Intern
ati
o
n
a
l Jo
urn
a
l
o
f
R
o
botics
a
nd Au
tom
a
tion
(I
JR
A)
Vol.
3, No. 4, Decem
ber
2014, pp. 234~
244
I
S
SN
: 208
9-4
8
5
6
2
34
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJRA
Novel
Approach to Cont
rol of
Robotic Hand Using Flex Sensors
San
d
esh R.
S*,
Nith
ya Venk
ates
an
**
* Departement o
f
Electron
i
cs
and
comm
unication
Engineering, Sai Vid
y
a Institu
te of
Technolog
y
,
Bangalor
e
,
India
**S
ELECT
,
VI
T univ
e
rsit
y,
Ch
ennai
,
Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
n 16, 2013
Rev
i
sed
Jun
5
,
2
014
Accepte
d J
u
l
2, 2014
This paper discu
ss about novel d
e
sign a
ppro
ach
to control of a ro
botic h
a
nd
using flex sensors which indicat
e
s a biom
echatr
onic m
u
lti fing
ered roboti
c
hand. This robotic hand consists of ba
se unit, upper arm, lower arm, palm
and five fingers
. The aim is to
deve
lop
an
anthropomorphic five finger
e
d
robotic hand
. Th
e proposed design illustrat
e
s the use of 5
m
i
cro
DC m
o
tor
s
with 9 Degrees of Freedom (DOF).Each
finger
is controlled in
dependen
t
ly
.
Further thr
ee
extra motors were
used for the con
t
rol of wrist elb
o
w and bas
e
movement. The stud
y
of the DC motor is
being carried out using the transfer
function model
for constant ex
citati
on. Th
e micro DC motor p
e
rformance
was
anal
yz
ed us
ing M
A
TLAB s
i
m
u
lation env
i
ro
nm
ent. Th
e who
l
e s
y
s
t
em
is
im
plem
ented us
ing flex s
e
ns
ors
.
The flex s
e
ns
ors
placed on the h
u
m
a
n hand
gloves appear as
if they
look lik
e re
al human hand. 89v51 micr
ocontroller
was used for all
the con
t
roll
ing
act
ions along wi
th RF transm
itter/receiver
.
The performance of the s
y
stem has
been conducted exp
e
rimentally
an
d
studied.
Keyword:
Biom
echatroni
c
Degree of
Free
dom
Fl
ex se
ns
ors
Hum
a
n Ha
n
d
Ro
bo
tic H
a
nd
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Sandes
h.R.S
,
Depa
rt
em
ent
of El
ect
r
oni
cs
a
n
d
com
m
uni
cat
i
on E
n
gi
nee
r
i
n
g
,
Sai Vid
y
a
In
stitu
te of Techn
o
l
o
g
y
,
R
a
jan
k
unt
e,
D
o
d
d
a
b
al
l
a
pu
ra
R
o
ad
, B
a
n
g
al
o
r
e -
6
4,
I
ndi
a
Em
a
il: mailsan
d
e
sh
.rs@g
m
ai
l
.
co
m
1.
INTRODUCTION
H
u
m
a
n
h
a
nd
co
n
s
ists of
bone
m
u
scles, lig
a
m
en
ts, ten
don
s, v
e
i
n
s, ar
teries an
d
n
e
r
v
es. Th
e en
tir
e
hum
an ha
nd
i
s
com
posed
o
f
26
b
one
s an
d
1
9
m
u
scl
e
s [1]
.
The
hum
an ha
nd
hel
p
s us
t
o
gra
b
sel
ect
, se
nse a
n
d
per
f
o
r
m
al
l
other c
o
nt
rol
act
i
ons
req
u
i
r
e
d
i
n
day
t
o
day
l
i
f
e. R
e
searc
h
er
s ha
ve t
r
i
e
d t
o
cont
rol
t
h
e
ro
bot
i
c
han
d
usi
ng
fl
ex sens
or
s
2
wi
t
h
end ef
fect
or
s as gri
p
per
s
b
u
t
wi
t
h
a wi
red c
o
m
m
uni
cat
i
on.
Ho
we
ver rese
arche
r
s
have
t
r
i
e
d t
o
r
e
pl
i
cat
e t
h
e na
t
u
ral
bi
om
echat
ro
ni
c h
u
m
a
n han
d
sy
st
em
[2,
3]
. Se
ver
a
l
at
t
e
m
p
t
s
have
be
e
n
m
a
de t
o
desi
g
n
hum
an l
i
k
e r
o
b
o
t
i
c
ha
n
d
wi
t
h
en
d e
ffect
or
s as si
m
p
l
e
gri
ppe
rs t
o
c
o
m
p
lex st
r
u
ct
u
r
e
[4
, 5
,
6
,
7]. L. Z
o
llo et.al [8,
9] has de
signe
d
a 3
digi
t robotic ha
nd
with neces
sary
c
ontrol system and a
n
alysis with 10
DO
F w
h
i
c
h i
s
l
i
ght
wei
g
ht
e
d
.
