Intern
ati
o
n
a
l Jo
urn
a
l
o
f
R
o
botics
a
nd Au
tom
a
tion
(I
JR
A)
V
o
l.
2, N
o
. 1
,
Mar
c
h
20
13
,
pp
. 35
~44
I
S
SN
: 208
9-4
8
5
6
35
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJRA
Design of Micro Robot fo
r Minimally Invasive Surgery
Deiv
a G
a
ne
sh
A
Departem
ent
of
M
echani
cal
Eng
i
neering
,
Ve
lam
m
a
l Engin
eer
ing
Coll
ege,
Chenn
a
i,
Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Aug 13, 2012
Rev
i
sed
No
v 1, 201
2
Accepted Nov 27, 2012
Micro robots for medical applications
need to be compatible
with human
bod
y, rem
o
tel
y
c
ontrollab
l
e
,
sm
ooth in m
ovem
e
nt, less painful to t
h
e pati
ents
and capab
le of performing the designated f
unctio
ns. In this paper, state of the
art in th
e design
, fabrication and
control of micr
o robots are presented. Firs
t
the b
e
nefits of
micro robots in
medical
applications are
listed o
u
t. Second,
the predominantly
used micro ro
bot desi
gns are discussed. Third
,
the var
i
ous
fabrication pro
c
ess used in micro robot
constru
c
tion are presen
ted. Fourth
,
the differ
e
nt ap
proaches used f
o
r its
operation
and control in
micro robot
techno
log
y
ar
e
narrated. Next
base
d on
the r
e
view we hav
e
designed
a
swimming micro robot driv
en
b
y
exte
rnal magnetic fields fo
r minimally
invasive surger
y. The advan
t
ag
e of EM
A is that
it c
a
n gen
e
ra
te
a wire
less
driving force. Then, th
e lo
comotive
mech
anis
m of the micro
robot using
EMA is presented. Using the EMA sy
st
em setu
p various
experiments have
been conducted
.
Finally
,
the per
f
orma
nce of the swimming
micro robot is
evalu
a
ted
.
Keyword:
Biom
edical Robotics
EMA
Robo
t
MEMS
Micr
o
r
obo
t
MI
S
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Deiva Ganesh A
,
Departem
ent
of
M
echani
cal
Eng
i
neering
,
Velammal Engin
eering
Coll
ege,
Chennai – 6000
66,
Tamil Nadu, In
dia, Email-
Id
:
amdganesh@
y
ah
oo.co.in
1.
INTRODUCTION
Lot
o
f
re
searc
h
w
o
rk
o
n
m
i
cro
ro
b
o
t
s
f
o
r
m
e
di
cal
appl
i
cat
i
on
has bee
n
co
nt
i
n
ui
n
g
t
o
wa
r
d
s t
h
e
o
ngo
ing
effo
r
t
s to
d
e
cr
ease
da
m
a
g
e
to
hu
man
bod
y du
r
i
ng
an op
er
ati
o
n an
d to
r
e
du
ce
o
p
e
r
a
tion
tim
e.
Sin
c
e
t
h
e 1
9
8
0
’
s,
m
e
di
ci
ne
has see
n
a
dram
at
i
c
shi
f
t
t
o
war
d
s t
h
e use
o
f
m
i
nim
a
l
l
y
i
nvasi
ve
p
r
oce
d
ures
beca
use
of
t
h
e
m
a
ny
adva
nt
ages t
h
i
s
t
e
c
h
n
o
l
o
gy
p
r
ese
n
t
s
[1
0,
12]
.
A
m
ongst
vari
o
u
s
appl
i
cat
i
o
n
s
,
m
i
cro ro
bot
s t
h
at
can
m
ove along
blood ve
ssels a
nd t
r
eat sp
ecific parts of
body ha
ve recei
ve
d m
u
ch attention. T
h
e ult
i
m
a
te
objective
of the resea
r
ch is to desi
gn a robot
that
can reac
h
the de
stination
accurately and
quic
k
ly [29].
M
i
nim
a
l
l
y
i
nvasi
ve p
r
oce
d
ur
es are l
i
nke
d
wi
t
h
a va
ri
et
y
of
pat
i
e
nt
-
o
ri
e
n
t
e
d
bene
fi
t
s
r
a
ngi
ng
fr
om
red
u
ct
i
o
n of r
ecove
ry
t
i
m
e
,
m
e
di
cal
co
m
p
li
cat
i
ons, i
n
fect
i
on ri
s
k
s, an
d
post
-
o
p
er
ative p
a
in
to
in
creased
q
u
a
lity of care, in
clud
ing
p
r
even
tativ
e care [4
,
8
]
.
Brad
ley and
Nelso
n
[1
] d
e
scri
b
e
th
at th
e
o
p
e
ratio
n
s
p
e
rfo
r
med
b
y
micro
robo
ts will p
o
t
en
tially en
tail
several
di
f
f
ere
n
t
st
eps:
a)
p
r
o
cessi
ng
o
f
pre
v
i
o
usl
y
acq
ui
r
e
d m
e
di
cal
dat
a
(
p
ri
m
a
ri
l
y
im
ages),
si
m
u
l
a
t
i
on
a
n
d
pl
an
ni
n
g
of i
n
t
e
rve
n
t
i
ons;
b
)
desi
g
n
o
f
t
h
e
o
p
t
i
m
a
l
confi
g
u
r
at
i
o
n
of t
h
e m
i
cro r
o
bot
cust
om
i
zed f
o
r t
h
e
speci
fi
c pat
i
e
nt
anat
om
y and f
o
r t
h
e pl
a
nne
d
t
h
era
p
y
at
t
h
e target
si
t
e
;
c) del
i
v
ery
of de
vi
ces wi
t
h
i
n
t
h
e bo
dy
to
th
e d
e
sired
site; d
)
extrem
e
l
y p
r
ecise ex
ecu
tion
o
f
t
h
e i
n
t
e
r
v
e
n
t
i
on;
e)
di
sasse
m
b
ly
, reco
ver
y
or
b
i
od
egrad
a
tio
n o
f
the d
e
v
i
ces
[42
-
47
]. In
th
is p
a
p
e
r,
t
h
e literatu
res
related
to
d
e
si
gn
, fabricatio
n
and
act
uatio
n
have
bee
n
di
sc
usse
d a
n
d
a
ne
w m
i
cro r
o
b
o
t
desi
g
n
i
s
p
r
ese
n
t
e
d.
Gen
e
rally, small
m
o
to
rs an
d sm
art
m
a
terials are
u
s
ed as
actuators
for the m
i
cro robot. Howe
ve
r,
t
h
ey
i
n
crease
t
h
e si
ze
of t
h
e
m
i
cro r
o
b
o
t
pr
o
h
i
b
i
t
i
ng i
t
fr
om
bei
ng
us
ed f
o
r m
i
nim
a
l
l
y
i
nvasi
ve s
u
rgi
cal
ap
p
lication
s
. To
so
lv
e th
is
p
r
o
b
l
em
, electr
o
mag
n
e
tic b
a
sed
actu
a
tion
(
E
MA
)
system
s
f
o
r
m
i
cr
o
r
obot w
e
re
use
d
[
3
0-
4
0
]
.
The
pa
per i
s
o
r
ga
ni
zed
as
fol
l
ows.
Sect
i
o
n
one
gi
ves a
n
i
n
t
r
od
uct
i
o
n t
o
t
h
e us
e o
f
m
i
cro
r
o
b
o
t
s
fo
r
m
i
nim
a
ll
y
i
nvasi
ve s
u
r
g
ery
.
In s
ect
i
on t
w
o
,
vari
ou
s m
i
cro ro
b
o
t
desi
gn
s
are di
sc
usse
d.
In t
h
e t
h
i
r
d se
ct
i
o
n
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJR
A
V
o
l
.
