
i
n
gt
on
(U
W) i
n
col
l
a
bo
rat
i
o
n w
i
t
h
t
h
e
W
a
s
h
i
ngt
on St
at
e D
e
part
m
e
nt
o
f
Tran
sp
ort
a
t
i
o
n
(
W
S
D
OT) a
n
d t
h
e Ge
or
gi
a
Tech U
AV
R
e
search Faci
l
i
t
y
condu
ct
ed
several
e
xpe
ri
m
e
nt
s
i
n
cl
udi
ng
t
h
e eval
uat
i
o
n of UA
V use on
m
ount
ai
n
sl
o
p
e
s
ab
ove
st
at
e
hi
g
h
w
ay
s
t
o
cont
rol
a
v
al
an
ches o
r
cap
turing
aerial i
m
ag
es for d
a
ta co
llectio
n and
t
r
af
fic surv
eillan
ce
p
u
rp
o
s
es [17
]
. Th
e proj
ect
sh
owed
co
nsid
erab
le
po
ten
tial fo
r aerial ro
ad
way surv
eillan
ce
and
av
alan
ch
e
con
t
ro
l u
s
ing
UAVs.
In
t
r
an
spo
r
tatio
n app
licatio
n su
ch
as
highway construction, the a
g
e
n
ci
es ha
ve to
survey swam
ps,
l
a
nd,
ri
ve
rs, st
ream
s,
m
ount
a
i
no
us t
e
r
r
ai
ns
or a
r
eas t
h
at
a
r
e n
o
t
safe
f
o
r
hum
ans t
o
p
h
y
s
i
cal
l
y
surv
ey
or
m
onitor. Some pri
v
ate com
p
anies
ha
ve
b
een fly
i
n
g
m
a
nne
d ai
rcra
fts
for c
o
mm
ercial usage and
survey.
Ho
we
ver
,
t
h
i
s
app
r
oach i
s
c
o
st
l
y
. Al
so, t
h
e
m
a
nned ai
rcra
f
t
cann
o
t
be fl
o
w
n i
n
ba
d weat
her
,
o
r
re
gi
o
n
s
whi
c
h
are p
o
tentially
uns
afe
fo
r the
ope
rato
rs.
A s
m
all UAV
with
nec
e
ssary
se
nso
r
s a
n
d co
nt
rol circ
uitry
is a cost-
effective a
nd s
a
fe alternative
to
m
a
nned ai
rcra
fts. I
n
th
e
fo
llowing
sectio
n, a rem
o
tely
p
ilo
ted
m
i
n
i
-UAV
hel
i
c
opt
e
r
pl
at
f
o
rm
speci
fi
cal
l
y
dev
e
l
o
ped
f
o
r s
u
r
v
ey
i
n
g
a
p
pl
i
cat
i
ons i
n
hi
gh
way
pl
an
ni
n
g
a
n
d
c
onst
r
uct
i
on i
s
di
scuss
e
d
.
2.
R
E
SEARC
H M
ETHOD
Wh
en
ev
er h
i
gh
ways, ro
ads, d
a
m
s
,
retain
ing
walls, b
r
i
d
g
e
s o
r
resid
e
n
tial stru
ctures are to
b
e
b
u
ilt,
sur
v
ey
o
r
s are
req
u
i
r
e
d
. Su
r
v
ey
o
r
s spe
nd
a consi
d
era
b
l
e
am
ount
o
f
t
i
m
e and eff
o
rt
t
o
m
a
ke adequat
e
investigation to determ
ine if
there
are enc
r
oachm
e
nts, gaps, lap page
s,
or other irre
gularities along each line
sur
v
ey
ed
. I
n
hi
gh
way
co
nst
r
u
c
t
i
on,
a succe
s
s
ful project re
qui
res civil en
ginee
r
s and survey
ors to acc
urately
m
easure
di
st
an
ces. T
h
e t
r
adi
t
i
onal
m
easurem
ent
m
e
t
hod
re
q
u
i
r
e
d
t
r
a
n
si
t
s
e
qui
ppe
d
wi
t
h
l
a
sers
an
d
com
put
e
r
-
related technol
ogy a
nd c
h
ains
(tape m
easure
)
to m
easure fro
m
poi
nt
t
o
p
o
i
nt
t
h
at
req
u
i
r
e
s
a clear line of sight.
To o
b
t
a
i
n
t
h
i
s
l
i
n
e of si
g
h
t
,
t
r
ees had t
o
be cut
and
dest
r
o
y
e
d whi
c
h co
n
s
um
ed cou
n
t
l
e
ss of m
a
n hou
rs an
d
accuracy
was
ofte
n questioned.
A low c
o
s
t
m
i
ni-UAV e
qui
ppe
d with an
a
dva
nce
d
flight rec
o
rder
global
p
o
s
ition
i
ng
syste
m
(GPS) can fly abo
v
e
ob
st
acles su
ch
as
t
r
ees, m
o
un
tains, or
water an
d lo
cated
po
in
ts with
b
e
tter accu
r
acy. Often
tim
es
on
a d
e
ed,
on
e is
prov
id
e
d
wi
t
h
su
ch
i
n
f
o
rm
at
i
on as
s
o
m
a
ny
de
gre
e
s an
d
min
u
t
es in
a certain
d
i
rection
.
Giv
e
n
th
is info
rm
atio
n
and t
h
e GP
S co
or
di
nat
e
s, o
n
e can
fly these coordinates
with acc
uracy
once
the
starting
poi
nt is locat
ed.
