I
nte
rna
t
io
na
l J
o
urna
l o
f
Ro
bo
t
ics a
nd
Aut
o
m
a
t
io
n
(
I
J
RA
)
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
201
7
,
p
p
.
1
6
8
~1
7
7
I
SS
N:
2089
-
4
8
5
6
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
r
a.
v
6
i3
.
p
p
1
6
8
-
177
168
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
RA
Discrete
-
ti
m
e
Inv
ersio
n Mo
del Con
trol o
f
a
Do
ubl
e
-
d
a
m
per
Sy
ste
m
w
ith
Unce
rtain Para
m
et
ers
M
a
rwa
H
a
nn
a
chi
,
I
k
bel B
en
chei
k
h A
h
m
ed
,
D
ha
o
u So
ud
a
ni
A
u
to
m
a
ti
c
Co
n
tro
l
Re
se
a
rc
h
L
a
b
o
ra
to
ry
,
ENI
T
,
Un
iv
e
rsit
y
o
f
T
u
n
is
El
M
a
n
a
r
B
P
3
7
,
1
0
0
2
T
u
n
is,
T
u
n
isia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
y
9
,
2
0
1
7
R
ev
i
s
ed
J
u
l 2
9
,
2
0
1
7
A
cc
ep
ted
A
u
g
12
,
2
0
1
7
T
h
is
p
a
p
e
r
a
d
d
re
ss
e
s th
e
c
o
n
tro
l
a
t
d
isc
re
te t
i
m
e
o
f
p
h
y
si
c
a
l
c
o
m
p
le
x
s
y
ste
m
s
m
u
lt
i
-
in
p
u
ts
m
u
lt
i
-
o
u
tp
u
ts
w
it
h
v
a
riab
les
p
a
ra
m
e
ters
.
Cl
a
ss
i
f
ied
a
m
o
n
g
th
e
ro
b
u
st
c
o
n
tro
l
law
s
th
e
In
tern
a
l
M
o
d
e
l
Co
n
tro
l
(IM
C)
is
a
d
o
p
ted
in
th
is
w
o
rk
to
e
n
su
re
th
e
d
e
sire
d
p
e
rf
o
r
m
a
n
c
e
s
a
d
jac
e
n
t
to
th
e
c
o
m
p
lex
it
ies
o
f
th
e
s
y
ste
m
.
Ho
w
e
v
e
r,
th
e
a
p
p
li
c
a
ti
o
n
o
f
th
is
c
o
n
tro
l
stra
teg
y
re
q
u
ires
th
a
t
th
e
se
d
if
fe
re
n
t
b
u
il
d
i
n
g
b
lo
c
k
s
b
e
o
p
e
n
lo
o
p
sta
b
le,
w
h
ich
in
v
it
e
s
u
s,
o
n
th
e
o
n
e
h
a
n
d
,
to
a
p
p
ly
th
e
a
lg
e
b
ra
ic
a
p
p
r
o
a
c
h
o
f
Kh
a
rit
i
n
o
v
f
o
r
d
e
li
m
it
in
g
th
e
su
m
m
it
s
sta
b
il
it
y
d
o
m
a
in
’s
s
y
st
e
m
.
On
th
e
o
th
e
r
c
a
se
,
th
e
L
in
e
a
r
M
a
tri
x
In
e
q
u
a
li
t
ies
(L
M
I)
a
p
p
ro
a
c
h
is
a
p
p
li
e
d
to
d
e
term
in
e
th
e
c
o
rre
c
to
r
’s
sta
b
il
it
y
c
o
n
d
i
ti
o
n
s
o
b
tain
e
d
b
y
a
sp
e
c
if
ic
in
v
e
rsio
n
o
f
th
e
c
h
o
se
n
m
o
d
e
l.
I
t
is
in
th
is
se
n
se
th
a
t
w
e
c
o
n
tri
b
u
te
b
y
th
is
w
o
rk
to
e
x
e
c
u
te
th
e
c
o
m
m
a
n
d
b
y
in
v
e
rsio
n
th
e
d
isc
re
te
-
ti
m
e
m
o
d
e
l
in
o
rd
e
r
to
e
n
su
re
th
e
sta
b
i
li
ty
a
n
d
to
m
a
in
tain
t
h
e
p
e
rf
o
r
m
a
n
c
e
s
th
e
sta
b
il
it
y
c
o
n
d
it
io
n
s
o
f
re
q
u
ire
d
f
o
r
th
e
d
o
u
b
le
d
a
m
p
e
r
s
y
ste
m
w
it
h
v
a
riab
le p
a
ra
m
e
ters
.
K
ey
w
o
r
d
:
Dis
cr
ete
-
ti
m
e
I
n
v
er
s
io
n
m
o
d
el
Kh
ar
iti
n
o
v
’
s
ap
p
r
o
ac
h
L
i
n
ea
r
m
atr
i
x
i
n
eq
u
alitie
s
Mu
lti
v
ar
iab
le
s
y
s
te
m
s
Un
ce
r
tai
n
s
y
s
te
m
s
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ma
r
w
a
Ha
n
n
ac
h
i,
Au
to
m
a
tic
C
o
n
tr
o
l Res
ea
r
c
h
L
ab
o
r
ato
r
y
,
E
NI
T
,
Un
iv
er
s
i
t
y
o
f
T
u
n
is
E
l
Ma
n
ar
,
B
P
3
7
,
1
0
0
2
T
u
n
is
,
T
u
n
i
s
ia
.
E
m
ail:
m
ar
w
a.
h
a
n
n
ac
h
i
@
e
n
it.
r
n
u
.
t
n
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
C
o
m
p
le
x
en
g
i
n
ee
r
in
g
s
y
s
te
m
s
ar
e
f
r
eq
u
e
n
tl
y
m
u
lt
iv
ar
iab
le
[
1
]
.
T
h
ey
h
a
v
e
m
o
r
e
th
an
o
n
e
co
n
tr
o
l
in
p
u
t
an
d
m
o
r
e
th
a
n
o
n
e
o
u
tp
u
t.
I
n
th
is
w
o
r
k
,
w
e
li
m
it
o
u
r
s
el
v
es
to
th
e
s
t
u
d
y
o
f
s
y
s
te
m
s
h
a
v
i
n
g
t
h
e
s
a
m
e
n
u
m
b
er
o
f
in
p
u
t
-
o
u
tp
u
t
s
an
d
f
u
n
ctio
n
all
y
co
n
tr
o
llab
le
.
T
h
e
o
b
j
ec
tiv
e
o
f
th
e
co
m
m
an
d
is
to
h
a
v
e
a
n
ac
ce
p
tab
le
b
eh
av
io
r
o
f
s
ev
er
al
o
u
tp
u
t
v
ar
iab
les
s
i
m
u
l
ta
n
eo
u
s
l
y
b
y
th
e
m
an
ip
u
latio
n
o
f
s
ev
er
al
in
p
u
ts
.
T
h
e
r
ea
lizatio
n
o
f
t
h
ese
co
n
tr
o
l la
w
s
is
b
ased
o
n
th
e
m
o
d
elin
g
o
f
s
y
s
te
m
s
.
T
h
e
d
esig
n
o
f
a
s
er
v
o
co
n
tr
o
l
is
g
e
n
er
all
y
ca
r
r
ied
o
u
t
f
r
o
m
a
m
o
d
el
o
f
th
e
r
ea
l
s
y
s
te
m
o
f
te
n
ca
lled
n
o
m
i
n
al
m
o
d
el.