Oh
ni
shi
K et
al
[9]
have
d
e
si
gne
d a f
o
ur
fi
nge
re
d ha
n
d
wi
t
h
8
DO
F but
t
h
e
stru
cture
rem
a
i
n
s co
m
p
lex
wi
th
sev
e
n
t
y eigh
t tactile sen
s
or
s.
Oh
n
i
sh
i.K
et al [10
]
h
a
v
e
also
d
e
sign
ed
Harris
Arm
with
in
tellig
en
t h
a
n
d
wi
th
8
DOF
bu
t th
e ov
erall le
ngth
and
wei
g
h
t
o
f
stru
cture remain
s h
i
g
h
and
it is
di
ffi
c
u
l
t
t
o
use i
n
pract
i
cal
appl
i
cat
i
o
ns.
Asm
a
S. Al
i
et
.al
[11]
ha
ve
desi
gne
d assi
st
i
v
e ro
bot
i
c
arm
for
qua
d
r
i
p
l
e
gi
c,
At
het
o
i
d
ce
reb
r
al
pal
s
y
.
The
ent
i
r
e
han
d
wa
s co
nst
r
uct
e
d
wi
t
h
P
V
C
t
ubi
ng
an
d e
n
d e
f
f
ect
ors
were
gri
ppe
rs.
G. G
u
o et
.al
[12]
ha
ve d
e
si
g
n
ed
3 fi
n
g
e
r
ed
9 D
O
F base
d
on St
a
n
f
o
r
d
/
P
JL, Ut
ah/
M
IT ha
n
d
,
whe
r
e t
h
e
wei
ght
of e
n
t
i
r
e h
a
nd a
n
d v
o
l
u
m
e
were
red
u
ce
d ba
sed
o
n
des
i
gn m
i
nim
i
zat
i
on
. I
n
t
h
i
s
pap
e
r w
e
h
a
v
e
d
e
sign
ed
a ro
bo
tic h
a
nd
wh
ich
is ease in
d
e
sign
, flex
i
b
ility, co
st,
b
a
ttery op
erated
with
ch
arg
e
r un
it.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
234 – 244
2
35
2.
D
E
SIGN
A
P
PR
OA
CH A
ND
MA
TER
IA
LS
USED
2.
1 Desi
g
n
A
p
pro
a
ch
In
d
e
sign
ing
th
e robo
tic h
a
nd
, th
e fu
n
c
ti
o
n
al ch
aracteristics and study of hum
an hand
are studie
d
.
The
req
u
i
r
em
ent
s
an
d
di
m
e
nsi
ons
o
f
h
u
m
a
n han
d
of
va
ri
o
u
s
su
b
j
ect
s are
l
i
s
t
e
d o
u
t
l
i
k
e
k
i
nem
a
t
i
c
s, dy
n
a
m
i
c
p
e
rform
a
n
ce, an
d
an
at
o
m
y g
e
stu
r
e
g
r
asp
i
n
g
cap
ab
ilities alon
g
with
fun
c
ti
o
n
a
l cap
a
b
iliti
es. Th
e m
a
n
i
p
u
l
ator
desi
g
n
was
bas
e
d o
n
art
i
c
ul
at
ed co
nfi
g
u
r
at
i
o
n an
d wri
s
t
wa
s desi
g
n
ed
bas
e
d o
n
sp
heri
ca
l
confi
g
u
r
at
i
o
n
[12]
.
The robotic
hand
consists of
fi
ve fingers
whic
h
a
r
e c
o
ntrolled
by fi
ve
DC m
o
tors
placed in t
h
e
palm
reproducing the princi
ple of
extrinsic m
u
scles. The pr
i
n
ci
pl
e of a
b
d
u
ct
i
on/
a
d
d
u
ct
i
o
n i
s
achi
e
ve
d by
pl
aci
n
g
th
e DC m
o
to
r
in
sid
e
th
e p
a
l
m
th
rou
g
h
a wh
eel g
e
ar m
ech
an
ism
,
th
e
m
o
v
e
m
e
n
t
fro
m
pal
m
to
lateral p
o
s
ition
and
vi
ce
versa
i
s
as sh
ow
n i
n
Fi
gu
re
1, s
o
t
h
at
t
h
e t
hum
b can fi
x i
t
s
p
o
si
t
i
on
w
h
en
t
h
e
p
o
we
r i
s
of
f. T
h
e sam
e
pri
n
ci
pl
e i
s
e
x
t
e
nde
d
f
o
r
ot
he
r
fi
n
g
er
s t
o
o.