The preliminary research i
n
to s
m
all Un
m
a
nned
Aeri
al Ve
hicles (UAVs) at ECSU be
ga
n as a grant
pr
o
j
ect
f
u
n
d
e
d
by
t
h
e
N
o
rt
h C
a
rol
i
n
a
Depa
rt
m
e
nt
of T
r
ans
p
ort
a
t
i
o
n
(
N
C
D
OT
)
/
Fede
ral
H
i
gh
way
A
d
m
i
n
i
str
a
tio
n (
F
HW
A)
[18]
.
The goal
o
f
this pr
o
j
ect was to ap
ply
UAV tech
n
o
lo
gy
fo
r su
r
v
ey
ing
ap
p
lication
s
related
to
h
i
gh
way p
l
an
n
i
n
g
and
con
s
tru
c
tion
.
Th
e in
itial fo
cu
s of th
e research
was to
look
in
to
UAV a
s
a t
ool
to aid NC
DOT
/
FHWA i
n
s
p
e
c
ific areas
of
t
h
eir
wo
rk
. After look
ing
in
t
o
so
m
e
o
f
th
e
pro
j
ects
th
at N
C
DO
T/FHW
A
w
e
r
e
f
o
cu
sed
on
,
it w
a
s d
ecid
e
d
th
at on
e cen
tr
al id
ea
sh
ou
ld
b
e
f
o
cused
on
f
o
r
th
e
UAV
ap
p
lication
;
in th
is case lan
d
su
rv
eying wa
s chosen as t
h
e foc
u
s
poi
nt
f
o
r t
h
e
resea
r
ch
pr
oje
c
t
.
U
A
V
-
base
d
aerial su
rv
eys o
f
fer a v
i
ab
le an
d
co
st effectiv
e altern
ativ
e fo
r m
a
p
p
i
ng
areas to
o
sm
al
l fo
r trad
itio
n
a
l man
n
e
d
air
c
r
a
f
t
. Th
e ab
ility to
g
a
th
er
and
pro
cess d
a
ta r
a
p
i
d
l
y in
a v
a
r
i
ety of
w
eather
co
nd
itio
n
s
m
a
k
e
s UAV
p
a
rticu
l
arly u
s
efu
l
for app
licatio
n
s
i
n
vo
lv
i
n
g cu
t-and
-
fill analysis an
d
vo
lumetric su
rv
ey.
Th
e
p
r
oj
ect team
s
t
arted
with
stu
d
y
ing
v
a
ri
ou
s
UAV
p
l
atform
s th
at wo
u
l
d h
a
v
e
th
e ab
ility to
surv
ey
lan
d
in
an
effi
cien
t
m
a
n
n
e
r.
Th
is m
ean
s th
at th
e u
n
it wo
u
l
d
need
to
b
e
easy to
tran
sport an
d
requ
ire
as litt
le
m
a
i
n
t
e
nance a
s
pos
si
bl
e f
o
r
day
t
o
day
us
e. The
UA
V
wo
ul
d al
s
o
ne
ed t
o
be a
b
l
e
t
o
carry
t
h
e
n
ecessary
pay
l
oad
f
o
r t
h
e t
a
sk
an
d
be
c
a
pabl
e
o
f
t
a
ki
n
g
al
l
of
i
t
s
m
e
asurem
ent
s
an
d
dat
a
reco
rdi
n
gs
w
h
i
l
e
re
qui
r
i
ng
as
few
o
p
er
at
or
s
as
po
ssi
bl
e i
n
or
der
t
o
l
o
wer
de
pl
oy
m
e
nt
c
o
st
s. T
h
e
t
e
am
l
ooke
d i
n
t
o
hi
gh
en
d
R
a
di
o
C
ont
r
o
l
l
e
d (R
C
)
fl
i
ght
ve
hi
cl
es t
h
at
coul
d be easi
l
y
adapt
e
d fo
r U
AV
pl
at
form
. In
vest
i
g
at
i
on i
n
t
o
R
C
fl
i
g
h
t
vehi
cl
es l
e
d t
o
t
h
ree
p
o
ssi
b
l
e opt
i
o
ns:
R
a
di
o C
o
nt
rol
l
e
d
Pl
anes
(Fi
x
e
d
-
w
i
n
g)
, R
a
di
o C
ont
r
o
l
l
e
d
B
l
im
ps
(Li
g
ht
er t
h
an
a
i
rcraft
s
)
, a
n
d R
a
di
o C
o
nt
rol
l
e
d
Hel
i
c
opt
e
r
s
(
R
ot
ary
-
wi
n
g
).
Ad
va
nt
ages
an
d l
i
m
i
t
a
t
i
ons o
f
eac
h
of these
UAV
platform
s are presente
d in Ta
ble 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
259 – 267
26
2
Tabl
e 1.