T
h
e
latter
is
o
n
l
y
a
n
ap
p
r
o
x
i
m
atio
n
o
f
r
ea
lit
y
.
I
t
m
a
y
h
a
v
e
v
ar
io
u
s
d
ef
icie
n
cies
a
m
o
n
g
w
h
ic
h
in
cl
u
d
e
th
e
m
o
d
elin
g
u
n
ce
r
tai
n
ties
.
I
t
i
s
t
h
er
ef
o
r
e
n
ec
e
s
s
ar
y
to
o
p
tim
ize
th
e
co
n
tr
o
l
w
it
h
r
esp
ec
t
to
th
e
m
o
d
el
en
s
u
r
i
n
g
a
g
ain
s
t its
u
n
ce
r
tain
ti
es [
2]
an
d
[
3
]
.
T
h
e
I
n
ter
n
al
Mo
d
el
C
o
n
tr
o
l
(
I
MC)
i
n
tr
o
d
u
ce
d
b
y
Gar
cia
a
n
d
Mo
r
ar
i
in
th
e
1
9
7
0
s
is
a
r
o
b
u
s
t
co
n
tr
o
l
s
tr
u
ct
u
r
e
co
m
m
o
n
l
y
e
x
p
lo
ited
f
o
r
its
co
n
tr
o
l
p
er
f
o
r
m
a
n
ce
[
4
]
.
I
t’
s
p
r
esen
ted
as
an
al
ter
n
ativ
e
to
th
e
cla
s
s
ic
clo
s
ed
lo
o
p
.
T
h
e
I
MC [
5
]
co
m
m
an
d
ap
p
lied
s
i
m
u
lta
n
eo
u
s
l
y
t
o
th
e
p
r
o
c
ess
a
n
d
it
s
m
o
d
el
(
in
th
e
m
o
n
o
v
ar
iab
le
o
r
m
u
lt
iv
ar
iab
le,
li
n
ea
r
o
r
n
o
n
li
n
ea
r
ca
s
e)
.
T
h
eir
b
eh
av
io
r
al
g
ap
i
s
u
s
ed
to
co
r
r
ec
t
th
e
er
r
o
r
o
n
th
e
r
ef
er
e
n
ce
s
ig
n
al.
T
h
e
er
r
o
r
s
i
g
n
al
i
n
cl
u
d
es
t
h
e
i
n
f
l
u
en
ce
o
f
e
x
ter
n
al
d
is
t
u
r
b
an
ce
s
a
n
d
t
h
e
m
o
d
elin
g
er
r
o
r
s
o
f
th
e
c
o
n
tr
o
lled
s
y
s
te
m
.
I
n
th
e
I
MC
s
tr
u
ctu
r
e,
t
h
e
co
n
tr
o
ller
is
ass
u
m
ed
to
b
e
th
e
in
v
er
s
e
o
f
th
e
m
o
d
e
l
as
s
o
ciate
d
to
th
e
p
la
n
t
.
Fro
m
w
h
er
e
th
e
n
ee
d
to
s
t
u
d
y
th
e
p
r
o
b
le
m
s
r
elate
d
to
t
h
is
r
ev
er
s
al
b
ec
au
s
e
it
is
p
h
y
s
ical
l
y
i
m
p
o
s
s
ib
le
i
n
m
o
s
t c
ases
(
d
ela
y
p
r
o
b
lem
s
,
n
o
t
m
in
i
m
u
m
p
h
a
s
e
o
r
n
o
n
-
r
elati
v
e
n
o
n
-
ze
r
o
d
eg
r
ee
.
.
.
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Dis
crete
-
ti
me
I
n
ve
r
s
io
n
Mo
d
el
C
o
n
tr
o
l
o
f a
d
o
u
b
le
-
d
a
mp
er sys
tem
w
ith
…
(
Ma
r
w
a
Ha
n
n
a
c
h
i
)
169
Face
d
w
it
h
th
e
i
n
d
u
s
tr
ial
n
e
ce
s
s
itie
s
an
d
th
e
r
ap
id
p
r
o
g
r
ess
o
f
elec
tr
o
n
ic
s
th
at
h
av
e
g
en
er
ated
co
n
s
id
er
ab
le
s
y
n
th
e
s
is
i
n
th
e
f
ield
o
f
co
n
tr
o
l
b
y
co
m
p
u
ter
s
.
I
t
w
as
es
s
en
t
ial
to
d
ev
elo
p
th
is
s
tr
ateg
y
(
I
M
C
)
in
th
e
d
is
cr
ete
ca
s
e
a
n
d
w
h
ic
h
was th
e
s
t
u
d
y
’
s
s
u
b
j
ec
t o
f
s
ev
er
al
w
o
r
k
s
[
6
]
,
[
7
]
,
[
8
]
,
an
d
[
9
]
.
T
h
e
ap
p
licatio
n
o
f
I
MC
b
ased
o
n
a
li
n
ea
r
m
o
d
elin
g
o
f
t
h
e
p
r
o
ce
s
s
.
S
u
ch
a
m
o
d
el
d
o
es
n
’
t,
in
m
an
y
ca
s
es,
f
u
ll
y
d
escr
ib
e
th
e
b
eh
av
io
r
o
f
th
e
p
r
o
ce
s
s
(
n
e
g
lect
e
d
d
y
n
a
m
ic
s
,
ig
n
o
r
an
ce
o
r
v
ar
iatio
n
s
i
n
p
r
o
ce
s
s
p
ar
am
eter
s
)
.
T
h
is
lead
s
u
s
to
s
tu
d
y
t
h
e
ca
s
e
o
f
a
ch
o
s
en
m
o
d
el
h
av
i
n
g
d
if
f
er
en
t
tr
an
s
f
er
m
a
tr
ix
o
f
th
e
p
r
o
ce
s
s
.
T
h
e
p
r
o
p
o
s
ed
I
MC
co
n
tr
o
l
s
tr
u
ctu
r
e
m
u
s
t
n
’
t
o
n
l
y
i
m
p
o
s
e
th
e
s
y
s
te
m
r
esp
o
n
s
e
b
u
t
also
m
ain
tai
n
its
b
eh
a
v
io
r
in
t
h
e
f
ac
e
o
f
p
ar
a
m
etr
ic
u
n
ce
r
tain
ties
an
d
e
x
ter
n
al
p
er
t
u
r
b
atio
n
s
,
d
esp
ite
t
h
e
i
m
p
er
f
ec
tio
n
s
o
f
t
h
e
m
o
d
el.
I
t
i
s
at
th
i
s
le
v
el
t
h
at
t
h
e
u
s
e
o
f
a
s
tu
d
y
s
tr
ate
g
y
to
v
er
i
f
y
s
tab
il
i
t
y
co
n
d
itio
n
s
is
r
eq
u
ir
ed
,
n
a
m
el
y
t
h
e
K
h
ar
iti
n
o
v
th
eo
r
e
m
[
7
]
,
ap
p
lied
f
o
r
s
y
s
te
m
s
w
i
th
b
o
u
n
d
ed
p
ar
am
etr
ic
u
n
ce
r
tain
ties
.
I
n
th
i
s
p
ap
er
,
w
e
i
n
te
n
d
to
ch
ec
k
th
e
r
o
b
u
s
tn
e
s
s
o
f
t
h
e
co
n
tr
o
l
w
it
h
r
esp
ec
t
to
p
ar
am
etr
ic
u
n
ce
r
tai
n
tie
s
,
w
h
ich
m
a
y
b
e
d
u
e
to
th
e
s
e
n
s
o
r
s
’
s
p
r
ec
is
io
n
,
t
h
e
f
r
ic
tio
n
al
f
o
r
ce
s
a
n
d
th
e
u
n
p
r
ed
ictab
le
ex
ter
n
al
f
ac
to
r
s
.