2,
No
. 1,
M
a
rc
h 20
1
3
:
3
5
– 44
36
m
i
cro ro
b
o
t
fa
bri
cat
i
o
n t
ech
n
i
ques a
r
e p
r
es
ent
e
d.
Sect
i
o
n
fo
ur
gi
ve
s t
h
e
cont
rol
of t
h
e
m
i
cro ro
b
o
t
.
In t
h
e
fi
ft
h sect
i
o
n a
new
desi
g
n
of
a swi
m
m
i
ng m
i
cro r
o
bot
usi
n
g EM
A c
o
i
l
sy
st
em
i
s
present
e
d. T
h
e si
xt
h s
ect
i
on
gi
ves
t
h
e a
n
al
y
s
i
s
of
t
h
e
m
ovem
e
nt
. The
fi
nal
sect
i
o
n
det
a
i
l
s
t
h
e e
xpe
ri
m
e
nt
s an
d re
sul
t
s
.
1.
1
Micro Robot Designs
M
i
cro-
ro
b
o
t
s
f
o
r m
e
di
cal
use
can
be cat
eg
o
r
i
zed i
n
t
o
t
w
o
m
a
i
n
gr
ou
ps
, t
hos
e t
h
at
are
d
e
si
gne
d
f
o
r
swi
m
m
i
ng and
t
hose t
h
at
cra
w
l
,
gri
ppi
ng t
h
e i
nner pi
pe w
a
l
l
s
. The fi
rst
g
r
o
u
p
m
i
ght
sui
t
m
e
di
cal
appl
i
c
at
i
ons
wh
ere alm
o
st
n
o
flow is applied
o
n
th
e
robo
t, wh
ile cr
awl
i
ng m
i
cro-robots can be ap
p
licab
le to
flow
wh
ere
m
a
ssi
ve bl
o
o
d
s
t
ream
fl
ow p
r
e
s
ent
i
n
t
h
e
h
u
m
a
n
bl
o
o
d
ve
sse
l
s
[2
,
14]
.
Brad
ley and
Nelson
[1
, 16
]
sp
elt
o
u
t
on
th
e ch
alleng
ing
d
e
si
g
n
issu
es p
r
esen
t th
emselv
es wh
en
envi
si
oni
ng a
m
e
di
cal
m
i
cro
ro
b
o
t
f
o
r
i
n
-
v
i
v
o a
ppl
i
cat
i
ons.
Devi
ces m
u
st
be sm
al
l
,
rel
i
a
bl
e an
d
bioc
om
patible, m
u
st carry the necess
a
ry
tools a
n
d s
ubsys
te
m
s
on-board an
d m
u
st be
inserte
d
i
n
to, steere
d
in
sid
e
and
remo
v
e
d
fro
m
th
e targ
et
area o
f
th
e p
a
tien
t
’s
bod
y
in
a
“m
in
i
m
ally-in
v
a
siv
e
” way. It
is d
i
ffi
cu
lt
to
resol
v
e all thes
e issues
at onc
e
, also beca
use
m
u
ch de
pen
d
s
o
n
t
h
e
pa
rt
i
c
ul
ar a
ppl
i
cat
i
o
n
.
A schem
a
t
i
c
di
agram
of t
h
e m
e
di
cal
m
i
cro
ro
bot
i
s
sh
o
w
n i
n
Fi
g
u
r
e 1.
Zho
u
l
an
d Q
u
anl
[2]
,
[2
6]
desi
g
n
e
d
a m
e
di
cal
m
i
cro r
o
bot
c
o
nsi
s
t
s
o
f
a ri
g
h
t
s
p
i
r
al
l
y
gr
oo
ve
d m
i
cro m
o
t
o
r
,
a l
e
ft
spi
r
al
l
y
g
r
o
ove
d
cy
l
i
nder a
n
d a
fl
exi
b
l
e
c
o
upl
i
n
g
as s
h
ow
n i
n
Fi
g
u
re
1
.
The
new
r
o
bo
t
sho
w
n i
n
Fi
gu
re
2 c
o
n
s
i
s
t
s
o
f
a ce
nt
ral
t
o
rs
o f
r
o
m
wh
i
c
h t
i
n
y
arm
s
st
ret
c
h
out
,
allo
wing
th
e ro
bo
t to stro
ng
l
y
g
r
ip th
e
v
e
ssel walls [5
,
9
]
. Th
e
op
erat
o
r
can
m
a
n
i
p
u
l
ate th
e rob
o
t
t
o
mo
v
e
in
increm
ents, and its
uni
que
structure allows i
t
to cra
w
l
w
ith
in
a
v
a
riety o
f
vessels with d
i
ffering
d
i
am
e
t
ers.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
di
agram
of
m
e
di
cal
m
i
cro
r
o
b
o
t
by
Z
h
oul
a
n
d
Qua
n
l
[2
,
26]
Fi
gu
re
2.
A
n
a
u
t
o
nom
ous
cra
w
l
i
n
g
M
i
cro
-
r
o
b
o
t
On
e
of th
e applicatio
n
s
of a fl
ag
ellar swimmer is in
terv
en
tio
n
s
in
the v
e
n
t
ricu
lar system
in
th
e
b
r
ai
n
.
Ko
sa and
Jak
a
b
[3
] p
r
esen
ted a swi
mmin
g
micro
robo
t. Fi
g
u
re 3
illu
st
rate
s th
e in
tro
d
u
c
tio
n
of th
e swi
mmin
g
robo
t in
to th
e
ven
t
ricu
lar sp
ace.
Fi
gu
re 3.
Il
l
u
st
rat
i
o
n
o
f
t
h
e
S
w
i
m
m
i
ng m
i
cr
o
ro
b
o
t
by
K
o
s
a
an
d Ja
ka
b [
3
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA
I
S
SN
:
208
9-4
8
5
6
Desi
g
n
of
Mi
cr
o R
o
bot
f
o
r Mi
ni
m
a
l
l
y
Invasiv
e
Sur
g
ery (Dei
va
Ganes
h
A)
37
The cri
t
i
cal
co
m
ponent
s i
n
t
h
e r
o
b
o
t
are t
h
e f
o
l
l
o
wi
n
g
:
t
h
ree fl
a
g
el
l
a
r
swi
m
m
i
ng t
a
i
l
s, p
o
we
r s
o
u
r
c
e
and
cust
om
desi
g
n
e
d
IC
1.
2
M
i
cro
Ro
bo
t
fa
bricat
ion
One e
n
abli
ng t
echnology for
medi
cal
micro robots is Micro-Elect
ro-Mec
hanical-System
s
(MEMS).
Usu
a
lly, it is a co
m
b
in
atio
n
o
f
th
eir low cost, low
p
o
wer
co
nsu
m
p
tio
n
an
d sm
all size t
h
at m
a
k
e
s a M
E
MS
base
d
desi
g
n
t
h
e
bet
t
e
r c
hoi
c
e
com
p
ared
t
o
con
v
e
n
t
i
onal
t
echn
o
l
o
gy
[1
3]
.
Beh
k
a
m
an
d
Sitti [7
] presen
ted
t
h
e m
i
cro
fabricatio
n
p
r
o
cesses, su
ch
as m
i
cro
m
a
c
h
i
n
i
ng
, th
at
typ
i
cally
u
s
e li
th
og
raph
y, alth
o
ugh
o
t
h
e
r non
-litho
g
raph
ic p
r
ecision
m
i
cr
o
fabricatio
n
t
ech
n
i
q
u
e
s ex
ist (FIB,
EDM
,
l
a
se
r m
achi
n
i
n
g
)
.
Ko
vacs
[2
4]
an
d
M
a
do
u
[2
5,
27]
pr
o
v
i
d
e a
com
p
rehe
nsi
v
e
di
scu
ssi
o
n
of
m
i
cro
machining
processes a
n
d ME
MS de
vices.