C
o
m
p
ari
s
o
n
bet
w
ee
n
di
f
f
ere
n
t
UA
V
pl
at
f
o
rm
s
UAV Type
Advantages
Li
m
itat
i
ons
Planes (f
ixed-wing)
Higher Speed
Greate
r
Range
Easier to
control
Too fast for still im
a
g
ery and
m
a
ny m
e
asur
em
en
t
sy
ste
m
s
unable to hover
Helicopter
s (r
otary-
wing)
Ver
ti
cal T
a
keoff and L
a
nding (
V
T
O
L
)
Capability
Hovering Capability for
m
easure
m
en
ts
Decent Pa
yload ca
pability
Difficulty
of contr
o
l
Shor
ter
r
a
nge
Blim
ps
(
lighter
than air
)
Flight tim
e
gr
eatly extended
Stationary floating ability
(offers the
sam
e
advantage as
helicopter
hover
)
A lot less co
m
pon
ents to replace and
harder to cr
ash
High cost
L
e
ss pay
l
oad by size
A care
f
ul
exa
m
i
n
at
i
on o
f
o
u
r a
p
pl
i
cat
i
o
n
an
d a
dva
nt
ag
es/
d
i
s
ad
vant
a
g
es f
o
r eac
h
u
n
i
t
di
sc
usse
d
abo
v
e l
e
d t
o
se
l
ect
i
on o
f
UA
V
hel
i
c
opt
e
r
as
a sui
t
a
bl
e
pl
at
f
o
rm
si
nce pay
l
oad
was
so
cri
t
i
cal
and t
h
e
ho
veri
ng
ab
ility was also
d
e
sired
for so
m
e
o
f
th
e aeri
a
l i
m
ag
ery th
at
was p
l
an
n
e
d
fo
r th
e
p
r
oj
ect.
On
ce th
e b
a
sic UAV
platform
was
selected, othe
r param
e
ters s
u
ch as ta
ke
of
f wei
g
ht
, R
o
t
o
r
bl
ade
leng
th
, endu
r
a
n
ce
sp
eed,
end
u
r
ance
t
i
m
e, wei
g
ht
o
f
fu
el
, wei
ght
o
f
a
v
i
o
ni
cs, e
n
gi
ne
p
o
we
r a
n
d
we
i
ght
,
ai
rf
ram
e
wei
g
ht
, a
n
d c
o
st
wer
e
tak
e
n
i
n
to
con
s
id
eration
in bu
i
l
d
i
n
g
a
fu
lly operatio
n
a
l m
i
n
i
-UAV
h
e
licop
ter
p
l
atform
.
It was decided early on that the
m
i
ni
-U
AV
pl
at
fo
rm
m
u
st
be ve
ry
ru
gge
d
– a
m
achi
n
e t
h
at
i
s
sol
i
d
,
d
e
p
e
nd
ab
le and
reliab
l
e. Th
e m
i
n
i
-U
A
V
p
l
atfo
rm
w
a
s
cu
st
o
m
b
u
ilt u
s
i
n
g a
9
0
-sized m
o
d
e
l
d
e
sign
ed fo
r
810
mm
main
ro
to
r b
l
ad
es (o
r long
er) and
po
wered
b
y
th
e Zenoah
G2
60
PUH g
a
s eng
i
n
e
with
bu
ilt-in
air bo
x
and
exha
ust
as s
h
ow
n i
n
Fi
g
u
re
1. T
h
i
s
en
gi
n
e
was us
ed
be
cause i
t
ru
ns
sm
oot
hl
y
,
po
w
e
rf
ul
l
y
, rel
i
a
bl
y
and
im
portantly di
d not produce
an
y noticeable radio
fre
quency interfere
nce
.
It uses m
echanical
m
i
xing, whe
r
e
each cyclic and the collective servos
perform a single ta
sk with pus
h
/p
ull controls. A stacked side-fram
e
st
ruct
u
r
e a
nd s
i
ngl
e st
age
gea
r
re
duct
i
o
n i
s
use
d
wi
t
h
t
h
e t
a
i
l
dri
v
e
n
by
a
cro
w
n gea
r
an
d pi
ni
o
n
wi
t
h
a t
u
b
e
dri
v
e. T
h
e l
o
nger m
a
in blades
were
use
d
t
o
increas
e the
payload lift capacit
y
of
t
h
e m
i
ni
-UA
V
pl
at
f
o
rm
.
Fi
gu
re
1.
P
o
we
r
pl
ant
used
o
n
m
i
ni
-U
AV
hel
i
copt
er
The t
eam
pref
erre
d gas e
ngi
ne eve
n
t
h
ou
g
h
i
t
i
s
heavier and
doe
s not produce as
m
u
ch powe
r pe
r
cubic
-
centim
eter as gl
ow e
n
gine. The advantage is in
t
h
e f
u
el
eco
nom
y
,
bot
h i
n
gasol
i
n
e bei
n
g co
nsi
d
erabl
y
cheape
r
t
h
a
n
g
l
ow
fuel
a
nd t
h
e f
u
el
co
ns
u
m
pti
on i
s
ab
o
u
t
hal
f
(o
r l
e
ss
) t
h
a
n
an e
q
ua
l
po
wer
gl
o
w
engi
ne.
Ano
t
h
e
r feat
u
r
e is th
e reliab
ility, as g
a
s en
g
i
n
e
s are ligh
tly stressed
and
so last a v
e
ry lo
ng
ti
m
e
, th
ey are easy
to
u
s
e –
electro
n
i
c (C
DI) sp
ark
p
l
u
g
ign
ition
,
req
u
i
res ju
st
p
u
llin
g
th
e reco
il starter, th
e carbu
ret
o
r in
cl
u
d
e
s a
di
ap
hra
g
m
pu
m
p
wi
t
h
a pri
m
i
ng b
u
l
b
m
a
ki
ng
fo
r ve
ry
ea
sy
ope
rat
i
o
n
.