T
h
is
w
o
r
k
i
n
cl
u
d
es
t
h
e
ap
p
licatio
n
o
f
th
e
L
MI
ap
p
r
o
ac
h
[
8
]
,
in
th
e
s
y
n
th
e
s
is
p
h
ase
o
f
th
e
I
M
C
r
eg
u
lato
r
o
b
tain
ed
b
y
s
p
ec
i
f
ic
in
v
er
s
io
n
o
f
t
h
e
m
u
lti
v
ar
iab
le
m
o
d
el
w
i
ll b
e
u
s
ed
to
en
s
u
r
e
it
s
s
tab
ilit
y
.
I
t’
s
i
n
t
h
is
s
e
n
s
e,
w
e
ap
p
r
o
ac
h
th
is
w
o
r
k
b
y
m
o
d
elin
g
th
e
u
n
ce
r
tai
n
p
ar
a
m
eter
s
y
s
te
m
s
an
d
p
r
esen
tatio
n
o
f
K
h
ar
itin
o
v
’
s
t
h
eo
r
e
m
i
n
t
h
e
d
is
cr
ete
ca
s
e
t
h
en
w
e
d
e
v
elo
p
th
e
I
M
C
co
n
tr
o
l
s
tr
u
ct
u
r
e
in
t
h
e
MI
MO
ca
s
e,
w
h
er
e
w
e
w
ill
f
o
cu
s
o
n
th
e
es
tab
lis
h
m
e
n
t
o
f
it
s
r
eg
u
lato
r
w
h
o
s
e
s
y
n
t
h
esi
s
lead
s
u
s
to
ap
p
ly
th
e
L
MI
m
eth
o
d
.
T
h
e
ai
m
o
f
th
is
w
o
r
k
co
n
tr
ib
u
te
to
t
h
e
r
eg
u
lat
io
n
b
y
i
n
v
er
s
io
n
m
o
d
el
MI
MO
[
8
]
an
d
[
9
]
o
f
th
e
d
o
u
b
le
d
am
p
er
s
y
s
te
m
w
it
h
u
n
ce
r
tain
p
ar
a
m
eter
s
2.
I
M
C
ST
RUCTU
RE
P
RO
P
O
SE
D
F
O
R
M
I
M
O
L
I
NE
AR
SYST
E
M
S
I
n
th
e
I
MC,
t
h
e
s
y
n
th
e
s
is
o
f
a
co
r
r
ec
to
r
th
at
is
eq
u
al
to
th
e
d
ir
ec
t
in
v
er
s
e
d
esp
ite
o
f
t
h
e
p
h
y
s
ica
l
s
y
s
te
m
’
s
co
m
p
le
x
itie
s
o
f
th
e
tr
an
s
f
er
m
a
tr
ix
i
n
t
h
e
m
u
lti
v
a
r
iate
ca
s
e
is
p
r
i
n
cip
al
i
n
o
r
d
er
to
en
s
u
r
e
p
er
f
ec
t
I
n
s
tr
u
c
tio
n
s
.
Yet,
d
ir
ec
tl
y
s
e
v
er
s
al
is
v
ir
tu
al
l
y
i
m
p
o
s
s
ib
le
p
ar
ticu
lar
l
y
.
W
e
p
r
o
p
o
s
e
to
d
e
v
elo
p
th
e
m
et
h
o
d
o
f
r
ea
lizatio
n
o
f
an
ap
p
r
o
x
i
m
ate
i
n
v
er
s
e,
in
s
p
ir
ed
b
y
t
h
e
w
o
r
k
o
f
[
5
]
,
in
th
e
ca
s
e
o
f
m
u
lti
v
ar
ia
b
le
lin
ea
r
s
y
s
te
m
s
.
2
.
1
.
Str
uct
ure
o
f
t
he
pro
po
s
ed
I
M
C
re
g
ula
t
o
r
T
h
e
s
tr
u
ctu
r
e
o
f
t
h
e
r
eg
u
lato
r
p
r
o
p
o
s
ed
in
th
e
ca
s
e
o
f
m
o
n
o
v
ar
iab
le
s
y
s
te
m
s
[
5
]
an
d
[
1
0
]
i
s
ex
te
n
d
ed
to
m
u
lt
iv
ar
iate
li
n
ea
r
s
y
s
te
m
s
h
av
i
n
g
th
e
s
a
m
e
n
u
m
b
er
o
f
i
n
p
u
t
-
o
u
tp
u
t
s
[
1
1
]
.
I
t is p
r
esen
ted
in
Fig
u
r
e
1
.
T
h
er
e
ar
e:
m
: t
h
e
n
u
m
b
er
o
f
s
y
s
te
m
in
p
u
t
s
,
o
u
tp
u
t
s;
A
1
: a
s
q
u
ar
e
in
v
er
s
io
n
m
atr
i
x
,
to
ch
o
o
s
e
o
f
d
i
m
en
s
io
n
(
m
×
m
)
M(
z)
: th
e
m
u
lti
v
ar
iate
s
y
s
te
m
tr
an
s
f
er
m
atr
i
x
o
f
d
i
m
en
s
io
n
(
m
×
m
)
e
: th
e
in
p
u
t v
ec
to
r
o
f
th
e
d
i
m
e
n
s
io
n
r
eg
u
lato
r
(
m
×1
)
u
: th
e
d
i
m
e
n
s
io
n
co
n
tr
o
l v
ec
to
r
(
m
×1
)
Fig
u
r
e
1
.
Gen
er
alize
d
co
n
tr
o
ller
s
tr
u
ctu
r
e
C
(
z)
A
cc
o
r
d
in
g
to
th
e
d
iag
r
a
m
i
n
Fig
u
r
e
1
,
th
e
co
n
tr
o
ller
t
r
an
s
f
er
m
atr
ix
ca
n
b
e
ex
p
r
e
s
s
ed
b
y
t
h
e
n
e
x
t
eq
u
atio
n
(
1
)
:
-1
1
1
1
m
1
1
1
C
(
z
)
=
u
e
(
I
A
M
(
z
)
)
A
(
A
M
(
z
)
)
(
1
)
W
ith
I
m
i
s
th
e
id
e
n
tit
y
m
atr
ix
o
f
d
i
m
e
n
s
io
n
m
.
T
h
e
in
v
er
s
io
n
m
atr
ix
K
1
is
an
in
v
er
tib
le
s
q
u
ar
e
m
a
tr
ix
.
I
t
m
u
s
t
e
n
s
u
r
e
th
e
r
e
g
u
lato
r
’
s
s
tab
ilit
y
d
is
cu
s
s
ed
later
.
T
o
s
im
p
li
f
y
o
u
r
s
tu
d
y
,
w
e
ca
n
ch
o
o
s
e
A
1
o
f
th
e
f
o
r
m
A
1
,
=
α×
I
m
w
it
h
.
Fo
r
A
1
(
c
h
o
s
en
s
u
c
h
t
h
at
α
to
o
k
s
u
f
f
icie
n
tl
y
h
ig
h
t
h
u
s
to
ap
p
r
o
x
i
m
ate
1
1
1
A
M
z
i
n
to
1
Mz
.