An
ot
he
r
desi
g
n
c
h
al
l
e
n
g
e f
o
r a s
u
b-m
m
sized m
i
cro r
o
b
o
t
i
s
t
h
e
hi
gh
deg
r
ee
of
i
n
t
e
grat
i
o
n
[1
-
6
]
.
Yesi
n a
n
d Nel
s
on
[
26]
have
prese
n
t
e
d t
h
e e
m
ergi
n
g
t
ech
n
o
l
o
gy
o
f
Hy
bri
d
M
E
M
S
,
wh
e
r
e i
n
di
vi
d
u
al
M
E
M
S
com
pone
nt
s ar
e com
b
i
n
ed t
h
r
o
u
g
h
a
r
o
b
o
t
i
c
m
i
cro assem
b
l
y
pr
ocess
,
pr
o
m
i
s
es a sol
u
t
i
o
n.
1.
3
Co
ntr
o
l of Mi
cro Ro
bo
t
The i
m
port
a
nt
and c
h
al
l
e
n
g
i
n
g pa
rt
of t
h
i
s
t
echn
o
l
o
gy
i
s
cont
rol
o
f
t
h
e m
i
cro ro
bot
s
.
M
a
gnet
i
c
a
n
d
Piezo-electric actuations
are
wi
del
y
u
s
ed
f
o
r real
i
z
i
n
g m
i
cro
r
o
b
o
t
m
o
t
i
on a
n
d
are
di
sc
u
ssed
bel
o
w
[
4
1
]
.
M
a
gnet
i
c
act
u
a
t
i
on t
echn
o
l
o
gy
has bee
n
ap
pl
i
e
d i
n
bi
ol
og
i
cal
sy
st
em
s for
m
a
ny
y
ears
whe
n
wi
r
e
l
e
ss
actuation is ne
eded.
Fi
gu
re
4.
S
upe
ri
m
posed m
a
gnet
i
c
fi
el
d
ge
n
e
rat
e
d
by
M
a
x
w
el
l
an
d
Hel
m
hol
t
z
c
o
i
l
s
.
A sim
i
lar con
f
ig
uratio
n called
th
e Maxwell co
il can g
e
n
e
rate a uniform
gra
d
ie
nt nea
r
the cent
r
e. Fi
gure
4
sho
w
s s
u
peri
m
posed m
a
gnet
i
c
fi
el
d generat
e
d by
co
n
c
en
tric Hel
m
h
o
ltz an
d
Max
w
ell co
ils. Th
i
s
con
f
i
g
urat
i
o
n
enabl
e
s i
n
de
pe
nde
nt
co
nt
r
o
l
of m
a
gnet
i
c
fo
rce (t
h
r
ust
)
an
d t
o
r
q
u
e
(o
ri
e
n
t
a
t
i
o
n
)
o
n
t
h
e
m
i
cr
o
robot [50-58]. Both of th
ese
coil types are comm
only used in MR
I syste
m
s. Recent efforts are towards
ap
p
l
ying
th
is prin
cip
l
e i
n
a larg
er scale in
com
b
in
atio
n
with on
-bo
a
rd
m
a
g
n
e
tic actu
a
tors
[48
,
49
].
2.
R
E
SEARC
H M
ETHOD
Gene
rally, bec
a
use a
m
i
cro robot has an ac
tuator,
and control electronic
circuits, the volum
e
of the
micro robot is
increase
d
. A large
m
i
cr
o
ro
bot is d
i
fficu
lt to app
l
y to
a
h
u
man
bod
y in
med
i
cal ap
p
licatio
n
s
.
Ho
we
ver
,
t
h
e
m
i
cro r
o
bot
us
i
ng t
h
e EM
A
sy
st
em
can be
m
i
ni
at
uri
zed
by
a sm
al
l
si
ze pe
rm
anent
m
a
gnet
,
wh
ich
is l
o
cated
in th
e m
i
cro
robo
t’s
bo
d
y
.
Gu
o s
u
g
g
est
e
d
a sim
p
l
e
swim
m
i
ng
m
i
cro ro
b
o
t
[1
4-
2
0
]
whi
c
h has a
m
a
gnet
i
c
fi
n a
t
t
ached t
h
e
mag
n
e
t
d
i
r
ectly. Th
e m
i
cr
o
ro
bo
t m
o
v
e
s alo
ng a
p
i
p
e
,
w
h
ich
is sur
r
o
unded
b
y
a co
il.
Ho
w
e
v
e
r
,
it can
m
o
v
e
onl
y
i
n
si
de t
h
e
coi
l
e
d
pi
pe
an
d
can
not
be a
p
pl
i
e
d t
o
t
h
e
h
u
m
a
n
bo
dy
.
M
a
sahi
r
o
s
u
g
g
e
st
ed a t
u
r
n
i
n
g
fi
sh
t
y
pe m
i
cr
o r
o
bot
[
2
1
-
2
5
]
usi
n
g a m
a
gnet
.
An
ext
e
r
n
al
m
a
gnet
i
c
field
is g
e
n
e
rat
e
d
b
y
th
e co
il. A
m
a
g
n
e
t in
t
h
e fish
typ
e
rob
o
t
is wire con
n
ected
with
th
e fin
.
Bu
t th
i
s
typ
e
can
no
t
b
e
m
a
d
e
sm
al
l d
u
e
t
o
t
h
e
wire con
n
e
ctio
n
an
d it is d
i
fficu
lt to co
n
t
ro
l precisely [28
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJR
A
V
o
l
.
2,
No
. 1,
M
a
rc
h 20
1
3
:
3
5
– 44
38
In t
h
i
s
pape
r a new
desi
g
n
o
f
swi
m
m
i
ng
m
i
cro r
o
bot
i
s
p
r
o
pos
ed
. It
has a
sim
p
l
e
st
ruct
ur
e and i
t
ca
n
be co
nt
r
o
l
l
e
d b
y
EM
A sy
st
em
wi
t
h
t
w
o
pai
r
s of
Hel
m
hol
t
z
coi
l
s
. The s
w
i
m
m
i
ng
m
o
t
i
on of t
h
e m
i
cro r
o
b
o
t
can
b
e
ch
ang
e
d
b
y
con
t
ro
lling
th
e swing
ang
l
e of t
h
e fi
n
an
d th
e
frequ
ency o
f
th
e swing m
o
tio
n
.
2.
1 E
M
A
C
o
i
l
Sys
t
em
Gen
e
rally, a p
a
ir o
f
Helm
h
o
ltz co
ils is u
s
ed
to
g
e
n
e
rate
a u
n
i
fo
rm
m
a
g
n
e
tic field
in
th
e reg
i
on
of
in
terest (ROI). Wh
en
a p
e
rm
an
en
t m
a
g
n
e
t is lo
cated
in
th
e u
n
i
fo
rm
m
a
g
n
e
tic field
g
e
n
e
rated
b
y
a Helm
h
o
ltz
co
il, it ro
tates
to
alig
n
in
th
e d
i
rectio
n
of th
e g
e
n
e
rated
un
ifo
r
m
mag
n
e
tic field
an
d
the fo
llo
wi
ng
to
rq
u
e
is
gene
rat
e
d
[
43]
.
τ
= VM
x B
Whe
r
e
V and
M are the
vol
ume and the m
a
gnetization of
t
h
e pe
rm
anent
m
a
gnet
an
d B
den
o
t
e
s t
h
e m
a
gnet
i
c
fl
u
x
of t
h
e e
x
t
e
rnal
m
a
gnet
i
c
f
i
el
d.
Fi
gu
re
5.
EM
A
Sy
st
em
2.