Fi
gu
re 1.a
b
/
a
d
duct
i
o
n o
f
hum
an han
d
(c
ou
rt
esy
De
part
m
e
nt
of
B
i
oen
g
i
n
e
e
ri
n
g
, N
U
S,
Si
nga
p
o
re
).
2.
2
Fi
n
g
er M
o
vemen
t
Desi
g
n
The m
a
i
n
focu
s for
desi
g
n
i
n
g t
h
e fi
n
g
er m
ovem
e
nt
is to
redu
ce th
e num
b
e
r o
f
actu
a
to
rs
wh
ich
is
use
d
t
o
cont
rol
t
h
e
m
ovem
e
nt of t
h
e fi
n
g
er a
nd m
a
ke t
h
i
ngs
easi
e
r for t
h
e
act
i
on o
f
t
h
e fi
nge
r. Fi
g
u
r
e 2 sho
w
s
i
n
whi
c
h t
h
e fi
nge
r i
s
desi
g
n
e
d wi
t
h
acc
om
m
odat
i
ng pr
oc
edu
r
e t
o
kee
p
t
h
e fi
n
g
er i
n
st
rai
g
ht
en p
o
si
t
i
on at
rest.
Wh
en
th
e
actu
a
to
r is activ
ated
, t
h
e finger will b
e
nd
and
fo
ld
u
p
and
stay in
th
e sa
m
e
p
o
s
ition
.
Th
e
same
m
e
thod is valid with ot
her finge
rs also, with each fi
nge
r is independe
n
tly controlled.
Whe
n
the actuator
becom
e
s inactive, t
h
e com
p
lia
n
t
m
ech
an
ism wou
l
d return
th
e fing
ers to
r
e
st
. That
i
s
on
e act
uat
o
r
pe
rf
orm
s
t
w
o o
p
e
r
at
i
ons
vi
z cl
osure
of
fi
n
g
er an
d ret
a
i
n
i
n
g st
at
e of re
st
. Hence n
u
m
b
er o
f
act
uat
o
r
i
s
reduce
d
t
o
5
or i
n
ot
he
r w
o
r
d
s 5
act
uat
o
rs a
r
e n
ecessary
t
o
co
nt
r
o
l
al
l
t
h
e finge
rs. T
h
e ana
t
om
y
behi
nd t
h
e h
u
m
a
n fi
ng
ers i
s
sho
w
n i
n
Fi
g
u
r
e 3
.
A
si
m
p
l
e
i
r
o
n
m
e
t
a
l
ch
ai
n i
s
use
d
t
o
cont
rol
m
ove
m
e
nt
of
fi
n
g
er
. Thi
s
m
ovem
e
nt
i
s
sim
i
l
a
r t
o
as t
h
at
of
h
u
m
a
n ha
nd
.
Fi
gu
re
2
Si
n
g
l
e
Tensi
o
n
C
a
bl
e Desi
gn
Pr
o
p
o
sal
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
No
vel App
r
oa
ch
to Con
t
ro
l
o
f
Robo
tic Ha
nd
U
s
ing
Flex
S
e
nso
rs (
S
and
esh.R.S
)
23
6
Fi
gu
re
3
A
n
at
o
m
y
i
n
si
de R
o
b
o
t
fi
nge
r
2.
3 H
a
n
d
Si
z
i
ng
In de
si
g
n
i
n
g t
h
e ro
b
o
t
i
c
ha
nd
, h
u
m
a
n hand
di
m
e
nsi
ons
are req
u
i
r
e
d
.
W
e
have c
o
m
p
il
ed t
h
e
di
m
e
nsi
ons f
r
o
m
bot
h m
a
l
e
s and
fem
a
l
e
s of
et
hni
c
bac
k
g
r
ou
n
d
.
In
o
r
de
r
t
o
p
r
ovi
de st
a
b
l
e
g
r
as
p an
d
pi
ck,
fu
rt
he
r
di
m
e
nsi
ons
we
re i
n
cre
a
sed
o
n
fi
n
g
er
geom
et
ry
and
al
so el
b
o
w
sect
i
on.
T
h
e
ove
ral
l
di
m
e
nsi
on
of
han
d
al
on
g wi
t
h
bas
e
uni
t
i
s
t
a
bul
at
ed as sh
ow
n
i
n
Tabl
e 1
,
w
h
i
c
h i
s
use
d
i
n
desi
g
n
i
n
g t
h
e
han
d
f
o
r
o
u
r
st
udy
.