I
n
t
h
i
s
ca
s
e
C
(
z)
ca
n
b
e
co
n
s
id
er
ed
as a
n
ap
p
r
o
x
i
m
ate
in
v
er
s
e
m
atr
i
x
(
2
)
o
f
th
e
tr
an
s
f
er
m
a
tr
ix
M(
z)
(
2
)
:
A
1
M (
z
)
e
(
z
)
u
(
z
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
201
7
:
1
6
8
–
1
7
7
170
1
C
z
M
z
(
2
)
2
.
2
.
T
he
s
t
a
bil
it
y
’
s
s
t
ud
y
o
f
t
he
pro
po
s
ed
re
g
ula
t
o
r
T
h
e
r
eg
u
lato
r
C
(
z)
h
av
e
t
h
e
f
o
llo
w
i
n
g
f
o
r
m
(
3
)
:
c
o
m
m
1
1
m1
t
I
A
M
z
A
Cz
d
e
t
I
A
M
z
(
3
)
T
h
e
ch
o
s
en
m
o
d
el
M
(
z)
m
u
s
t
b
e
s
tab
le,
to
g
ar
an
tee
th
e
s
tab
ilit
y
o
f
th
e
r
e
g
u
lato
r
C
(
z)
,
th
e
m
atr
ix
a
n
d
t
h
e
s
a
m
p
li
n
g
p
er
io
d
T
ap
p
lied
m
u
s
t
en
s
u
r
e
t
h
e
s
tab
ilit
y
o
f
t
h
e
r
eg
u
la
to
r
C
(
z)
.
2
.
3
.
T
he
re
g
ula
t
o
r
’
s
prec
is
io
n
T
h
e
m
atr
i
x
o
f
t
h
e
s
tat
ic
g
ai
n
s
o
f
th
e
r
eg
u
lato
r
C
(
1
)
is
d
ef
i
n
e
d
b
y
t
h
e
f
o
llo
w
i
n
g
eq
u
atio
n
(
4
)
:
1
m
1
1
C
1
I
A
M
1
A
(
4
)
T
h
e
p
r
ec
is
io
n
is
en
s
u
r
ed
f
o
r
(
5
)
1
K1
:
1
C
1
M
1
(
5
)
2
.
4
.
T
he
I
M
C
’
s
s
t
ruct
ure
pr
o
po
s
ed
T
h
e
I
MC
s
tr
u
ctu
r
e
u
s
e
e
x
p
lic
itl
y
th
e
m
o
d
el
a
s
a
co
n
tr
o
ller
alg
o
r
it
h
m
o
f
th
e
p
lan
t
th
at
i
s
s
tab
le
in
o
p
en
lo
o
p
.
I
n
th
is
ca
s
e,
th
e
i
n
v
er
s
e
m
o
d
el
ca
n
o
b
tain
t
h
e
co
n
tr
o
ller
(6
-
9)
.
T
h
e
I
MC
s
tr
u
ct
u
r
e
f
o
r
m
u
lti
v
ar
iab
le
d
is
cr
ete
-
ti
m
e
s
y
s
te
m
i
s
s
h
o
w
n
in
Fi
g
u
r
e
2
.
F
ig
u
re
2
.
I
n
tern
a
l
M
o
d
e
l
Co
n
tr
o
l
d
e
sig
n
G(
z)
: th
e
p
r
o
ce
s
s
y
(
z)
: t
h
e
O
u
tp
u
t
v
ec
to
r
o
f
th
e
p
r
o
ce
s
s
v
(
z)
: th
e
d
is
t
u
r
b
an
ce
v
ec
to
r
y
m
(
z)
: th
e
m
o
d
el
o
u
tp
u
t
v
ec
to
r
r
(
z)
: th
e
r
ef
er
en
ce
v
ec
to
r
e(
z)
: th
e
r
ef
e
r
en
ce
v
ec
to
r
u
(
z)
: th
e
co
n
tr
o
l v
ec
to
r
d
(
z)
: th
e
d
if
f
er
en
ce
b
et
w
ee
n
t
h
e
o
u
tp
u
t
s
o
f
t
h
e
m
o
d
el
a
n
d
th
e
p
r
o
ce
s
s
o
n
e
1
11
m
m
1
1
m
1
1
u
(
z
)
I
I
A
M
(
z
)
A
G
(
z
)
M
(
z
)
I
A
M
(
z
)
A
r
(
z
)
v
(
z
)
(6
)
rv
y
z
y
z
r
z
y
z
v
z
(
7
)
1
11
r
m
m
1
1
m
1
1
y
z
G
z
I
I
A
M
z
A
G
z
M
z
I
A
M
z
A
(
8
)
1
11
v
m
m
m
1
1
m
1
1
y
z
I
G
z
I
I
A
M
z
A
G
z
M
z
I
A
M
z
A
(
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Dis
crete
-
ti
me
I
n
ve
r
s
io
n
Mo
d
el
C
o
n
tr
o
l
o
f a
d
o
u
b
le
-
d
a
mp
er sys
tem
w
ith
…
(
Ma
r
w
a
Ha
n
n
a
c
h
i
)
171
I
f
w
e
as
s
u
m
e
t
h
at
t
h
e
p
r
o
ce
s
s
is
n
o
t
s
u
b
j
ec
ted
to
an
y
p
er
tu
r
b
atio
n
an
d
in
th
e
ca
s
e
o
f
a
p
e
r
f
ec
t
m
o
d
eliza
tio
n
,
th
en
t
h
e
e
x
p
r
ess
io
n
o
f
th
e
o
u
t
p
u
t (
7
)
is
r
ed
u
ce
d
to
th
e
f
o
llo
w
i
n
g
eq
u
atio
n
(
1
0
)
:
1
m
1
1
y
z
G
z
I
A
G
z
A
r
z
(
1
0
)
2
.
5
.
T
he
prec
is
io
n
Fo
r
th
e
p
er
f
ec
t
m
o
d
eli
n
g
a
n
d
af
ter
t
h
e
o
u
tp
u
t
v
ec
to
r
o
f
th
e
p
r
o
ce
s
s
,
th
er
e
ca
n
b
e
d
ef
i
n
ed
th
e
m
atr
i
x
B
s
u
ch
t
h
at
(
1
1
)
:
1
m
1
1
B
G
1
I
A
G
1
A
(
1
1
)
w
it
h
G
(
1
)
is
t
h
e
m
atr
i
x
o
f
th
e
s
tatic
g
ai
n
s
o
f
t
h
e
p
r
o
ce
s
s
G.
Fo
r
h
i
g
h
v
al
u
e
s
o
f
α
,
w
e
o
b
tain
m
BI
,
w
h
ic
h
allo
w
s
f
o
r
a
g
ap
as
y
m
p
to
ticall
y
ze
r
o
b
et
w
ee
n
t
h
e
v
ec
to
r
o
f
o
u
tp
u
t
s
an
d
r
ef
er
e
n
ce
s
.
2
.
6
.
T
he
re
j
ec
t
io
n o
f
ex
t
er
na
l dis
t
urba
nce
s
T
h
e
attac
h
ed
o
u
tp
u
t
v
ec
to
r
o
f
an
ex
ter
n
al
d
is
t
u
r
b
an
ce
f
o
r
a
p
er
f
ec
t
m
o
d
elli
n
g
is
w
r
it
t
en
i
n
th
e
f
o
llo
w
in
g
f
o
r
m
(
1
2
)
:
1
v
m
m
1
1
y
z
I
G
z
I
A
G
z
A
(
1
2
)
W
h
ich
g
en
er
ate
s
an
o
u
tp
u
t v
e
cto
r
v
y0
f
o
r
s
u
f
f
icie
n
tl
y
h
i
g
h
v
al
u
es o
f
α
.