2
New
Desi
g
n
o
f
Mi
cro
R
o
bot
As s
h
ow
n
i
n
F
i
gu
re
6 a
si
m
p
l
e
swi
m
m
i
ng
m
i
cro r
o
bot
wi
t
h
a
si
m
p
l
e
pr
op
ul
si
o
n
m
echani
s
m
i
n
t
h
e
form
o
f
a swing
fin
attach
ed
at th
e ro
tatin
g mag
n
e
tic elem
en
t.
Fi
gu
re
6.
Desi
gn
o
f
M
i
cr
o R
o
b
o
t
Fi
gu
re
7
Is
om
et
ri
c vi
ew
o
f
m
odel
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA
I
S
SN
:
208
9-4
8
5
6
Desi
g
n
of
Mi
cr
o R
o
bot
f
o
r Mi
ni
m
a
l
l
y
Invasiv
e
Sur
g
ery (Dei
va
Ganes
h
A)
39
As s
h
ow
n i
n
Fi
gu
re
6 t
h
e
m
i
cro r
o
bot
c
onsi
s
t
s
o
f
a
n
acry
l
i
c
bo
dy
,
r
o
t
a
t
i
n
g
axi
s
,
a
cy
l
i
nder
t
y
p
e
mag
n
e
t an
d a
silico
n
e
fin
.
Th
e cylind
r
ical
mag
n
e
t (d
iam
e
ter 1 mm
, h
e
ig
h
t
2
mm
) with
a
h
i
gh
m
a
g
n
e
t
i
c fl
ux
d
e
nsity is u
s
ed. To conv
ert the p
a
rtial ro
tatio
n
of th
e
m
a
gn
et
t
o
t
h
e
pr
op
u
l
si
on
of t
h
e s
w
im
m
i
ng m
i
cro ro
b
o
t
,
a silico
n
e
fin
i
s
attach
ed at th
e
ro
ck
ing
p
a
rt in
stalled
on
t
h
e
p
e
rm
an
en
t
mag
n
e
t. Fi
rstly, th
e
fin of th
e micro
robo
t is alig
n
e
d
to
th
e swimmin
g
d
i
rection. Th
e m
a
g
n
e
ti
c axi
s
i
s
perpe
ndi
c
u
l
a
r t
o
t
h
e
swim
m
i
ng di
r
ect
i
on.
Th
e iso
m
etric
v
i
ew
of th
e m
o
d
e
l is sh
own
in Figu
re 7.
Fi
gu
re 8.
Sc
he
m
a
t
i
c
of L
o
co
m
o
ti
on
of
r
o
b
o
t
3.
RESULTS
A
N
D
A
N
A
LYS
I
S OF
THE
M
O
VI
NG
DI
RE
CTIO
N
AN
D
PROP
ULSI
O
N
The cu
rre
nt
s o
f
t
h
e EM
A coi
l
sy
st
em
shoul
d
be co
nt
r
o
l
l
e
d t
o
ge
nerat
e
a m
a
gnet
i
c
fi
el
d i
n
t
h
e desi
r
e
d
di
rect
i
o
n. T
h
e
m
a
gnet
i
c
fi
e
l
d ge
nerat
e
d
by
t
h
e t
w
o
pairs of Helmh
o
ltz co
il, wh
ich
are po
si
tio
n
e
d
perpe
ndic
u
larl
y with each other, ca
n be define
d as th
e vector sum
of the
m
a
gnetic
fields of the
pair of
Hel
m
hol
t
z
coi
l
s. Al
o
ng t
h
e de
si
red di
rect
i
o
n
,
t
h
e uni
f
o
rm
magnet
i
c
fl
u
x
can be ge
nerat
e
d,
and t
h
e pe
rm
anen
t
m
a
gnet
ca
n
be
al
i
gned
wi
t
h
t
h
e desi
re
d
di
rect
i
on.
Fi
gu
re
9.
A
n
al
y
s
i
s
of t
h
e m
o
v
i
ng
di
rect
i
o
n
In Fi
g
u
r
e 9 t
h
e
bl
ue arr
o
w m
e
ans t
h
e desi
re
d
m
ovi
ng di
rect
i
on o
f
t
h
e
m
i
cro ro
b
o
t
and t
h
e
red arr
o
w
mean
s th
e d
i
rectio
n
of th
e unifo
rm
m
a
g
n
e
tic field
g
e
n
e
rat
e
d
b
y
th
e EMA co
il syste
m
.
In
itially, th
e u
n
i
fo
rm
mag
n
e
tic field (a) is p
e
rp
endicu
lar
with
th
e d
e
sired
m
ovi
ng
di
rect
i
o
n
a
n
d
t
h
us t
h
e p
e
rm
anent
of
t
h
e
m
i
cro
robo
t is alig
n
e
d
with
th
e
un
iform
mag
n
e
tic field
(a). Seco
nd
ly, th
e un
i
f
orm
mag
n
e
tic field
is ch
anged
to
d
i
rection
(b), an
d th
e
p
e
rm
an
en
t m
a
g
n
e
t is alig
n
e
d with
d
i
rectio
n
(b).
Similarly, th
e un
ifo
r
m
m
a
g
n
e
tic field
is
chan
ge
d t
o
di
r
ect
i
on (c
) a
n
d
t
h
e pe
rm
anent
m
a
gnet
i
s
al
i
gne
d
wi
t
h
t
h
e
di
rect
i
o
n (c
).
There
f
ore,
w
h
en t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJR
A
V
o
l
.
2,
No
. 1,
M
a
rc
h 20
1
3
:
3
5
– 44
40
p
e
rm
an
en
t m
a
g
n
e
t
o
f
th
e m
i
c
r
o
rob
o
t
is swit
ch
ed
fro
m
(b
) to
(c), th
e fi
n
attach
ed
with
th
e
m
a
g
n
e
t also
swing
s
wi
t
h
t
h
e
m
a
gn
et
, an
d t
h
us
t
h
e
m
i
cro r
o
bot
sh
ows
s
w
i
m
m
i
ng m
o
t
i
on.
3.1.
Prop
ul
si
on M
echani
s
m
Usi
n
g M
a
th
ema
ti
cal
M
o
del
In
d
e
tail, firstly, to
g
e
n
e
rate th
e d
e
si
red
m
a
g
n
e
tic fi
el
d
of
di
rect
i
o
n (a)
,
t
h
e cu
rre
nt
s o
f
t
w
o pai
r
s
o
f
Helm
h
o
ltz co
ils (I
x,a
, I
y,
a
) are s
e
t to
I
x,a
= I
ma
x
cos
θ
I
y,
a
= I
ma
x
sin
θ
,
where
I
ma
x
is th
e m
a
x
i
m
u
m
i
n
pu
t cu
rren
t. Seco
nd
ly,
wh
en th
e m
a
g
n
e
tic field
is align
e
d to
d
i
rection
(b), the
cu
rren
ts of th
e
two
p
a
irs of t
h
e
Helm
h
o
ltz coils are d
e
scribed
as:
I
x,b
= I
ma
x
cos (
θ
+
α
)
I
y
,b
= I
max
sin (
θ
+
α
)
Fi
nal
l
y
, i
n
t
h
e
al
i
gned
di
rect
i
o
n
(c
), t
h
e c
u
r
r
e
nt
s
of
t
h
e two p
a
irs of t
h
e
Hel
m
h
o
ltz co
ils
are
d
e
scri
b
e
d as:
I
x,c
= I
ma
x
cos (
θ
-
α
)
I
y,
c
= I
ma
x
sin (
θ
-
α
)
To
ch
an
g
e
th
e
d
i
rection
o
f
th
e m
a
g
n
e
tic field fro
m
(b
) to (c) con
tin
uou
sly,
th
e term
o
f
α
sh
ou
ld b
e
def
i
ned
b
y
t
h
e si
nus
oi
dal
fu
nct
i
o
n
α
(t) =
α
ma
x
si
n(
ω
t), wh
ere
α
ma
x
i
s
h
a
l
f
swi
t
c
hi
n
g
a
ngl
e o
f
t
h
e fi
n and
ω
is th
e switch
i
ng
v
e
lo
city o
f
th
e
swing
fin. Th
erefo
r
e, fin
a
lly, to
g
e
n
e
rate a co
n
tinuo
usly switch
i
n
g
m
a
g
n
e
tic field
in
th
e ±
α
ma
x
d
i
rection
th
e cu
rren
ts of th
e two p
a
i
r
s
o
f
th
e Helm
h
o
ltz co
i
l
s are
d
e
fi
n
e
d as:
I
x
= I
ma
x
cos
[
θ
+
α
(t)]
I
y
= I
ma
x
sin [
θ
+
α
(t)]
3.2.