A si
m
p
l
e
co
m
p
ari
s
o
n
wi
t
h
c
u
r
r
ent
hi
g
h
per
f
o
r
m
a
nce .90
gl
o
w
engi
n
e
s sho
w
e
d
t
h
e G2
60P
U
H
pr
od
uces l
e
ss p
o
w
er 2
.
4 P
S
(2
.
37
hp
) at
12,
0
00 r
p
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
A mi
ni-UAV V
T
OL Platfor
m
for
Surveyi
ng
Applications (Kuldee
p
S. R
a
wat)
26
3
vers
us
3
.
3
PS
at
1
5
,
0
0
0
rpm
,
b
u
t
a
si
m
i
l
a
r am
ount
o
f
t
o
r
q
ue
of
2
2
0
oz/
i
n
t
o
r
que
at
9,
0
0
0
r
p
m
vers
us
som
e
2
4
0
o
z
/in
at
13,00
0 rp
m
.
An as
sem
b
l
e
d ope
n t
a
i
l
gea
r
b
o
x
was
use
d
t
o
pr
ovi
de
wi
de s
u
p
p
o
rt
fo
r t
h
e
out
put
shaft
.
T
h
e
machined bla
d
e grips are s
u
pp
orted on dual
races and a thrust race, th
e
pitch slider is also ball raced a
nd the
pi
t
c
h l
i
n
ks a
r
e
ful
l
y
art
i
c
ul
at
e
d
.
As s
h
ow
n i
n
Fi
g
u
re
1,
a Zi
m
m
e
r
m
ann m
u
ffl
er
was
use
d
as a pa
rt
o
f
e
x
hau
s
t
syste
m
to reduce exhaust nois
e. T
h
e large
fuel tank
was
ass
e
m
b
led and
hel
d
in place
with a pai
r
of ca
ble
ties.
I
n
v
i
ew
of
th
e
w
e
igh
t
of
th
e
min
i
-
U
AV
(
a
bo
u
t
5
.
5
k
g
/
1
2
l
b
2
o
z
)
w
ithout b
l
ad
es
o
r
fu
el, an
A
r
izo
n
a
R
e
gul
at
o
r
w
h
i
c
h use
s
a Fr
o
m
eco Peerl
e
ss
24
0
0
m
A
h 2-
cel
l
Li
t
h
i
u
m
-
ion s
u
ppl
y
was
used
. The R
e
gul
at
o
r
supplies a
dual
output, a
fixe
d
5.0
V
for the gyro a
n
d the
second fe
ed to
the
recei
ver
can
be a
d
juste
d
from
4.
95
– 6
.
2
5
V
.
It
has an
ou
t
put
o
f
1
7
W
a
t
t
s
(28
Wat
t
wi
t
h
f
o
rce
d
ai
r fl
o
w
)
,
w
h
i
c
h
i
s
som
e
3 am
peres
co
n
tinuo
us an
d b
u
r
sts o
f
4.5
am
p
e
r
e
s. Th
is giv
e
s a 6
V
set
u
p
to
pow
er
the Fu
tab
a
S9204
and
S92
0
6
ser
v
o
s
and s
o
m
a
ke the m
o
st of thei
r
powe
r.
Once
t
h
e m
i
ni
-U
AV
hel
i
c
opt
er
was i
n
st
al
l
e
d
wi
t
h
t
h
e
rel
i
abl
e
Ze
noa
h
G2
6 e
n
gi
ne,
a
n
d
8
0
0
mm
carbon fibe
r
blades, t
h
e RF c
a
m
e
ra system
was m
ount
e
d
on t
h
e front. P
u
tting the cam
era equipm
ent on t
h
e
fr
ont
kee
p
s f
r
o
m
havi
ng t
o
ut
i
l
i
ze a t
a
ll
l
a
n
d
i
n
g gear a
nd
t
h
e i
nhe
rent
p
r
obl
em
s associ
at
ed wi
t
h
i
t
.
A fr
on
t
m
ount
ed cam
era al
so
al
l
o
w
s
a cl
ear
27
0-
de
gree
fi
el
d
o
f
vi
ew a
n
d
kee
p
s
t
h
e m
i
ni
-UA
V
hel
i
c
opt
e
r
bal
a
nced
.
The
pay
l
oad c
a
paci
t
y
enabl
e
d t
h
e m
i
ni
-UA
V
hel
i
c
o
p
ter t
o
carry a vi
de
o cam
era for t
h
e purpose
of
rem
o
te su
rv
eillan
ce/m
o
n
ito
rin
g
, a tran
sm
it
ter to
relay the v
i
d
e
o
d
a
ta,
an
ad
v
a
n
c
ed
flig
h
t
reco
rd
er with
an
tenn
a an
d built-in
GPS, and a b
a
ttery
p
a
ck
as shown in
Fig
u
re
2
.
Fi
gu
re
2.
M
i
ni
-
U
A
V
pay
l
oa
d
(fl
i
g
ht
rec
o
r
d
e
r
, wi
rel
e
ss
vi
de
o cam
era/
t
r
ans
m
i
t
t
e
r, bat
t
e
ry
pack
)
Th
e m
i
n
i
-UAV h
e
licop
ter
was bu
ilt with
fo
ll
o
w
i
n
g techn
i
cal sp
ecification
s
:
W
e
igh
t:
12
pou
nd
s 2o
z w
ithou
t
fu
el o
r
m
a
in
b
l
ad
es
Ov
erall Leng
t
h
: 5
8
in
ch
es, 90-sized
m
o
d
e
l
Po
wer
pl
a
n
t
:
Zenoa
h
G
2
6
0
P
U
H9
0
gas
o
l
i
n
e e
ngi
ne ca
pabl
e
of
2
.