Som
e
of t
h
e
di
m
e
nsi
ons
are
l
e
ss an
d c
o
m
p
act
com
p
ared t
o
exi
s
t
i
n
g a
n
t
h
r
o
p
o
m
o
rp
hi
c r
o
bot
i
c
han
d
[
10]
.
2.
4. M
a
teri
al
s Used
Research ha
s been c
o
nducted rega
rding materials
and pa
rt
s. The ent
i
r
e
ro
b
o
t
i
c
hand i
s
const
r
uct
e
d
wi
t
h
t
h
e hel
p
of P
V
C
t
ubi
ng
. The base
po
r
t
i
on h
o
l
d
s t
w
o
6V bat
t
e
ri
es.
It
i
s
al
so encl
ose
d
wi
t
h
AC
-
2
pi
n
soc
k
et to c
h
a
r
ge the
battery. T
h
e e
n
tire m
a
terial is
placed on Al- rubbe
r
-Al
whic
h is
free
from
envi
ronmental
con
s
t
r
ai
nt
s.
Fi
gu
re
4
sh
o
w
s t
h
e a
b
o
v
e
m
e
nti
one
d
base
u
n
i
t
s
wi
t
h
necessa
ry
el
ect
ro
ni
c i
n
st
r
u
m
e
nt
at
i
on w
h
i
c
h
i
s
use
d
fo
r e
x
p
e
ri
m
e
nt
al
st
udy
.
Tabl
e 1. Ha
nd
Di
m
e
nsi
ons
Sl.No Quantity
Values
1.
L
e
ngth of ARM
580
m
m
2.
Palm
width
140
m
m
W
r
ist
width
80
m
m
For
e
ar
m
101
m
m
M
i
d
ar
m
105
m
m
E
l
bow
114
m
m
3.
W
e
ight of Ar
m
0.
825k
g
W
e
ight of Base
3.
43kg
4.
Palm
L
e
ngth
127
m
m
5.
T
h
u
m
b
length
80
m
m
6.
I
ndex finger
L
e
ngth
100
m
m
7.
m
i
ddle finger
length
110
m
m
8.
Ring Finger
length
92
m
m
10.
little finger length
68
mm
11.
Base
r
a
dius
145
m
m
12.
Supply
Voltage
Base
M
ovem
e
nt
12Volts
Finger
M
ovem
e
nt
6 Volts
13.
M
a
xim
u
m
closing tim
e
Of each finger
4.7 seconds
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
234 – 244
2
37
Figure 4.
Base unit with neces
sary
electronic
s
3.
AN
ALY
S
IS
O
F
D
C
MOTO
R WIT
H
S
Y
S
TEM EQ
UAT
IONS
Fi
gu
re
5.
Sc
he
m
a
t
i
c
Di
agram
o
f
DC
m
o
t
o
r
Fi
gu
re
5 s
h
ow
s t
h
e Sc
hem
a
t
i
c Di
ag
ram
of
DC
m
o
t
o
r. T
h
ese m
o
tor are
basically arm
a
ture
volta
ge
cont
rol
l
e
d m
o
t
o
rs at
c
o
nst
a
nt
exci
t
a
t
i
on
or
m
a
y
be
m
i
cro perm
anent
m
o
t
o
r
.
T
h
ese m
o
t
o
r c
o
nt
r
o
l
t
h
e
act
i
ons
of
joi
n
ts of fi
ngers
.
The pe
rform
a
nce of t
h
ese
m
o
tors
is t
o
be e
v
aluate
d by the control syste
m
analys
is. For
t
h
at
t
h
e
fol
l
o
wi
ng
m
e
t
hod i
s
u
s
ed t
o
fi
nd
t
h
e
t
r
ans
f
er
f
unct
i
o
n
of
t
h
e m
odel
.
3.
1 S
y
s
t
em E
q
uati
ons
Th
e M
o
tor To
rq
u
e
T is
related
to arm
a
tu
re cu
rren
t
i
with
m
o
tor torqu
e
constan
t
K
T =
ki
(1
)
Gen
e
rated vo
ltag
e
,
is related
to
angu
lar
v
e
locity
k
=
(2
)
B
a
sed
on
Ne
wt
on
’s l
a
w a
n
d
K
i
rch
h
o
f
f
’
s l
a
w
we ca
n
wri
t
e
t
h
e eq
uat
i
o
n
s
f
r
o
m
Fi
g 5 as
+
b
=
(3
)
L
+
=
V
-
(4
)
3.