Experimental Setup
Fig
u
re 10
sh
ows th
e sch
e
m
a
tics o
f
th
e experim
e
n
t
al se
tu
p
in
th
is stud
y. Th
e p
a
rts are
sh
own
in
the
fig
u
re. T
w
o D
C
po
wer s
u
p
p
lies were a
d
o
p
te
d, an
d a relay
circu
it is in
stall
e
d
to
ch
ang
e
the sig
n
of th
e curren
t
.
The
fi
nal
e
x
per
i
m
e
nt
al
set
up i
s
sh
o
w
n
i
n
Fi
g
u
re
1
1
.
Fi
gu
re 1
0
.
B
l
o
c
k di
ag
ram
of set
u
p
3.2.
Experimental Res
u
lts
The p
e
r
f
o
r
m
a
nce of t
h
e
swi
m
m
i
ng m
i
cro r
o
bot
i
s
eval
uat
e
d by
vari
o
u
s e
xpe
ri
m
e
nt
s
m
e
asuri
ng t
h
e
velocities of the micro robo
t
according to variables such
a
s
the swing angle, the
swi
ng
fre
que
ncy, a
nd the fi
n
l
e
ngt
h
.
T
o
ve
r
i
fy
t
h
e e
ffect
of
t
h
e s
w
i
n
g
a
ngl
e a
n
d t
h
e s
w
i
n
g
fre
que
nc
y
on
t
h
e
pe
rf
o
r
m
a
nce of
t
h
e
m
i
cro
ro
b
o
t
,
on
e of t
h
e va
ri
abl
e
s i
s
fi
xed as a co
n
s
t
a
nt
val
u
e, a
n
d t
h
e ot
he
r va
r
i
abl
e
i
s
change
d as t
h
e
m
i
cro rob
o
t
swam
, with
th
e fin of th
e m
i
cr
o
robo
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA
I
S
SN
:
208
9-4
8
5
6
Desi
g
n
of
Mi
cr
o R
o
bot
f
o
r Mi
ni
m
a
l
l
y
Invasiv
e
Sur
g
ery (Dei
va
Ganes
h
A)
41
Fi
gu
re
1
1
. E
x
p
e
ri
m
e
nt
al
set
up
Fi
gu
re 1
2
. Swi
m
m
i
ng
Spee
d VS Swi
n
g
Fre
que
ncy
Firstly, whe
n
the swimming
velocity
according to the s
w
ing fre
que
ncy of the
fin is measure
d
, t
h
e
swi
n
g an
gl
e i
s
fi
xed as
8
0
˚
.
On t
h
e co
nt
ra
r
y
, t
h
e swi
n
g f
r
e
que
ncy
i
s
set
t
o
5 Hz t
o
ve
ri
fy
t
h
e ef
fect
of t
h
e
swimming velocity accordi
n
g to the
swing angle. For the m
easure
m
e
n
t of the s
w
imming velocity, the
swi
m
m
i
ng di
st
ance i
s
set
t
o
1
00 m
m
, and I
ma
x
i
s
set
t
o
3.5
A i
n
t
h
e ex
pe
ri
m
e
nt
s. In
ad
di
t
i
on, t
h
e ef
fect
of t
h
e
fi
n l
e
ngt
h
on
t
h
e swi
m
m
i
ng
pe
rf
orm
a
nce i
s
v
e
ri
fi
ed
by
t
h
e c
h
an
gi
n
g
o
f
t
h
e
fi
n l
e
ngt
h f
r
o
m
8 m
m
t
o
16
m
m
.
Figure
12 s
h
ows t
h
e expe
rim
e
nt
al graph on the s
w
i
mming velo
city according to the s
w
ing
fre
que
ncy
.
Wh
en t
h
e fi
n l
e
n
g
t
h
i
s
s
h
o
r
t
e
r
t
h
an
1
2
m
m
, the s
w
i
m
m
i
ng
m
i
cro r
o
bot
s
h
o
w
s
fast
a
n
d
st
abl
e
v
e
lo
cities in
ran
g
e
o
f
h
i
gh
freq
u
e
n
c
ies (ov
e
r 5
Hz). On
th
e co
n
t
rary, th
e
micro
robo
t wh
ich
h
a
s a lo
ng
er fi
n
len
g
t
h
th
an
12
mm
sh
o
w
s
fast
swimmin
g
v
e
l
o
cities
in
t
h
e ran
g
e
o
f
l
o
w
freq
u
e
n
c
ies (u
nder 4
Hz). Gen
e
rally,
th
e m
a
x
i
m
u
m
swimmin
g
v
e
l
o
cities ap
p
e
ar
in
th
e freq
u
e
n
c
y rang
e b
e
t
w
een
4 Hz t
o
6
Hz and
t
h
e sign
ifican
t
decrease
s
of the swimming
velocity ar
e show
n af
ter
8
H
z
. Th
e m
i
cr
o
ro
bo
ts
w
ith
t
h
e sho
r
t
f
i
n h
a
v
e
f
a
st and
st
abl
e
swi
m
m
i
ng m
o
t
i
ons i
n
t
h
e ra
nge
of
hi
gh s
w
i
n
g
fre
qu
encies beca
use
their short
fins decrea
se the
effect
of t
h
e m
o
m
e
ntum
of t
h
e
r
o
t
a
t
i
ng
pa
rt
s i
n
cl
u
d
i
n
g i
t
s
fi
n
un
der t
h
e sam
e
m
a
gnet
i
c
co
n
d
i
t
i
on.
Ho
we
ver
,
w
h
e
n
th
e fi
n
is too
sh
ort, t
h
e m
i
cro
ro
bo
t sh
ow
s
un
stab
le sw
immin
g
.
Th
e swimmin
g
v
e
lo
cities acco
rd
ing
t
o
t
h
e swing
an
gle (
α
ma
x
)
ar
e sh
own
in Figu
r
e
13
.
The
expe
ri
m
e
nt
al
grap
h s
h
o
w
s t
h
at
t
h
e swi
m
m
i
ng
vel
o
ci
t
y
inc
r
eased
with the swing angle
of the m
a
gneti
c flux.
Ho
we
ver
,
w
h
e
n
t
h
e fi
n l
e
n
g
t
h
o
f
t
h
e m
i
cro ro
b
o
t
i
s
t
oo sh
ort
o
r
t
o
o l
o
n
g
,
t
h
e per
f
o
r
m
a
nce of t
h
e m
i
cro ro
bot
deteriorated.
These expe
rimental results show th
at the
perform
a
nce of the
m
i
cro ro
bot is serio
u
sly
affe
cted by
the
swi
n
g a
ngl
e
be
cause t
h
e
swi
n
g a
ngl
e
of
t
h
e
fi
n c
oul
d
not
f
o
l
l
o
w
t
o
t
h
e de
si
red s
w
i
n
g a
n
gl
e at
t
h
e
hi
g
h
swi
n
g
freq
u
e
n
c
ies.