3
7
h
p
@
1
2
0
0
0
rpm
,
an
d
a
t
o
r
que
o
f
22
0 o
z
-i
n
at
9
0
0
0
rp
m
Fu
tub
a
GV
-1
ro
tor
sp
eed gover
n
o
r
,
G
Y
40
1
h
ead
i
n
g ho
ld gyr
o
,
S9254
and
S92
0
2
serv
o
s
M
a
i
n
R
o
t
o
r:
C
u
st
om
m
a
de 8
1
0
m
m
carbo
n fi
ber
bl
a
d
es
D
u
al
H
ydr
im
a
x
6
V
N
i
MH b
a
tter
y
p
ack
s 2000
m
A
h
each
M
a
xi
m
u
m
pay
l
oad
o
f
a
b
out
1
5
po
u
nds
The m
i
ni
-UA
V
hel
i
c
o
p
t
e
r
was
p
r
o
g
ram
m
ed t
o
ope
rat
e
wi
t
h
a Fut
a
ba
9C
H
P
9
-
cha
n
nel
ra
di
o
co
nn
ected electron
ically u
s
ing
th
e Heli-C
h
air fligh
t
con
s
o
l
e setup
.
Th
e com
p
le
te
m
i
n
i
-UAV h
e
licop
ter
pl
at
fo
rm
(wi
t
h
out
ca
n
opy
)
de
pi
ct
i
ng i
n
t
e
r
n
al
com
pone
nt
s a
n
d
pay
l
oa
d i
s
s
h
o
w
n i
n
Fi
g
u
r
e
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
259 – 267
26
4
Fi
gu
re 3.
M
i
ni
-
U
A
V
hel
i
c
o
p
t
e
r pl
at
fo
rm
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
The m
i
ni
-UA
V
was
po
we
re
d
by
t
w
o 6
V
b
a
t
t
e
ry
packs
,
2
0
0
0
m
A
h eac
h,
t
h
at
are i
n
para
l
l
e
l
.
One
h
o
u
r
is the
m
a
xim
u
m endurance
of the electrical
syste
m
. For
th
is
m
i
n
i
-UAV helico
p
t
er c
onf
ig
ur
ed
w
ith
a head
i
ng
hol
d
gy
r
o
a
n
d
go
ve
rn
or
(
G
V-
1)
, t
h
e
el
ect
ri
cal
sy
st
em
draw
s ap
pr
o
x
i
m
at
ely
3 am
peres
du
ri
n
g
fl
i
g
ht
.
The
gr
o
u
n
d
st
at
i
on i
s
s
h
ow
n i
n
Fi
gu
re
4.
Th
e g
r
o
u
n
d
st
at
i
on c
onsi
s
t
e
d
of
a l
o
w
p
o
w
er
, l
i
ght
wei
g
ht
,
5.8 GHz frequency receive
r
with a ra
nge
of up to 1 m
ile
and a
virtual reality headset. The hea
d
set e
n
ables
first p
e
rso
n
v
i
ew (FPV)
for
rem
o
te
ly p
ilo
ted
flig
h
t
. By
wearing
v
i
rtu
a
l reality (VR) gog
gles, th
e su
rv
ey
o
r
or
t
h
e rem
o
t
e
‘pi
l
ot
’ can see w
h
at
t
h
e cam
e
ra
m
ount
ed o
n
t
h
e
m
i
ni
-UAV s
ees. Thi
s
FP
V fl
y
i
ng ex
peri
e
n
ce not
o
n
l
y
facilitates
ob
serv
ing
t
h
e
lan
d
terrai
n
,
but also
h
e
lp
s
i
n
co
n
t
ro
lling
th
e min
i
-UAV remo
tely
d
u
ring
flig
h
t
.
Figure
4. Ground station recei
ver and
hea
d
se
t
Professi
o
n
a
l RC p
ilo
ts were in
v
ited
for p
ilo
t
i
n
g
and
train
i
ng
p
e
rsonn
el to
p
ilo
t th
e UAV h
e
lico
p
t
er.
Th
e test p
ilo
ts assisted
th
e UAV team
in
g
a
th
ering
area surv
eying
d
a
ta an
d
im
ag
ery fo
r th
is p
r
oj
ect. Fi
g
u
re 5,
sh
ows th
e m
i
n
i
-UAV h
e
lico
p
t
er in fligh
t
at a
co
nstru
c
tion
site.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
A mi
ni-UAV V
T
OL Platfor
m
for
Surveyi
ng
Applications (Kuldee
p
S. R
a
wat)
26
5
Fi
gu
re
5.
M
i
ni
-
U
A
V
hel
i
c
o
p
t
e
r
du
ri
n
g
t
e
st
fl
i
ght
a
r
ou
n
d
c
o
n
s
t
r
uct
i
o
n si
t
e
Du
ri
n
g
t
e
st
fl
i
ght
s
,
t
h
e m
i
ni
-UA
V
wa
s abl
e
t
o
ho
ve
r ab
ou
t
30 m
i
nut
es t
o
com
p
l
e
t
e
fuel
exha
ust
i
o
n.