2 T
r
ans
f
er F
uncti
on
Applying La
place transform
equa
tion 3
a
n
d 4
ca
n be written
as
J
S
θ
s
b
S
θ
s
K
I
s
(5
)
Al-
r
ubber
-
Al
6V
battery
6V
battery
AC
-
Cha
r
ge
r
230V
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
No
vel App
r
oa
ch
to Con
t
ro
l
o
f
Robo
tic Ha
nd
U
s
ing
Flex
S
e
nso
rs (
S
and
esh.R.S
)
23
8
LsI
(s)
+ RI
(s
)
= V
(s
)
–
K
θ
(s) (
6
)
Whe
r
e
s
de
notes the La
place
ope
rator.
Fi
nding an expressi
on for I(s)
I(s
) =
(7
)
Rep
l
acin
g
equatio
n
(7) in (5
)
to
ob
tain
:
J
K
(8
)
Th
is eq
uatio
n
for th
e
DC m
o
to
r is shown in
th
e
b
l
o
c
k
di
agram
i
n
Fi
g
u
r
e 6.
F
r
om
equation
(8), the t
r
ans
f
e
r
fun
c
tion
fro
m
t
h
e inpu
t vo
ltage, V
(
s
), t
o
t
h
e
out
put
a
n
gl
e,
θ
G
s
=
(9
)
From
t
h
e
bl
oc
k
di
ag
ram
i
n
Fi
g
u
re
6
,
t
h
e
i
n
put
v
o
l
t
a
ge
V
(
s
)
an
d to
t
h
e ang
u
lar v
e
l
o
city,
ω
,
are
related
t
o
:
G
s
=
(1
0)
Fi
gu
re
6.
C
l
ose
d
L
o
op
sy
st
em
of
DC
M
o
t
o
r
For t
h
e M
o
t
o
r
use
d
at
el
bo
w,
t
h
e Po
wer i
s
e
qual
t
o
3.
6 wat
t
s, t
h
e r
o
t
o
r i
n
ert
i
a
J be assu
m
e
d as 0.
02
,
Spee
d i
s
eq
ual
t
o
3
8
R
P
M
(
m
ax), a
n
d s
u
p
p
l
y
v
o
l
t
a
ge i
s
gi
ve
n as
6
V,
t
h
en
t
h
e t
o
r
q
u
e
co
nst
a
nt
K
c
a
n
be
cal
cul
a
t
e
d f
r
o
m
equat
i
on,
=
Sim
i
l
a
rl
y
for t
h
e m
o
t
o
r use
d
t
o
co
nt
r
o
l
t
h
e
m
ovem
e
nt
of f
i
nge
r use
s
a su
ppl
y
v
o
l
t
a
ge
o
f
6
V
,
Po
we
r
p
f
3
.
19
8Watts, Sp
eed
pf
7
1
RPM (m
ax
) with
sam
e
ro
to
r in
ertia J of 0.0
2
. It is fou
nd th
at,
1
.5077
,
4
, wi
t
h
l
o
ad
t
o
r
que
T1
of
0.
9 Nm
m
o
t
o
r
wi
t
h
38 R
P
M
an
d,
0
.807
,
7.43
m
o
to
r
with
71
RPM
with
lo
ad
torq
u
e
T2 of
0
.
4
3
0
Nm
.
Th
e M
o
delin
g
an
d analysis is do
n
e
for
b
o
t
h
th
e m
o
to
rs with
two
con
s
trai
n
t
s v
i
z, Op
erat
io
n
of
m
o
to
r
with
lo
ad
and
o
p
e
ration
of mo
tor witho
u
t
load
. Th
e M-
fi
l
e
and Si
m
u
l
i
n
k
m
odel
are rel
a
t
e
d by
SIM
f
u
nct
i
o
n
[1
3,
14]
. T
h
e ri
ght
a
ngl
e s
h
aft
Gear
3 m
o
t
o
r i
s
used t
o
c
o
nt
r
o
l
t
h
e r
o
b
o
t
i
c
arm
.
It
can rot
a
t
e
36
0°
wi
t
h
1
.
6 sec
.
It
ope
rat
e
s i
n
6 V. I
n
o
r
der
t
o
cont
rol
t
h
e
m
ovem
e
nt
of f
i
nge
rs, m
i
ni
at
ure m
e
t
a
l
gear m
o
t
o
rwi
t
h
7
1
-
R
PM
,
ope
rat
i
n
g a
v
o
l
t
a
ge o
f
6
V.
Th
ese m
o
t
o
rs are
use
d
one
f
o
r
ea
ch
fi
n
g
er.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
234 – 244
2
39
4.