In ad
d
ition
,
th
e fi
n
len
g
t
h
of th
e
micro
robo
t h
a
s a stro
ng
influen
ce on
th
e swi
mmin
g
m
o
tio
n
and
th
e v
e
lo
city. Th
erefore, th
e
m
i
cro r
o
b
o
t
wi
t
h
abo
u
t
12 m
m
of t
h
e fi
n l
e
ngt
h sh
ows t
h
e
be
st
vel
o
ci
t
y
and st
abl
e
swi
m
m
i
ng m
o
ti
on, as i
n
Fi
g
s
.
From
t
h
es
e resu
lts th
e op
timized
v
a
lu
es are I
ma
x
= 3.5 A,
Swi
n
g f
r
e
que
n
c
y
= 5
H
z
,
Sw
i
n
g angle (
α
ma
x
) = 80
˚
and
1
2
m
m
of t
h
e
fi
n l
e
ngt
h.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJR
A
V
o
l
.
2,
No
. 1,
M
a
rc
h 20
1
3
:
3
5
– 44
42
Figure 13. Swi
m
m
i
ng
Spee
d VS Swi
n
g
Angle
4.
CO
NCL
USI
O
N
I
n
t
h
i
s
pape
r,
fi
rst
l
y
, t
h
e
des
i
gn,
fa
bri
cat
i
o
n a
nd c
o
nt
r
o
l
of t
h
e m
i
cro r
o
b
o
t
s
, c
u
rre
nt
m
i
cro r
o
b
o
t
t
echn
o
l
o
gy
ha
s been re
vi
ew
ed. B
a
sed
on t
h
e re
vi
ew a n
e
w t
y
pe of s
w
im
m
i
ng m
i
cro ro
bot
f
o
r m
i
nim
a
ll
y
i
nvasi
ve su
r
g
er
y
has bee
n
p
r
o
pos
ed
. Fi
rst
l
y
, t
h
e desi
gn a
nd
st
ruct
u
r
e
of t
h
e
m
i
cro ro
b
o
t
and EM
A c
o
i
l
sy
st
em
is p
r
esen
ted
.
Seco
nd
ly, th
e con
t
ro
l
m
ech
an
ism fo
r th
e m
i
cro r
o
b
o
t
has
be
en de
ri
ve
d. T
h
en t
h
re
e va
ri
ab
l
e
s are
sel
ect
ed t
o
m
odi
fy
t
h
e swi
m
m
i
ng per
f
orm
a
nce of the m
i
cr
o robo
t in
th
e co
n
t
ro
l m
ech
an
ism
.
Th
en
, b
y
variou
s
expe
ri
m
e
nt
s t
h
e opt
i
m
i
zed val
u
es ha
ve be
en f
o
u
n
d
. De
v
e
l
opi
n
g
t
h
i
s
t
e
chn
o
l
o
gy
re
qu
i
r
es t
h
at
we add
r
ess
issues s
u
c
h
as
localization a
n
d power. E
f
fective co
llaboratio
n b
e
t
w
een
m
e
d
i
cal an
d ro
bo
tics exp
e
rts is
neede
d
.
REFERE
NC
ES
[1]
Bradle
y J
.
,
Nels
on ETH
Zurich
,
“
M
icrorobotics
in Medi
cine
”
In
stitute of
Robot
i
c
s and Int
e
ll
igent Syst
ems Zurich,
Switzerland, Review o
f
Biomedical Eng
i
neering
, 2008.
[2]
Y S Zhou1*, Y
X Quan1, K Yoshinaka2 and K I
k
euchi2 “A
new medical microro
bot for
minimal invasive surger
y”
Proc
.
Instn
Mech
engrs Journal o
f
Eng
i
neering
in
Medicine,
vol.21
5
, pp
. 215-220
,
2001.
[3]
Kósa G, Jakab
P, Nobuhiko
Hata, Jólesz F,
Zip
i
Neuba
ch Z, Shoham M, “Flagellar
Swimming for Medical Micr
o
Robots: Theor
y
, Experiments an
d Application” I
n
:
2
nd
IEEE int
e
rnational conf
erence on biomed
ical roboti
c
s
, p.
258-263, 2007
.
[4]
Bradley
J. Nelso
n
,1 Ioannis K. Kaliak
a
tsos, and
Jake J. Abbott2 “Micro robot
s f
o
r Minimally
In
va
sive Medicine”.
The annual review of
Bi
omedical engineering
, pp.55-85, 2010
.
[5]
ViRob- “An Autonomous Crawing Micro-robot”.
The Technion
,
Technology institute,
Israel, May
,
2008.
[6]
Taher
i
A, M
e
ys
am
, M
oos
av
y
S
,
“
A
Num
e
rical
S
t
rateg
y
to Design Maneuverable Mi
cro-B
i
omedical Swimming
Robots Based on Bio mimetic
Flagellar Propulsion”,
World Aca
d
emy of scien
ce
and technolog
y
,
Vol .54, pp.500
-
504, 2009
.
[7]
Dumsong E, Afzulpurkar N, Tu
antranont A
and
Pun
y
asai C,
“Design and Simulation of
Wireless, Walking
Scratch
-
Drive M
i
cro-Ro
bot”,
10
th
Intl. C
onf. On
Control, Automation, Ro
botics and
Visio
n
, p
.
588-592, 17
-20 Dec, 2008
.
[8]
B. Behkam
,
M. Sitti, “Design Me
thodolog
y
for biom
em
itic propulsion of m
i
niature Swimm
ing Ro
bots,” J
. Dynamic
Systems Measurement and
Contr
o
l
, Vol. 128
, pp
.l36-43, 2006
.
[9]
J. B. Moidel, J
.
D. Ozer
, O. Kuter-Arnebe
c
k “
W
a
ter Actua
tio
n of Micro Robotics”
,
Journal of Micro/ Nano
Robotics
, pp
.43-
48, 2006
.
[10]
Wei Zhang_ Shu-Xiang Guo “A New Ty
pe
of
Hy
br
id Fish-like Micro-robot”,
Intl. Journal of Automation and
computing
, Vol.4, pp
.358-365, 2
006.
[11]
S. Guo, Y. Hasegaw, T
.
Fukuda, a
nd K. Asaka,
“Fish –Like underwater m
i
croro
bot with m
u
lti DOF,” Proc. of 200
International Symposium on Micr
omechatronics
and uman S
c
ien
c
e
, pp. 63-68, 20
01.
[12]
Christophe Perr
ard, Nicolas An
dreff
“Control of a team of micro-robots for
n
on-invasive med
i
cal applications
”,
Proc. 6
th
Nation
a
l con
f
. On con
t
rol Architecture
of robots
, CAR’
11, July
2011
.
[13]
Huaming Li and Jindong Tan Mingjun Zha
ng “D
y
n
amics Modeling and Analy
s
is of a Swi
mmin
g
Microrobot for
Controlled
Drug
Deliv
er
y
”
. Proc.
IEEE In
ternatio
nal con
f
erence o
n
Robotics and
Automation
, pp
.1768-1773, 200
6.
[14]
Guo S, Pan Q. Mechanism an
d control of
a novel ty
pe microrobot for biomedical
application
.
In:
IEEE
internationa
l
co
nference on
robotics and
autom
ation
;
p
.
187–9
2, 2007
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA
I
S
SN
:
208
9-4
8
5
6
Desi
g
n
of
Mi
cr
o R
o
bot
f
o
r Mi
ni
m
a
l
l
y
Invasiv
e
Sur
g
ery (Dei
va
Ganes
h
A)
43
[15]
Savvas G. Loizou, Kostas J. K
y
ria
kopou
los,
“Motion Planning of Piezoelec
trically
Driv
en Micro-Robots via
Navigation Functions”
Spring
e
r,
1997.
[16]
Dario, P.