It
was ca
pabl
e
of l
i
f
t
i
n
g
15l
bs
dead l
o
a
d
, a
n
d
coul
d i
n
st
ea
d
carry
1
0
po
u
n
d
s
pay
l
oa
d,
5 p
o
u
n
d
s e
x
t
r
a
fuel
i
n
a
h
eav
ily lo
ad
ed
co
nd
itio
n, ex
ten
d
i
n
g
fligh
t
times to
b
e
yond
1
h
o
u
r
. Becau
s
e th
e
h
e
lico
p
t
er w
e
i
g
hs
1
3
l
b
s
, wh
en
carry
i
n
g 1
5
l
b
s
ext
r
a, t
h
e
f
u
el
con
s
um
pt
i
on c
oul
d d
o
ubl
e
be
cause t
h
e
po
we
r re
qui
r
e
d
wo
u
l
d d
o
u
b
l
e
. T
h
i
s
i
s
i
n
a ho
ve
r, i
f
t
h
e UA
V i
s
i
n
fo
rwa
r
d fl
i
g
ht
,
t
h
e am
ount
o
f
p
o
we
r re
q
u
i
r
ed
decrea
ses
a great
deal
d
u
e t
o
tran
slatio
nal lift.
The GAU 1000 flight rec
o
rder GP
S m
ount
ed on
the m
i
ni-UAV
helicopter rec
o
rds altitude
, air and
g
r
ou
nd
sp
eed,
p
itch
,
ro
ll, yaw, latitu
d
e
and lo
ng
itud
e
c
o
o
r
di
nat
e
s, fl
i
g
ht
t
i
m
e
s, and t
r
i
p
di
st
a
n
ces.
O
n
ce t
h
e
m
i
ni
-UA
V
hel
i
copt
er was o
p
erat
e
d
o
v
er t
h
e land area
use
d
duri
ng
flight
testin
g, th
e reco
rd
ed
data was
t
r
ans
f
er
red t
o
a l
a
b com
put
er
l
o
ade
d
wi
t
h
F
l
i
ght
Eval
uat
o
r
soft
ware
. The
Fl
i
ght
E
v
al
uat
o
r s
o
ft
ware al
l
o
we
d
for satellite i
m
ag
ery lay ov
er
sh
owing
t
h
e terrain
t
h
e
u
n
it
fl
ew ov
er and
can
also
b
e
u
s
ed
for area calcu
latio
n
s
by
usi
n
g t
h
e l
o
ngi
t
u
de a
nd l
a
t
i
t
ude co
or
di
nat
e
s. The sc
reen
shot
f
r
o
m
t
h
e Fl
i
ght
Eval
uat
o
r s
o
ft
ware i
s
sho
w
n
in
Figur
e
6
.
Fig
u
re
6
.
Flight ev
alu
a
t
o
r software d
e
p
i
ctin
g satellite i
m
ag
e lay o
v
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
259 – 267
26
6
So
m
e
o
f
th
e i
m
p
l
e
m
en
tatio
n
ch
alleng
es th
e p
r
oj
ect team
h
a
d
to
tack
le during
th
e
p
r
oj
ect were in
t
h
e
area of aerod
y
n
am
ics, p
r
op
u
l
sio
n
, fligh
t
con
t
ro
l an
d
se
n
s
in
g
,
telem
e
try,
an
d
tran
sm
it
t
e
d
d
a
ta qu
ality. All
these challe
nges we
re furt
her influe
nce
d
by
the groun
d-bas
e
d system
s needed to
ope
rate
the UAV. B
u
t after
all n
ecessary i
n
tegratio
n
an
d flig
h
t
tests were d
o
n
e
th
e m
i
ni
-
U
A
V
ev
ol
v
e
d i
n
t
o
ev
e
r
more capable pl
atform
th
at will b
e
econ
o
m
ical to
op
erate and
will fl
y safely ov
er po
pu
lated
and
i
n
h
a
b
ited
areas.
Furt
herm
ore,
t
h
e m
i
ni
-UA
V
hel
i
c
o
p
t
e
r
co
ul
d al
s
o
be
u
s
ed t
o
t
a
ke
h
i
gh
-res
o
l
u
t
i
o
n
pi
ct
u
r
es
o
f
h
i
gh
ways to
i
n
v
e
n
t
o
r
y t
h
eir
featu
r
es and
con
d
ition
s
at
a
v
e
ry low co
st and
in sh
ort tim
e.
Th
ese
p
i
ctu
r
es cou
l
d
be sent to im
prove the ge
ographic
inform
ation system
s
(GIS) data
bases
with photos
of ongoing and recent
hi
g
h
way
c
o
nst
r
uct
i
o
n
,
st
r
u
ct
ur
es, a
n
d
m
a
i
n
t
e
nance
i
ssue
s
.
The fi
nal
m
i
ni
-UA
V
hel
i
c
o
p
t
e
r pl
at
fo
rm
t
e
st
s
dem
onst
r
at
e
d
:
Flig
h
t
Duration
:
30
m
i
n
u
t
es (fu
e
l lim
i
t
atio
n
)
, 1-h
o
u
r
(b
attery life)
C
a
pabl
e
of
fi
r
s
t
pers
o
n
m
oni
t
o
ri
ng/
rec
o
rdi
n
g a
n
d
G
PS
dat
a
rec
o
r
d
i
n
g
Flig
h
t
Team
: Two m
e
m
b
ers; t
h
e
p
ilo
t and seco
nd
p
e
rson
t
o
m
o
n
ito
r fligh
t
i
n
fo
rm
atio
n
4.