BLOCK
DI
A
G
R
A
M
OF
P
R
OS
THETIC R
O
BOTIC HA
ND
Fig
u
re
7
.
Tran
smit
ter sectio
n
Figure
8. Receiver section
The Fle
x
se
ns
or is
placed i
n
the hum
a
n hand along
with
s
e
ns
ors
which
has a nom
i
nal resistance of
10
K
o
h
m
s
dur
i
ng
u
n
fl
e
x
ed
and
i
n
cre
a
ses
gra
d
ual
l
y
whe
n
fl
e
x
ed
. T
h
i
s
cha
nge i
n
res
i
st
ance i
s
pas
s
e
d t
o
LM3
2
4
.
Th
e
ou
tpu
t
o
f
LM324
is p
a
ssed
to
co
n
t
ro
ller
wh
ich
it will co
n
tinu
o
u
s
ly m
o
n
ito
r th
e b
e
n
d
o
f
t
h
e flex
sensor acc
ordi
ng t
o
that it will control
the robotic ha
nd. The Flex
sensor is placed in t
h
e
hum
an ha
nd,
use
d
to
co
n
t
ro
l t
h
e
Prosth
etic Rob
o
tic h
a
nd
.
As th
e
fing
ers b
e
nd
, th
ere will
b
e
a
ch
ang
e
in
resistan
ce, t
h
u
s
v
o
l
tag
e
d
r
op
is fed
to th
e d
r
i
v
er ci
rcu
it. Th
is d
a
t
a
is
enco
ded
(HT
6
40
) an
d
t
r
ansm
i
t
t
e
d wi
t
h
t
h
e hel
p
of
R
F
Tran
sm
it
t
e
r op
erat
i
ng
wi
t
h
a f
r
eq
ue
ncy
ran
g
e
43
4M
Hz a
s
s
h
o
w
n i
n
Fi
gu
re
7.
On t
h
e ot
h
e
r en
d i
n
t
h
e
rec
e
i
v
er
sid
e
as show
n in
Figu
r
e
8
,
th
is d
a
ta is deco
d
e
d
w
ith
th
e h
e
l
p
d
e
coder
(H
T648
)
an
d
p
a
ssed
to
8
9v51
m
i
croco
n
t
r
ol
l
e
r f
o
r t
h
e m
ove
m
e
nt
of ha
n
d
.
The r
o
bot
i
c
ha
nd
o
p
erat
es i
n
a 12
V bat
t
e
ry
. It
al
so c
onsi
s
t
s
o
f
ch
arg
e
r
for th
e b
a
ttery to
g
e
t ch
arg
e
d. Th
is 1
2
V b
a
ttery is su
fficien
t
eno
ugh
to
con
t
rol all
th
e 9
m
i
c
r
o
DC
m
o
t
o
rs. Unl
i
k
e
t
h
e norm
a
l
hum
an han
d
, t
h
e ro
b
o
t
i
c
han
d
i
s
capabl
e
of m
ovem
e
nt
of pal
m
, fi
nger a
nd
el
bo
w
.
The e
n
t
i
r
e ha
n
d
i
s
m
ount
ed
o
n
a ba
se u
n
i
t
whe
r
e i
t
can m
ove
f
o
r
w
ar
d/
re
verse a
n
d a f
u
l
l
deg
r
ee o
f
r
o
t
a
t
i
on.
Fig
u
re
9
sho
w
s th
e
h
a
rdware circu
itry
for t
r
an
sm
itter sectio
n
i
n
wh
ich
FS1
t
o
FS5
d
e
no
tes th
e flex
sen
s
o
r
s
al
on
g wi
t
h
L
M
32
4, enc
o
de
r and t
r
a
n
sm
i
t
t
e
r con
n
ect
i
o
n
s
. Fi
gu
re 1
0
s
h
o
w
s t
h
e ha
r
d
ware co
n
n
ect
i
ons
fo
r
receiver sections. T
h
e
vari
ous value
s
of Fle
x
se
nsor
be
nt along with
the
LM324 vo
ltage for
diffe
re
nt angles
are tabu
lated
i
n
Tab
l
e
2
.
Tabl
e 2. Fl
ex
s
e
ns
or rea
d
i
n
gs
Resistance
Voltage in
Angle
L
M
324 cir
c
uits
In
K
Ω
Volts
in degr
ee
output in v
o
lts
26.
18
0.
82
90
3.
74
40.
26
0.
67
75
3.
19
48.
74
0.
45
60
2.
7
52.
92
0.
40
45
2.
2
57.
10
0.