, Gugli
e
lm
elli
, E
., Al
lo
tta
, B. and C
a
rr
ozza, M. C. “R
obotics for
med
i
cal applications
”.
IEEE Robotics
AutomnMag
., V
o
l.3, pp.44-56
, 1
996.
[17]
P. Dario, M.C.
Carrozza, L.
Lencioni, B. Magn
ani, C. Fi
lippes
c
hi, M.G. Triv
ell
a
, A.
Pi
et
ra
bi
ss
a, “A Microrob
ot
S
y
stem
for Low
e
r Gastroin
testin
al Inspe
c
tion
an
d Interv
ention
”
.
Sensors and Microsystems
, pp.1
4
-21, Singapor
e,
1996.
[18]
Peter J. Berkelman,
Louis L.
Whitcomb, Russell H.
Tay
l
or, and Patrick Jensen
“A Miniature Microsurgical
Instrument Tip Force Sensor fo
r Enhanced Force
Feedback During Robot-Assist
ed Manipulation”. Proc.
IE
EE
Transactions on
Robotics
and Au
tomation,
Vol.19
, no
. 5
,
pp
.917-9
22, Oct, 2003
.
[19]
Yuan Zheng
,
George Bek
e
y
,
Arthur Sanderson “R
obotics for
bio
l
ogical
and
medical applications”,
Intl. Journal
o
f
Emerging Med
i
cal Techno
logies,
Jan27, 2006.
[20]
Hülsen H, Trüper T, Fatikow S,
“Control Sy
stem for the
autom
a
ti
c Handling of biologic
a
l Cells with m
obile Micr
o
robots
”, Proc. American Control Conferen
ce
, pp
.3986-3991, July
2, 2004
.
[21]
Tomie M, Tak
i
g
u
chi A, Honda
T, Yama
saki J.
“Turning perfor
m
ance of fish-t
ype micro robot
driven b
y
extern
al
magnetic field”,
IEEE transactio
ns on Magnetics
2005; 4015-7.
[22]
ArthurW. Maho
ney
John C. Sar
r
azinb
,
Eberhard
Bamberg
b
and
Jake J
.
Abbott
“Velocity
Con
t
r
o
l with
Gravity
Compe
n
sa
t
i
on for Ma
gne
ti
c He
li
c
a
l
Mi
c
r
oswi
mme
rs”
,
In:
Ad
van
ced Robotics
, no
.25, pp.1007-10
28, 2011
.
[23]
Joo Han Kim*, Se H
y
un Rh
y
u
, In Soung Jung, Jung Moo
Seo “An investigation on developm
ent of Precision
actu
a
tor for
small robot”, Proc.
9
th
WSE
A
S
Intl.Conf. on
Robotics, Contro
l and
Manufacturing
technolog
y
, pp. 6
2
-
66,2008.
[24]
Joseph JV, Ary
a
M, Patel HRH, “Robotic surger
y
:
th
e coming of a new era in surgical innov
ation”,
Exp
e
rt Re
v
.
Antican
cer
T
h
er
. 5(1):7–9, 2005.
[25]
G. T. A. Kovacs, “Micromach
ined Transducers S
ourcebook”.
WC
B/McGaw-Hill, I
S
BN
, 0-07-2907
22-3, 1998
.
[26]
K.B. Yesin, B.J. Ne
lson, “Robust CAD Model B
a
sed Visual Tracki
ng for 3D Microassembly
Using Image Space
Potentia
ls”.
Proc
.
IEEE International con
f
eren
ce
on Robotics and
automation,
pp.1
868-1873, 2004
.
[27]
Nag
y
Z, Ergen
e
man
O,
Abbott JJ,
Hutter M, Hirt AM, Nelson
BJ. “Mode
ling assembled-MEMS microrobots for
wireless m
a
gne
ti
c con
t
rol”
, Pro
c
.
IEEE Int. Conf.
Robot. Autom
.
,
Pasadena, Ca
lif
., May
19–23, pp
. 874–79
, 2008
.
[28]
Vilkomerson D,
Ly
ons
D. 1997
.
“A sy
st
em for ultrasonic beacon-
guidance of
ca
th
eters and
o
t
her
minimally
inv
a
sive
(in the origin
al t
itle
, the
y
writ
e “
m
inim
all
y
-
i
nvas
i
ve”) m
e
dic
a
l de
vices”
,
IEEE Trans. Ultrason. Ferroelectr
. F
r
eq.
Control 44(2)
:49
6–504.
[29]
B. Behkam and
M. Sitti. “Modeling
a
nd Testing of a Biomimetic Flag
el
lar
Propulsion Method for Microscale
Biome
d
ic
al Swimming Robots”
,
ASME
J
.
D
y
n
.
S
y
s
t
. M
e
as
. Con
t
r
o
l
, 2006
.
[30]
Guo S, Pan Q, Li D. “Mechanis
m and control
of
a spiral ty
p
e
of
microrobot in pipe. In
: IE
EE con
f
er
enc
e
on r
obotics
and biomimetics
”
,
p.43-48
, 2008
.
[31]
Frank Tendick,
S. Shankar Sastr
y
, Rona
ld
S. Fearing
and Mich
ael Cohn
, “App
lications of Micr
omechatronics
in
Minima
lly
Inva
sive
Surge
r
y
”
Proc
.
I
E
EE/ASM
E transactions
on mechatronics
, v
o
l. 3
,
no
. 1
,
p
.
34
-42, Mar
c
h 1998
.
[32]
Guo S, Sawamoto J, Pan
Q. “A
novel
ty
pe o
f
microrobot for
bio
m
edical app
lication”. In:
Interna
tional robots
an
d
sy
ste
m
s
, p. 1047
-1052, 2005
.
[33]
Abbott JJ, Nag
y
Z,
Be
ye
ler F
,
Nelson BJ. “
R
obotics in
the
sm
all-p
a
rt I
:
m
i
cro
robotics
”
.
I
E
EE Rob
Autom
Ma
g
2007, 14: p. 92-
103.
[34]
Honda T, Arai
KI, Ishiy
a
ma K.
“M
icro swimming mechanisms
propelled b
y
external magnetic f
i
elds”,
IEEE Trans.
Magn.
32(5)
:508
5–87, 1996
.
[35]
Dogangil G, Erg
e
neman O, Abb
o
tt JJ, Pan´
e S,
Hall H, 2008
. “
T
oward targeted
retin
al drug deliver
y
with wireless
magnetic micror
obots”,
Proc.
IE
EE/RS
J In
t.
Con
f
. In
tel
l
.
Robo
ts
Syst.,
Ni
ce
, Fr
.
,
Sept. 22–26
, pp
.
1921–26, 2008
.
[36]
T. Fukuda, A. K
a
wamoto, F. Arai, and
H. Matsuu
ra, “Mechanism and swimming
e
xperiment of micro mobile robot
in water,” Proc.
of
IEEE In
t'l Wo
rkshop on Micro Electro
Mechan
ical Systems (
M
EMS'94)
,
pp.273
-278.
[37]
J. Edd, S. Pa
yen
,
B. Rubinsk
y
;
M.L.
Stol
ler and
M. Sitti, "B
iom
i
m
e
tic propu
lsion for a swim
m
i
ng surgical m
i
cr
o
-
robot,"
I
EEE
/RS
J
Int
e
ll
igent
Rob
o
tics and
Syst
ems Conferenc
e
, vo
l. 3
,
pp
. 2583
– 2
588, Octob
e
r 20
03.
[38]
S. Guo, Y., Okuda and
,
K. Asaka,
"H
y
b
rid
type of underwater micro bipe
d
r
obot with walking and swimmi
ng
motions" In Proceedings of
IEEE
Intl. Conf. On M
echatroni
cs and
Automation
,
Ontario, Canada
, p
p
.81-86, 2005.
[39]
K.
B.
Yesin,
K. Vollmers,
and B.