CO
NCL
USI
O
N
The i
m
pl
em
ent
a
t
i
on of a m
i
ni
-U
nm
anned
Aeri
al
Vehi
c
l
e (UA
V
)
ver
t
i
cal
t
a
keof
f a
nd l
a
n
d
i
n
g
(VTOL) p
l
atfo
rm
fo
r surv
eyin
g
activ
ities related
to
h
i
g
h
way p
l
an
n
i
n
g
and
con
s
tru
c
tio
n
is seen as
a
worthwh
ile end
eavor wh
en
we con
s
id
er th
e so
ph
isti
cat
ed senso
r
s, com
put
i
n
g ha
rd
wa
re and s
o
ft
war
e
, an
d
com
m
unication tech
nol
ogy
a
v
ailable to
day
.
In t
h
is pa
pe
r
,
devel
opm
ent o
f
m
i
ni UAV
he
licopter
platfo
r
m
that
can be use
d
f
o
r s
u
r
v
ey
i
ng
areas fo
r hi
gh
way
const
r
uct
i
on
or ot
her t
r
ans
p
o
r
t
a
t
i
on r
e
l
a
t
e
d pr
oject
s
was
discussed. The
mini-UAVs offer a
sol
u
tion t
o
surveying
problem
because
th
ey can ope
r
ate safely at altitudes
below full-size air traffic and thei
r
size, spee
d, and we
ight poses a m
u
ch
s
m
al
ler th
reat to
th
e p
u
b
lic.
Trad
ition
a
l m
e
th
od
o
f
land
surv
eying
for
h
i
gh
way con
s
tru
c
tio
n
are tim
e co
n
s
u
m
in
g
,
req
u
i
res cu
ttin
g
of t
r
ees
for clear lin
e of sigh
t, and
h
a
s qu
estio
n
a
b
l
e accu
racy. In
add
itio
n
,
p
e
rformin
g
surv
eys i
n
h
o
s
tile an
d
/
o
r
h
a
rd
ly
accessible area
s can inc
r
ease
hum
an risks
.
A low cost
m
i
ni-UAV with
on-boa
rd
im
age and
vide
o ca
pturing
cap
ab
ility an
d
a flig
h
t
recorder GPS can
greatly
i
m
p
r
o
v
e
th
e su
rv
eying
p
r
o
c
ed
ure fo
r
h
i
gh
way con
s
t
r
u
c
tion
.
The
pr
o
j
ect
i
n
v
o
l
v
e
d
st
u
d
y
i
n
g
vari
ou
s U
A
V
pl
at
fo
rm
s and
cust
om
bui
l
d
i
n
g a l
o
w c
o
st
m
i
ni
-
U
A
V
wi
t
h
a
n
o
n
-
b
o
a
rd
fligh
t
data reco
rd
er an
d
v
i
d
e
o
cap
t
u
r
i
n
g
ca
p
a
b
ilit
y. Th
e m
i
n
i
-UAV can
b
e
ap
p
lied
fo
r
n
o
t o
n
l
y
sur
v
ey
i
n
g ap
pl
i
cat
i
ons req
u
i
r
ed fo
r hi
gh
way
const
r
uct
i
o
n b
u
t
al
so fo
r ot
he
r t
r
ans
p
o
r
t
a
t
i
o
n ap
pl
i
cat
i
ons
whe
r
e
manned airc
rafts are e
xpe
nsi
v
e and infeasibl
e
to
ope
rate.
ACKNOWLE
DGE
M
ENTS
W
e
wo
u
l
d
lik
e to
ack
no
w
l
ed
ge FHW
A
/N
C
D
O
T
fo
r
fu
nd
ing su
pp
or
t an
d
ou
r
und
erg
r
adu
a
te r
e
sear
ch
in
tern
s,
George Rid
d
i
ck
an
d
Rayn
ard
Wrigh
t,
who
assisted
in im
p
l
e
m
en
t
a
tio
n
o
f
th
is
p
r
o
j
ect.
REFERE
NC
ES
[1]
DoD. Unmanned S
y
stems Integr
ated
Roadmap -
FY 2009-2034,
April 2008.
[2]
Vargas-Clara A,
Redkar S. D
y
na
mics and Contro
l of a Stop Ro
tor
Unmanned Aerial Vehicle,
In
ter
national Journal
of Electrical and
Comput
er
Eng
i
neer
ing (
I
JEC
E
)
,
2013; 2(5): 597
-608.
[3]
Yanhui G, Qiangui X, Shous
ong H, Xiao J.
Flight Control
S
y
stem
Simulation Platform for UAV Based o
n
Integra
ting Sim
u
link W
ith State
f
low,
TELKOMNIKA Indonesia
n
Journal
of Electrical
Engineering
, 2012; 10(5)
:
985-999.
[4]
Frederick-Recascino C.
New Uses for UAVs,
Strata – Report on
Research
,
Em
bry-Ridd
le Aeron
a
utic
al Universi
t
y
,
2006.
[5]
Watts AC,
Amb
r
osia VG,
Hinkley
EA.
Unmanned Aircraft S
y
s
t
ems in Remote
Sensing and Scientific Resear
ch
:
Classification
an
d Considerations
of Use,
Remote Sensing,
2012
; 4
:
1671-1692.