37
30
1.
7
60.
40
0.
32
15
0.
5
63.
5
0.
30
00
0.
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
No
vel App
r
oa
ch
to Con
t
ro
l
o
f
Robo
tic Ha
nd
U
s
ing
Flex
S
e
nso
rs (
S
and
esh.R.S
)
24
0
Fi
gu
re
9.
H
a
rd
ware
Circui
t fo
r T
r
an
sm
itter Sectio
n
Figure
10.
Ha
rdware
Circuit for
Receive
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
234 – 244
2
41
Consi
d
er the e
x
am
ple whe
r
e
if the
bits recei
ved by
dec
o
de
r “
1
0000”
the
n
the
he
xadeci
mal value
of
0X
1f
i
s
se
nt
t
o
t
h
e fi
nge
r t
h
r
o
u
g
h
c
ont
rol
l
e
r f
o
r
co
nt
ract
i
o
n.
Howev
e
r t
h
is d
a
ta is requ
ired
for th
e co
m
p
lete
co
n
t
ractio
n
o
f
fing
ers. Figu
re 1
1
(a &
b
)
shows th
e in
itial ex
p
e
rim
e
n
t
atio
n
th
at was m
a
d
e
to
g
l
ow th
e LED by
the
m
ovem
e
nt
of flex sens
ors placed
i
n
the glove.
Like
wise
the above
process was
experim
e
ntally carried
out
fo
r
ot
he
r m
ove
m
e
nt
of
ha
n
d
.
Whi
c
h a
r
e l
i
s
t
e
d
bel
o
w i
n
Ta
b
l
e 3.
Fi
gu
re 1
1
(a
). S
h
o
w
s Fl
ex
Se
n
s
ors
wi
t
h
o
u
t
be
ndi
ng
Fi
gu
re
1
1
(
b
)
.
F
l
ex se
no
rs B
e
n
t
i
ndi
cat
i
n
g al
l
t
h
e LE
D’s
O
n
LED
OFF
Showing
decoder
output
as “000
00”
All the Flex
sensor
s un
bent
All the Flex
sensor
s ben
t
LED
ON
Showing
decoder
output
as “111
11”
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RA I
S
SN
:
208
9-4
8
5
6
No
vel App
r
oa
ch
to Con
t
ro
l
o
f
Robo
tic Ha
nd
U
s
ing
Flex
S
e
nso
rs (
S
and
esh.R.S
)
24
2
Tabl
e 3. In
p
u
t
fr
om
Fl
ex
sens
ors
Sl.
N
o
Dir
ection of Por
t
1
Hex data
1 Finger
m
ovem
e
nt
contr
action
Relaxation
0x1
f
0x1e
2 W
r
ist
Forward
Backward
0x01
0x00
3 E
l
bow
Forward
Backward
0x02
0x03
4 E
l
bow
r
o
tation
Clockwise
Anti clockwise
0x04
0x06
5 Base
m
ovem
e
nt
Forward
Backward
0x05
0x06
6 Base
r
o
tation
Clockwise
Anti clcokwise
0x09
0x0a
5.
RESULT ANALYSIS
The m
ovem
e
nt of r
o
bot
i
c
ha
n
d
i
s
co
nt
r
o
l
l
e
d by
a DC
m
o
t
o
r. Fi
g
u
re
12
hi
g
h
l
i
ght
s t
h
e pe
rf
orm
a
nce
o
f
the system
by means of
followi
ng dynam
i
c
characte
r
istics
Viz,
(a)
Vari
at
i
o
n
of
T
o
r
q
ue i
n
N/
m
wi
t
h
respect
t
o
rot
o
r
spee
d i
n
r
a
d/
sec
(b
)
Vari
at
i
o
n
of R
o
t
o
r s
p
eed
i
n
r
a
d/
sec
wi
t
h
a
n
gul
a
r
di
spl
ace
m
e
nt
(c)
Variation of di
splacem
ent
with
respect t
o
ti
me in seconds
(d
)
Variation
o
f
curren
t
with respect to
tim
e in
seco
nd
s
Initially torque
is high which
actuates the robotic
ha
nd for m
ove
m
e
nts, and th
en torque decays with
respect to i
n
crease of
rot
o
r
spee
d as indic
a
te Figur
e 12(a). T
h
e rotor spee
d ex
p
o
n
e
ntiall
y in
crease wit
h
respect to a
ngular displacement as sh
own i
n
Figure
12(b). Figure
12(c)
illustrates the variation of angula
r
displacem
ent
with res
p
ect to variati
on
of c
u
rrent and Figure 12(d) shows
the expone
nti
a
l decaying of current
with
resp
ect to ti
m
e
th
is is si
milar to
v
a
riati
o
n
o
f
To
rqu
e
sh
own
in
Figu
re 1
2
(a) sin
ce t
o
rqu
e
is p
r
o
portio
n
a
l
to
cu
rren
t. Th
e sam
e
an
alysis is al
so carried ou
t
for t
w
o d
i
fferen
t
m
o
to
rs
with
and
with
ou
t lo
ad
i
n
Figure
1
2
(Min
iatu
re m
e
t
a
l g
ear m
o
to
r). Fro
m
th
e an
alysis, it is
clear that
m
o
tor is
w
o
r
k
in
g
as
p
e
r
ou
r
re
quire
m
e
nts
[10
]
. Th
e i
n
itial ex
p
e
rim
e
n
t
a
l
setu
p wh
ich
is sho
w
n
i
n
was carried
ou
t
with
b
r
ead
board and
later all th
e
el
ect
roni
cs
wi
t
h
necessa
ry
i
n
s
t
rum
e
nt
at
i
on w
a
s m
ount
ed
o
n
PC
B
Fi
g
u
re
1
3
.