J.
Nelson, "Modeling
and control of
unt
eth
e
red b
i
omicroro
bots in
a flu
i
dic
environment using elect
romagn
etic fields,"
Int’l J.Robotics
resear
ch
, vo
l.25
, no
.5-
6
, pp
.527-536, 2
006.
[40]
Haga Y, Esashi M. “Biomedical
mi
c
r
osy
s
te
ms for mi
ni
ma
l
l
y
i
nva
sive diagn
o
sis and treatm
e
nt”,
Proc. I
E
EE
92(
1
)
:98–114, 2004.
[41]
Y. Zhang, Q.
W
a
ng, P. Zhang
,
X. W
a
ng, and
T. Mei,
“
D
y
n
a
m
ic anal
ysis an
d experim
e
nt of
a 3m
m
swimming
microrobot,”
Pr
oc. of
the 2004
IEEE/RSJ In
tern
ational
Conference on Intelligent Robots and S
y
stems
, pp. 174
6-
1750, 2004
.
[42]
By
un
D, Jongh
oChoi, K
y
oungae Cha “Swimming micro robot
actu
a
ted
b
y
two
pairs of
Helmholtz
coils s
y
stem”,
Journal of Mech
atronics
, pp
. 357
-364, 2011
.
[43]
ZHOU Yinshen
g1, HE Huinong1,
GU Daqian
g1, AN Qi2 & QUAN
Yongxin1
“Noninvasive method to drive
medical micro-r
obots”
Chin
. S
c
i.
Bul
l
.
,
vol.45, pp
.617-620, 2000.
[44]
B. L. Dav
i
es, “A discussion of
safe
ty
issues for medical robots
,
” in
Computer-I
ntegrated Surgery: Technology
and
Clinica
l
Appli
c
a
tions,
R
.
H
.
T
a
y
l
o
r
,
S
.
L
a
v
a
l
l
e
e
,
G
.
C
.
B
u
r
d
e
a
,
and R.
Mosge
s
,
Eds.
Ca
mbridge
, MA:
MIT Pre
s
s,
1996, pp
. 287–2
98.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJR
A
V
o
l
.
2,
No
. 1,
M
a
rc
h 20
1
3
:
3
5
– 44
44
[45]
Bahareh
Behk
am
, Metin
Sitti
“
Coli Inspir
ed Pr
opulsion
For Swim
m
i
ng Micro r
obots”, C
a
rneg
ie Mellon
Univers
i
t
y
,
Proc. In
ternat
io
nal Mechanical
E
ngg. Con
f
eren
ce and
R
&
D Exposition
, Nov 13-
19, 2004
.
[46]
G. Kósa, M. Sh
oham and M.
Zaaroor., "Propulsion Method for Swimming
Micro Robots",
IEEE T
r
ansaction on
Robotics
, vol. 23
, pp
. 137-150
, Jan. 2007
.
[47]
M
i
chae
l S
f
akio
t
a
kis
,
Dav
i
d m
.
Lan
e
,
and
j.
Bruce
c.
Da
vies,
“Re
v
i
e
w of fi
sh
swimming modes For aquatic
locom
o
tion”
,
I
E
EE
journal of oceanic Engin
eering
, vol. 24
, no
. 2
,
April 1999.
[48]
H. K. Cheng an
d L. E. Murillo, “L
unate-tail swimming propulsi
on as a problem
of curved liftin
g
line in unstead
y
flow. Part
1.
S
y
m
p
totic
theor
y
,
”
J. Fluid
Me
ch.
,
vol. 143
, pp
. 327
–350, 1984
.
[49]
T. Nakaok
a and
Y. Toda, “Laminar flow com
putation of f
i
sh-like motion wing,” in Proc.
4th Int.
Offshore and Po
lar
Eng. Con
f
., Osaka,
Japan
, Apr.
1994, pp
. 530–5
38.
[50]
Popovic M, Popovic BD, Popovic Z.
2006. Electromagne
tic induction.
In
Fundamentals
of Engineerin
g
Electromagnetics
, ed
. R
Bans
al
.
Boca R
a
ton
,
F
L
:
Ta
yl
or
& F
r
an
ci
s
[51]
Siauve N, Scorr
e
tti R, Burais
N,
Nicolas L,
Nicolas A. 200
3. Electromagnetic f
i
elds
and h
u
man bod
y
:
a n
e
w
chal
lenge
for
the
el
ectrom
a
gn
eti
c
fie
l
d
com
putati
on.
Int
.
J.
Comput. Ma
th.
El
ec
tr
.
El
ectr
o
n
.
Eng
.
2
2
(3):457–69
[52]
S. Guo, N. Kato, T. Fukuda, and
K. Oguro, “A fish-microrobot using ICPF
actu
a
tor,” in Pr
oc. 1998
5th In
t.
Workshop on Ad
vanced
Motio
n
Control, Co
imbra, Portuga
l
, June 1998, pp. 592–
597.
[53]
Behkam
B, Sitti
M. 2006. Design m
e
t
hodolog
y
f
o
r biom
im
etic pr
opulsion of m
i
niature swim
m
i
ng robots.
ASME J
.
Dyn. S
y
st.
Meas. Control
128(1)
:36–43
[54]
Yesin KB, Vollmers K,Nelson BJ. 2006. Modeling and
con
t
rol of unteth
e
r
e
d biomicrorob
o
ts in a fluidic
environment using elect
romagn
etic fields.
In
t. J.
Robot
. Res. 25(5
–6):527–36
[55]
G. V. L
a
uder
an
d B. C. J
a
yne,
“
P
ector
al fin
loco
motion in fishes
—Testing dr
ag-
b
ased models using 3-dimension
a
l
kinematics,”
Am
er. Zool.
, vo
l. 36
, pp
. 567–581
, 1
996.
[56]
F. Cepolina. Development of
m
i
cro tools
for s
u
rgical app
lic
ations
. P
h
.D.
T
h
es
is
,
Universita’ Degli Studi
De
Ge
nov
a/ Uiv
e
rsite
Pie
r
e Et marie
Currie
Paris
, 2
005.
[57]
N. Zemiti and
al "Mech
atronic Desi
gn of
a
New Robot for
Force Contro
l in Minimally
Invasive Surger
y
",
IEEE/ASME Transactions on M
e
chatronics,
vol 1
2
(2),
april 2007,pp 143-153.
[58]
Tobias Ortmaier
and Gerd Hirzin
ger. Ca
rtesian C
ontrol Issues for
Minimally
Inv
a
s
i
ve Robot Surger
y
.
In Proc. of the
IEEE
/RSJ Int
e
rnational Confer
ence on Intellig
ent Robots and Systems
IROS 2000,
Takamats
u,
Japan, Octob
e
r
2000.
BI
O
G
R
A
P
HY
OF
A
U
T
HO
R
Deiva Gan
e
sh.A
got h
i
s undergr
a
duate d
e
gree in
Mechan
ical
En
gineer
ing from
Mepco Schlenk
Engineering College, Anna Univer
sity
Chenn
a
i in 2008. Later
he worked as a
Lecturer in
an
Engineering College
in Coimbato
re
,
Ta
milNa
d
u for two
y
e
ars.
The
n
he pursued his Ma
ste
r’s
Degree
in Eng
i
neering
Design, Mechan
ical En
gineer
ing from
Sona Colleg
e
o
f
Technolog
y
,
Anna University
Coimbatore in 2012. His re
search in
ter
e
sts are
Engineerin
g Design and
Robotics. Currently
h
e
is working as Assistan
t P
r
ofes
s
o
r in the Departm
e
nt o
f
M
echanic
al
Engineering, Velammal Engin
e
ering Co
llege, Ch
ennai,
Tamil N
a
du, India.
Evaluation Warning : The document was created with Spire.PDF for Python.