3.
T
H
E
SY
ST
E
M
’
S P
ARAM
E
T
RIC U
NCE
RT
A
I
N
T
Y
AN
D
RO
B
UST
CO
NT
RO
L
S
T
UDY
I
t’
s
en
v
i
s
ag
ed
to
ch
ec
k
th
e
r
o
b
u
s
tn
e
s
s
o
f
t
h
e
co
n
tr
o
l
w
ith
r
esp
ec
t
to
th
e
p
ar
am
etr
ic
u
n
ce
r
tain
ties
,
w
h
ic
h
m
a
y
b
e
d
u
e
to
t
h
e
p
r
ec
is
io
n
o
f
th
e
s
en
s
o
r
s
,
th
e
f
r
icti
o
n
al
f
o
r
ce
s
a
n
d
th
e
u
n
p
r
ed
icta
b
le
ex
ter
n
al
f
ac
to
r
s
w
h
ic
h
w
er
e
n
o
t t
ak
e
n
i
n
to
ac
co
u
n
t d
u
r
i
n
g
th
e
m
o
d
elin
g
o
f
t
h
e
s
y
s
te
m
.
3
.
1
.
T
he
prec
is
io
n
I
n
th
e
ca
s
e
o
f
a
co
n
ti
n
u
o
u
s
s
y
s
te
m
,
a
n
d
tak
in
g
i
n
to
ac
co
u
n
t
th
e
p
r
esen
ce
o
f
p
ar
a
m
etr
ic
u
n
ce
r
tain
tie
s
at
th
e
le
v
el
o
f
th
e
ele
m
e
n
t
ij
Gp
o
f
th
e
tr
an
s
f
er
m
atr
i
x
G
o
f
th
e
p
r
o
ce
s
s
,
ij
Gp
is
w
r
itte
n
i
n
th
e
f
o
llo
w
i
n
g
f
o
r
m
(
1
3
)
:
mn
i
'
j
i
j
k
k
l
l
i
0
j
0
G
p
(
b
p
)
\
(
a
p
)
,
m
n
(
1
3
)
w
it
h
k
an
d
'
l
ar
e
th
e
p
ar
am
etr
ic
u
n
ce
r
tain
ties
r
esp
ec
ti
v
el
y
k
b
an
d
l
a
.
3
.
2
.
St
a
bil
it
y
o
f
t
he
un
ce
rt
a
i
n pro
ce
s
s
/ a
pp
ly
o
f
t
he
K
ha
r
it
ino
v
’
Fro
m
th
e
e
x
p
r
ess
io
n
o
f
th
e
o
u
t
p
u
t o
f
th
e
s
y
s
te
m
(
14)
:
1
A
N
p
r
p
D
p
v
p
yp
pp
(
1
4
)
m
i
ii
i0
N
p
b
p
(
1
4
.
1
)
m
'j
jj
j0
D
p
a
p
(
1
4
.
2
)
m
'i
1
i
i
j
j
i0
p
A
b
a
p
(
1
4
.
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
201
7
:
1
6
8
–
1
7
7
172
n
'j
jj
j
m
1
p
a
p
(
1
4
.
4
)
Fro
m
t
h
e
last
eq
u
atio
n
s
,
t
h
e
s
tab
ilit
y
o
f
t
h
e
co
n
tr
o
lled
p
r
o
ce
s
s
d
ep
en
d
s
o
n
t
h
e
co
n
tr
o
lle
r
s
tr
u
ct
u
r
e
an
d
t
h
e
v
alu
e
’
s
g
a
in
A
1
.
T
o
en
s
u
r
e
t
h
e
p
r
o
ce
s
s
’
s
s
tab
ilit
y
w
e
a
r
e
i
n
ter
ested
in
t
h
e
d
eter
m
in
a
tio
n
o
f
th
e
n
o
n
-
lo
ca
lized
ex
tr
e
m
e
m
o
d
els
u
s
in
g
t
h
e
i
n
d
ir
ec
t
m
et
h
o
d
b
ased
o
n
th
e
a
l
g
eb
r
aic
Kh
ar
ito
n
o
v
’
s
ap
p
r
o
ac
h
[
2
]
,
[
7
]
an
d
[
1
0
]
w
h
ic
h
h
as
n
o
o
p
er
atin
g
p
o
in
t
s
o
r
p
r
ed
eter
m
in
ed
ar
ea
s
o
f
v
a
lid
it
y
.
L
et
co
n
s
id
er
th
e
ca
s
e
o
f
co
n
tin
u
o
u
s
-
ti
m
e
p
r
o
ce
s
s
,
w
h
o
s
e
ev
o
l
u
tio
n
i
s
d
escr
ib
ed
b
y
a
d
if
f
er
en
t
ial
eq
u
ati
o
n
o
f
th
e
f
o
r
m
(
1
5
)
:
(
m
)
0
1
0
1
m
(
1
)
(
n
)
(
1
)
n
b
y
a
b
(
.
)
y
b
(
.
)
y
.
.
.
a
(
.
)
u
a
(
.
)
u
.
.
.
(
.
)
u
(
1
5
)
T
h
e
s
y
m
b
o
l
(
.
)
r
e
p
r
esen
ts
th
e
s
et
o
f
v
ar
iab
les,
u
n
ce
r
tain
t
ies,
n
o
is
e
o
r
d
is
tu
r
b
an
ce
s
af
f
ec
ti
n
g
th
e
co
ef
f
icie
n
t
s
o
f
th
e
p
r
o
ce
s
s
s
u
ch
as
(
1
6
)
:
i
i
i
i
i
i
i
i
a
m
a
x
(
a
)
;
a
m
i
n
(
a
)
b
m
a
x
(
b
)
;
b
m
i
n
(
b
)
(
1
6
)
T
h
is
m
et
h
o
d
en
v
i
s
ag
e
s
co
n
s
id
er
in
g
t
h
e
f
o
u
r
ex
tr
e
m
e
m
o
d
els
d
ef
in
ed
b
y
t
h
e
f
o
llo
w
i
n
g
tr
a
n
s
f
er
f
u
n
ctio
n
s
:
23
0
1
2
3
1
23
0
1
2
3
a
a
p
a
p
a
p
.
.
.
Hp
b
b
p
b
p
b
p
.
.
.
(1
6
.
1
)
23
0
1
2
3
2
23
0
1
2
3
a
a
p
a
p
a
p
.
.
.
Hp
b
b
p
b
p
b
p
.
.
.
(1
6
.
2
)
23
0
1
2
3
3
23
0
1
2
3
a
a
p
a
p
a
p
.
.
.
Hp
b
b
p
b
p
b
p
.
.
.
(1
6
.
3
)
23
0
1
2
3
4
23
0
1
2
3
a
a
p
a
p
a
p
.
.
.
Hp
b
b
p
b
p
b
p
.
.
.
(1
6
.
4
)
5
Hp
is
o
f
te
n
u
s
e
f
u
l
to
ad
d
th
e
av
e
r
ag
e
m
o
d
el,
d
en
o
ted
as
a
f
if
th
m
o
d
el
in
t
h
e
lib
r
ar
y
[
7
]
.
T
h
e
latter
.