Fi
gu
re 1
2
. Si
m
u
l
i
n
k
anal
y
s
i
s
R
i
ght
a
ngl
e Sh
aft
Dc
M
o
tor
(Left) and
Min
i
atu
r
e m
e
tal g
ear m
o
to
r
(Rig
h
t
)
Test
i
n
g
was
a
l
so car
ri
ed
o
u
t
t
o
pi
ck
u
p
a ha
nd
bal
l
m
a
de u
p
of
wo
ol
en
wei
g
h
i
ng
2
0
gram
s
app
r
oxi
m
a
t
e
ly
. Ho
we
ver
we have m
a
de 5 a
t
t
e
m
p
t
s
t
o
pi
ck t
h
e bal
l
fr
om
t
h
e fl
o
o
r
of
w
h
i
c
h
3 o
u
t
o
f
5
t
i
m
e
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
56
IJRA Vol. 3, No. 4,
D
ecem
ber 2014:
234 – 244
2
43
was successful in com
p
let
i
ng the task. The success ra
te
was about 60 perce
n
t. The
vari
ous
positions of
p
i
ck
ing
and
h
o
ld
in
g th
e
b
a
ll i
s
shown in
Figu
re 14
.
Fi
gu
re 1
3
.
E
x
p
e
ri
m
e
nt
al
set
up
i
ndi
cat
es Fl
ex sens
ors
m
ount
ed on
Woo
l
en Hand
Glov
e co
n
t
ro
llin
g On
e
DC m
o
to
r.
Fig
u
re 14
. Vari
o
u
s
po
sition
s
of
Robo
tic
h
a
n
d
to
p
i
ck
up
a wo
o
l
en
b
a
ll
6.
CO
NCL
USI
O
N
The m
e
t
hod
pr
op
ose
d
i
n
t
h
i
s
pape
r i
s
si
m
p
le and easy
wa
y
t
o
cont
r
o
l
t
h
e ro
bot
i
c
han
d
usi
n
g fl
e
x
sens
ors
.
F
u
rt
he
r t
h
e
C
A
D
des
i
gn m
odel
fo
r
t
h
e sam
e
i
s
ex
cl
ude
d
due
t
o
i
n
crease
i
n
cost
. C
a
re
was
t
a
k
e
n i
n
d
e
sign
ing
th
e
robo
tic h
a
nd
an
d it rem
a
in
s th
e ch
alleng
ing
task. Th
e
ph
ysical d
i
m
e
n
s
io
n
s
were
d
e
sig
n
e
d
taking into t
h
e account t
h
e
hand s
h
oul
d
be able to
pick, gras
p, a
n
d hold t
h
e
object
tightly. Due
to RF
transm
itter/receiver the
range of m
ovement of
ha
nd
was lim
ited to short distance. In t
h
e course
of
expe
ri
m
e
nt
at
i
o
n t
h
e aut
h
o
r
s have al
s
o
st
ud
i
e
d t
h
e anal
y
s
i
s
of DC
m
o
tors
usi
n
g M
A
TLAB
/
SIM
U
L
I
N
K
.
Furt
herm
ore
m
i
ni
at
uri
zat
i
o
n
o
f
devi
ce
ca
n
be
do
ne
by
usi
n
g
M
E
M
S
t
ech
nol
o
g
y
,
i
n
creasi
n
g ra
nge
o
f
transceive
r
a
nd
high spee
d processors.
Evaluation Warning : The document was created with Spire.PDF for Python.