[6]
Cox TH, Nag
y
CJ, Skoog MA,
Somers MA
. Civil UAV Cap
a
bility
Assessment,
NASA Report
, D
ec 2004
.
[7]
Wise J.
Civilian
UAVs:
No Pilot, No Problem,
Po
pular Mechan
ics
,
Oct 2009.
[8]
Rango A et al. Using Un
manned Vehicl
es for Rangelands: Current Applicat
ions and Fu
ture Potentials,”
Environmenta
l P
r
actic
e
, 2006; 8
:
159-169.
[9]
Wy
llie D
.
Police UAVs – N
early
Limitless
Potential,
Pol
i
c
e
One
, May
2012.
[10]
McKa
y
J. Sa
cr
am
ento Polic
e Unm
a
nned Ae
rial Vehi
cle Prog
ram
Gaining Altitud
e
,
Government Technolog
y
Magazine
, Sep
t
2007.
[11]
P
u
ri A. et al.
St
atistica
l
Profil
e
Generation for Traffic Mon
itori
ng Using Real-t
ime UAV based Video Data,
in
Proceedings of
Mediterr
ane
a
n C
onferenc
e
on
Co
ntrol
& Autom
a
t
i
on, Ath
e
ns, Gr
e
ece
, 2007
.
[12]
Carroll EA, Rath
bone DB.
Using
an Unmanned Ai
rborne Data Acq
u
isition
S
y
stem (
A
DAS)
for Traffic Surveilla
n
c
e,
Monitoring, an
d Management,
ASME 2002
International Mechan
ical
Engin
eering Congr
ess and Expositio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
A mi
ni-UAV V
T
OL Platfor
m
for
Surveyi
ng
Applications (Kuldee
p
S. R
a
wat)
26
7
Transportation:
Making Tr
acks f
o
r Tomorrow’s Transporta
tion,
New Orleans, Louisi
ana, USA,
November 17–22,
2002.
[13]
Brecher A, Nor
onha V, Herold
M.
UAV2003- A Roadmap for Deploying Unm
anned Aerial Vehicles (
U
AVs)
i
n
Transpo
rtation,
US DOT/RSPA:
Volpe Center and NCRST Infr
as
tructur
e
, Specialist Workshop, Santa Barbara,
CA.
[14]
Farradine PB.
Use of Un
manned Aeri
al Vehi
c
l
es
in Traffi
c S
u
rveill
anc
e
and Traffi
c M
a
nage
m
e
nt,”
T
echni
ca
l
Memorandum
, Florida Depar
t
ment of
Transportation, May
2005.
[15]
Curr
y
R
.
Georg
i
a Tech Stud
ies
UAS for Monitoring Highway
Tr
affic
,
Appl
ica
tio
ns & T
e
sting
&
Experi
ence
, Non
-
Militar
y
&
Com
m
e
rcial
UAS,
UAS Vision
, June
2013.
[16]
Coifm
a
n B, Mc
Cord M, Mishal
ani M, R
e
dm
ill
K.
Surface Transportation Surveill
ance from Un
manned Aeria
l
Vehi
cles
,
in
Proceedings of
th
e 8
3
rd
Annual Meeting of
the Transportation
Resear
ch Board
,
2004
.
[17]
McCormack ED. Explor
ing Tr
an
sportation A
pplications of Smal
l Unmanned Aircraft,
ITE Journa
l,
2009; 79(12):
32-37.
[18]
Rawat KS,
Riddick
GB,
Lawr
en
ce
EE.
Developing mini-UAV
Platform for
Rea
l
-
T
ime Resource
Monitoring and
Data Gathering,
Presentation at
2009 Associatio
n of Technolog
y,
Manag
e
ment,
& Applied
Engineering (ATMA
E
)
Annual Confer
ence, Nov 10
-14, Louisville, KY.
BIOGRAP
HI
ES OF
AUTH
ORS
Kuldeep S.
Ra
wat is th
e Ch
ai
r of th
e Depa
rt
m
e
nt of Techno
log
y
and Director of Aviation
S
c
ienc
e P
r
ogra
m
at Eli
zab
eth
Cit
y
S
t
at
e Univ
ers
i
t
y
(ECS
U).
He holds
a P
h
D in Com
puter
Engineering fro
m the Center for Advanced Comput
er S
t
udies
at the Univers
i
t
y
of Louis
i
ana
–
Lafa
ye
tt
e. He is
als
o
the Dire
ctor
of Unm
a
nned Vehic
l
e S
y
s
t
em
s
Lab at
ECS
U
and co-dire
c
ts
the
Nationa
l Sum
m
e
r Transport
a
ti
on
Institute
a
t
ECSU.
Ellis
E.
Lawren
ce is Professor of
Techno
log
y
in
t
h
e Depar
t
m
e
nt o
f
Technolog
y
at
Elizabeth Ci
t
y
State Univ
ersity. He holds an
EdD in Voca
tional and
Techn
i
cal E
ducation w/cognate
in
Industrial Eng
i
n
eering from
Vir
g
inia Pol
y
t
echni
c In
stitut
e
. He
also serves as t
h
e Director of
National Sum
m
er Tr
ansportat
i
o
n
Institut
e
at E
C
SU, funded t
h
rough the Fed
e
ral
Highw
ay
Administration (FHWA).
Evaluation Warning : The document was created with Spire.PDF for Python.