T
h
e
tr
an
s
f
er
f
u
n
c
tio
n
o
f
t
h
e
f
if
th
s
a
m
p
le
is
g
iv
e
n
b
y
(
1
7
)
:
23
5
.
0
5
.
1
5
.
2
5
.
3
5
23
5
.
0
5
.
1
5
.
2
5
.
3
a
a
p
a
p
a
p
.
.
.
H
b
b
p
b
p
b
p
.
.
.
(1
7
)
Su
c
h
as:
ii
5.i
aa
a
2
an
d
ii
5
.
i
bb
b
2
T
o
th
e
d
is
cr
ete
ca
s
e
an
d
to
ch
ec
k
th
e
d
o
m
ai
n
o
f
s
tab
ilit
y
,
we
ad
o
p
t
th
e
g
eo
m
e
tr
ic
m
et
h
o
d
[
1
3
]
[
1
4
]
an
d
[
1
5
]
w
h
ic
h
h
a
v
e
to
ca
lc
u
late
t
h
e
d
i
s
tan
ce
(
1
8
)
b
et
w
ee
n
t
h
e
o
u
tp
u
t
v
ec
to
r
s
,
k
y
o
f
th
e
s
y
s
te
m
a
n
d
r
p
ar
tial
ex
its
i
,
k
y
b
ase
m
o
d
el
f
o
r
(
1
8
)
i
1
,
2
,
.
.
.
.
,
r
:
i
,
k
i
,
k
s
,
k
D
y
y
(1
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Dis
crete
-
ti
me
I
n
ve
r
s
io
n
Mo
d
el
C
o
n
tr
o
l
o
f a
d
o
u
b
le
-
d
a
mp
er sys
tem
w
ith
…
(
Ma
r
w
a
Ha
n
n
a
c
h
i
)
173
T
h
e
n
o
r
m
al
ized
d
is
tan
ce
s
i
,
k
D
ar
e
g
iv
e
n
b
y
(
1
9
)
:
i
,
k
i
,
k
r
j
,
k
j1
D
D
D
(
1
9
)
T
h
e
Valid
ities
ar
e
g
iv
e
n
b
y
(
2
0
)
:
2
r
i
,
k
j
,
k
i
,
k
j1
D
t
1
D
1
e
x
p
is
a
v
ar
iab
le
p
ar
a
m
eter
s
et
b
etw
ee
n
0
an
d
0
.
9
9
3
.
3
.
T
he
co
ntr
o
ller’
s
s
t
a
bil
iza
t
io
n c
o
nd
it
io
n:
t
he
L
M
I
a
p
pro
a
ch
I
n
th
i
s
s
ec
tio
n
w
e
ap
p
l
y
th
e
L
MI
[
8
]
,
[
1
6
]
,
in
th
e
s
y
n
th
esis
p
h
a
s
e
o
f
th
e
r
e
g
u
lato
r
to
ch
ec
k
it
s
s
tab
i
lit
y
in
o
p
en
lo
o
p
.
C
o
n
s
id
e
r
a
d
is
cr
ete
-
ti
m
e
MI
MO
s
y
s
te
m
r
e
p
r
esen
ted
b
y
its
s
tate
s
p
ac
e
(
2
1
):
x
(
k
1
)
A
x
(
k
)
B
u
(
k
)
y
(
k
)
C
x
(
k
)
ì
+
=
+
ï
ï
í
ï
=
ï
î
(
2
1
)
x
(
k
)
,
u
(
k
)
a
n
d
y
(
k
)
,
ar
e
r
esp
ec
tiv
el
y
s
tate
,
in
p
u
t
an
d
o
u
tp
u
t
v
ec
to
r
s
s
u
c
h
t
h
at
(
)
(
)
(
)
n
m
p
x
k
,
u
k
a
n
d
y
k
Î
Î
Î
¡
¡
¡
an
d
m
atr
ice
s
A
,
B
an
d
C
ar
e
k
n
o
w
n
c
o
n
s
tan
t
m
atr
ices.
T
h
e
s
y
s
te
m
i
s
r
ep
r
esen
ted
b
y
eq
u
a
tio
n
(
21
)
,
is
as
y
m
p
to
ticall
y
s
tab
le
i
f
:
0
k
l
i
m
x
(
k
)
0
,
x
0
.
T
h
e
s
y
s
te
m
(
2
1
)
is
s
tab
le
in
th
e
L
y
ap
u
n
o
v
s
en
s
e
[
1
7
]
,
if
th
er
e
ex
is
ts
a
q
u
ad
r
atic
L
y
ap
u
n
o
v
f
u
n
c
tio
n
r
ep
r
esen
ted
b
y
eq
u
a
tio
n
(
2
2
):
T
V
(
k
)
x
(
k
)
P
x
(
k
)
0
=>
(
22
)
it
co
m
es
b
ac
k
to
g
et
ii
m
a
x
A
0
if
an
d
o
n
l
y
i
f
t
h
er
e
ex
i
s
ts
a
s
y
m
m
e
tr
ic
m
atr
ix
T
P
P
0
=>
.
nn
A
´
Î
¡
is
co
n
s
ta
n
t.
Af
ter
d
er
iv
ati
n
g
,
t
h
e
q
u
ad
r
atic
L
y
ap
u
n
o
v
f
u
n
c
t
i
o
n
V
o
f
th
e
s
y
s
te
m
in
(
2
1
)
h
er
f
o
r
m
b
ec
o
m
e:
(
)
(
)
(
)
(
)
(
)
(
)
V
x
k
0
V
x
k
1
V
x
k
0
D
<
Û
+
-
<
(
2
3
)
w
h
ic
h
lead
s
u
s
to
:
(
)
(
)
(
)
(
)
(
)
(
)
V
x
k
V
x
k
1
V
x
k
0
D
=
+
-
<
(
2
4
)
I
f
an
d
o
n
l
y
if
:
(
)
T
A
P
A
-
P
0
<
(
2
5
)
A
i
s
g
iv
e
n
m
atr
ices
o
f
ap
p
r
o
p
r
iate
s
izes
a
n
d
P
is
t
h
e
v
ar
iab
le.
T
h
e
s
y
s
te
m
(
2
1
)
is
s
tab
le
if
th
er
e
ex
is
t
s
a
m
atr
i
x
n
P
Î
¡
s
u
c
h
th
at
t
h
e
f
o
llo
w
in
g
L
MI
(
L
in
ea
r
Ma
tr
i
x
I
n
eq
u
a
lit
y
)
i
s
f
ea
s
ib
le:
(
)
T
P
0
,
A
P
A
-
P
0
><
(
2
6
)
.
I
n
th
is
w
o
r
k
w
e
ex
te
nd
th
e
s
tu
d
y
d
ev
elo
p
ed
in
[
11
]
,
t
o
th
e
d
is
cr
etiza
tio
n
o
f
m
u
ltiv
ar
iab
le
s
y
s
te
m
s
w
i
tn
u
n
ca
r
tain
p
ar
am
eter
s
.
T
h
e
p
lan
t
G(
s
)
an
d
th
e
m
o
d
el
M(
s
)
ar
e
d
is
cr
etiz
ed
b
y
e
th
e
b
ili
n
ea
r
m
et
h
o
d
.
T
h
e
L
MI
ap
p
r
o
ac
h
is
u
s
ed
in
t
h
i
s
w
o
r
k
to
g
u
ar
an
tee
th
e
q
u
ad
r
atic
s
tab
ilit
y
o
f
t
h
e
c
o
n
tr
o
ller
C
(
z)
.
i
,
k
i
,
k
r
i
,
k
r
i
,
k
j
,
k
i1
j1
0
V
1
t
V
S
a
t
i
s
f
y
i
n
g
t
h
e
c
o
n
d
i
t
i
o
n
s
o
f
c
o
n
v
e
x
i
t
y
:
V1
t
(
2
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
201
7
:
1
6
8
–
1
7
7
174
4.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
I
n
o
r
d
er
to
v
alid
ate
t
h
e
p
r
o
p
o
s
ed
in
ter
n
al
m
o
d
el
co
n
tr
o
l
f
o
r
m
u
lti
v
ar
iab
le
u
n
ce
r
tai
n
lin
ea
r
s
y
s
te
m
s
,
let
u
s
co
n
s
i
d
er
t
h
e
ex
a
m
p
le
o
f
th
e
d
o
u
b
le
-
d
a
m
p
er
s
y
s
te
m
o
f
a
ca
r
.
Desig
n
i
n
g
an
a
u
to
m
o
tiv
e
s
u
s
p
en
s
io
n
s
y
s
te
m
is
an
in
ter
e
s
ti
n
g
an
d
c
h
alle
n
g
i
n
g
co
n
tr
o
l
p
r
o
b
lem
.
T
h
e
s
u
s
p
e
n
s
io
n
s
y
s
te
m
is
d
esig
n
ed
by
1
/4
m
o
d
e
l
(
o
n
e
o
f
t
h
e
f
o
u
r
w
h
ee
ls
)
.
W
e
u
s
ed
to
s
i
m
p
l
if
y
t
h
e
p
r
o
b
le
m
to
a
1
D
m
u
ltip
le
s
p
r
in
g
-
d
a
m
p
er
s
y
s
te
m
.
A
d
iag
r
a
m
o
f
th
i
s
s
y
s
te
m
is
s
h
o
w
n
i
n
Fi
g
u
r
e
3
.
Fig
u
r
e
3
.
Stru
ct
u
r
e
o
f
a
d
o
u
b
le
-
d
a
m
p
er
s
y
s
te
m
o
f
a
ca
r
(
1
/4
m
o
d
el
)
T
h
e
d
if
f
er
en
t
p
ar
a
m
eter
s
o
f
t
h
e
p
r
o
ce
s
s
ar
e
p
r
esen
ted
as f
o
llo
w
s
.
M1
:
b
o
d
y
m
a
s
s
M2
:
s
u
s
p
en
s
io
n
m
ass
K1
:
s
p
r
in
g
co
n
s
ta
n
t o
f
s
u
s
p
e
n
s
io
n
s
y
s
te
m
K2
:
s
p
r
in
g
co
n
s
ta
n
t o
f
th
e
wh
ee
l a
n
d
tire
C
1
:
d
am
p
i
n
g
co
n
s
ta
n
t o
f
s
u
s
p
en
s
io
n
C
2
:
d
am
p
i
n
g
co
n
s
ta
n
t o
f
w
h
e
el
an
d
F1
,
F2
:
ex
ter
n
al
f
o
r
ce
s
y
1
,
y
2
:
s
y
s
te
m
o
u
tp
u
ts
(
d
is
p
la
ce
m
en
ts
)
kg
kg
N/
m
N/
m
N.
s
/
m
N.
s
/
m
N
m
T
h
is
s
y
s
te
m
i
s
a
t
w
o
in
p
u
ts
t
wo
o
u
tp
u
ts
s
y
s
te
m
a
n
d
it is
r
ep
r
esen
ted
b
y
t
h
e
f
o
llo
w
i
n
g
eq
u
at
io
n
s
1
1
1
1
1
2
1
1
2
2
2
2
1
1
2
1
1
2
2
2
2
2
M
y
=
F
-
K
(
y
-
y
)
-
C
(
y
-
y
)
M
y
=
F
+
K
(
y
-
y
)
-
C
(
y
-
y
)
-
K
y
-
C
y
(
2
7
)
T
h
is
s
y
s
te
m
w
i
ll b
e
m
o
d
eled
b
y
ca
lc
u
lati
n
g
t
h
e
f
o
r
ce
s
ac
ti
n
g
o
n
b
o
th
m
as
s
es (
b
o
d
y
a
n
d
s
u
s
p
en
s
io
n
)
.
T
h
en
;
w
e
ap
p
lied
th
e
Ne
w
to
n
'
s
la
w
to
ea
ch
m
a
s
s
.
T
h
e
tr
an
s
f
er
m
a
tr
ix
o
f
th
e
o
u
tp
u
t
s
o
f
t
h
e
s
y
s
te
m
is
e
x
p
r
ess
ed
b
y
:
F
1
y
y
G
(
s
)
12
F
2
(
2
8
)
T
h
e
s
y
s
te
m
ca
n
b
e
ar
r
an
g
ed
in
th
e
f
o
llo
w
i
n
g
s
tate
-
s
p
ac
e
m
o
d
el
an
d
r
ep
r
esen
ted
as
2
C
s
+
K
M
s
+
C
s
+
K
1
1
1
1
1
D
E
N
D
E
N
G
(
s
)
=
2
M
s
+
(
C
+
C
)
s
+
K
+
K
C
s
+
K
2
1
2
1
2
1
1
D
E
N
D
E
N
(
2
9
)
43
D
E
N
=
M
M
s
+
M
(
C
+
C
)
+
C
M
)
s
+
(
M
(
K
+
K
)
+
C
(
C
+
C
)
1
2
1
1
2
1
2
1
1
2
1
1
2
2
2
2
+
K
M
-
C
)
s
+
(
C
(
K
+
K
)
+
K
(
C
+
C
)
-
2
C
K
)
s
+
K
(
K
+
K
)
-
K
1
2
1
1
1
2
1
1
2
1
1
1
1
2
1
T
h
e
u
n
ce
r
tain
p
ar
a
m
e
ter
s
ar
e:
M1
:
1
0
±
5
0
%
kg
; M
2
:
5
0
0
±
5
0
%
kg
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Dis
crete
-
ti
me
I
n
ve
r
s
io
n
Mo
d
el
C
o
n
tr
o
l
o
f a
d
o
u
b
le
-
d
a
mp
er sys
tem
w
ith
…
(
Ma
r
w
a
Ha
n
n
a
c
h
i
)
175
K1
:
2
0
0
0
±
5
0
%
N/
m
; K
2
:
2
0
0
0
±
5
0
%
N/m
C
1
:
50
0
±
5
0
%
N.
s
/m
;
C
2
:
5
0
0
±
5
0
%
N.
s
/m
T
h
e
r
ef
er
en
ce
s
ig
n
al
s
r
1
, r
2
ar
e
ch
o
s
en
a
s
v
ec
to
r
o
f
s
tep
s
o
f
am
p
lit
u
d
e
eq
u
al
to
5
10
.
4
.
1
.
Ca
s
e
o
f
Im
perf
ec
t
m
o
de
llin
g
w
it
ho
ut
dis
t
urba
nces
L
et
’
s
co
n
s
id
er
th
e
i
m
p
er
f
ec
t
m
o
d
eli
n
g
ch
ar
ac
ter
ized
b
y
th
e
ab
s
en
ce
o
f
d
is
tu
r
b
a
n
ce
s
,
s
u
ch
th
at
v
(
z)
=0
w
h
er
e
th
e
m
o
d
el
i
s
ch
o
s
e
n
d
if
f
r
e
n
t
to
t
h
e
p
la
n
t
M(
z)
≠
G(
z)
an
d
th
e
s
a
m
p
l
in
g
ti
m
e
i
s
eq
u
al
to
T
=0
.
2
s
.
T
h
e
ch
o
s
en
m
atr
i
x
A
1
is
eq
u
a
l to
A
1
=5
0
×I
.
T
h
e
t
w
o
o
u
t
p
u
t
s
y
1
a
n
d
y
2
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
4
an
d
Fig
u
r
e
5
.
Fig
u
r
e
4
.
Ou
tp
u
t
y
1
f
o
r
n
o
n
d
is
tu
r
b
ed
I
MC c
o
n
tr
o
l
Fig
u
r
e
5
Ou
tp
u
t
y
2
f
o
r
n
o
n
d
is
tu
r
b
ed
I
MC c
o
n
tr
o
l
I
t
is
clea
r
th
at
t
h
e
s
y
s
te
m
o
u
tp
u
t
s
r
ea
ch
p
er
f
ec
tl
y
t
h
e
in
p
u
t
r
ef
er
en
ce
.
T
h
e
I
MC
ap
p
lied
o
f
th
e
d
o
u
b
le
-
d
a
m
p
s
y
s
te
m
is
m
ai
n
tain
i
n
g
t
h
e
s
tab
ili
t
y
o
f
t
h
e
ch
o
s
en
d
is
cr
ete
m
o
d
el
d
esp
i
te
th
e
p
r
esen
ce
o
f
u
n
ce
r
tai
n
t
y
p
ar
a
m
eter
s
.
4
.
2
.
Ca
s
e
o
f
dis
t
urbed sy
s
t
e
m
No
w
let’
s
co
n
s
id
er
t
h
e
p
r
ese
n
ce
o
f
a
d
i
s
t
u
r
b
an
ce
v
ec
to
r
an
d
let’
s
s
h
o
w
i
ts
e
f
f
ec
t
i
n
th
e
ca
s
e
o
f
th
e
I
MC
p
r
o
p
o
s
ed
f
o
r
th
e
d
o
u
b
le
-
d
a
m
p
s
y
s
te
m
co
n
tr
o
l.
T
h
e
d
is
tu
r
b
an
ce
s
ar
e
ap
p
lied
at
th
e
ti
m
e
T
=1
5
s
.
A
1
is
co
n
s
id
er
ed
as th
e
s
a
m
e
at
las
t m
et
h
o
d
.
s
i
m
u
latio
n
s
r
es
u
lts
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
6
an
d
Fig
u
r
e
7
.
Fig
u
r
e
6
.
Ou
tp
u
t
y
1
o
f
d
is
t
u
r
b
ed
s
y
s
te
m
Fig
u
r
e
7
.
Ou
tp
u
t
y
2
o
f
d
is
t
u
r
b
ed
s
y
s
te
m
T
h
e
s
i
m
u
latio
n
s
s
h
o
w
a
r
o
b
u
s
t
b
eh
av
io
r
ev
e
n
o
n
t
h
e
p
r
esen
ce
o
f
d
is
tu
r
b
an
ce
s
af
f
ec
ti
n
g
d
ir
ec
tl
y
t
h
e
p
r
o
ce
s
s
o
u
tp
u
ts
.
W
e
co
n
cl
u
d
e
th
at
t
h
e
p
r
o
p
o
s
ed
I
MC
f
o
r
th
e
m
u
l
tiv
ar
iab
le
u
n
ce
r
tai
n
d
o
u
b
le
-
d
a
m
p
s
y
s
te
m
r
ej
ec
ts
d
is
tu
r
b
an
c
es
a
n
d
en
s
u
r
e
ag
ai
n
i
ts
r
o
b
u
s
tn
e
s
s
.
T
h
e
L
MI
ap
p
r
o
ac
h
is
u
s
ed
i
n
th
i
s
wo
r
k
to
g
u
ar
an
tee
t
h
e
q
u
ad
r
atic
s
tab
ilit
y
o
f
t
h
e
co
n
tr
o
ller
.
L
MI
s
h
a
s
b
ee
n
p
er
f
o
r
m
e
d
in
M
A
T
L
A
B
en
v
ir
o
n
m
en
t.
So
lv
i
n
g
t
h
e
L
MI
i
n
eq
u
atio
n
(
25
)
,
w
e
o
b
tai
n
a
m
a
tr
ix
P
o
f
d
i
m
en
s
io
n
(
2
4
×2
4
)
,
t
h
is
m
atr
i
x
e
n
s
u
r
es
t
h
e
s
tab
ilit
y
o
f
o
u
r
s
y
s
te
m
f
o
r
5
0
<A
1
<7
0
0
.
T
h
en
w
e
ad
o
p
t
th
e
a
lg
eb
r
aic
Kh
ar
ito
n
o
v
’
s
ap
p
r
o
ac
h
,
w
h
i
ch
i
s
b
ased
o
n
th
e
ca
lcu
lati
o
n
o
f
th
e
d
is
tan
ce
(
1
8
)
b
et
w
ee
n
th
e
o
u
tp
u
t
v
ec
to
r
y
o
f
th
e
s
y
s
te
m
a
n
d
r
p
ar
tial
ex
its
i
y
b
ase
m
o
d
el
.
T
h
e
T
ab
le
(
1
)
p
r
esen
ts
t
h
e
d
if
f
er
en
t
v
alu
e
s
b
et
w
ee
n
th
e
o
u
tp
u
ts
o
f
th
e
p
r
o
ce
s
s
G(
z)
an
d
th
e
m
o
d
el
o
n
es
tak
e
n
d
u
r
in
g
th
e
ti
m
e
o
f
s
i
m
u
la
tio
n
.
0
5
10
15
20
25
30
35
40
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
x
1
0
-5
O
u
t
p
u
t
y
1
S
a
m
p
l
i
n
g
T
i
m
e
[
s
]
0
5
10
15
20
25
30
35
40
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
x
1
0
-5
O
u
t
p
u
t
y
2
S
a
m
p
l
i
n
g
T
i
m
e
[
s
]
0
5
10
15
20
25
30
35
40
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
x
1
0
-5
O
u
t
p
u
t
y
1
S
a
m
p
l
i
n
g
T
i
m
e
[
s
]
0
5
10
15
20
25
30
35
40
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
x
1
0
-5
O
u
t
p
u
t
y
2
S
a
m
p
l
i
n
g
T
i
m
e
[
s
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
201
7
:
1
6
8
–
1
7
7
176
T
ab
le
1
.
T
h
e
P
e
r
f
o
r
m
a
n
ce
o
f
t
h
e
Kh
ar
it
in
o
v
’
s
m
e
th
o
d
f
o
r
v
e
r
if
in
g
s
tab
ilit
y
V
a
r
i
a
b
l
e
t
=0
s
t
=5
s
t
=
1
0
s
t
=1
5
s
t
=
2
0
s
t
=
2
5
s
t
=
3
0
s
t
=
3
5
s
t
=4
0
s
y
-
y1
0
.
2
2
0
.
0
8
6
0
.
0
4
0
.
0
3
4
0
.
0
2
8
0
.
0
0
4
0
.
0
0
3
4
0
.
0
0
1
3
0
.
0
0
0
1
y
-
y2
0
.
5
0
.
1
0
.
3
0
.
4
3
0
.
3
1
0
.
0
4
0
.
0
5
4
0
.
0
1
4
0
.
0
0
2
1
y
-
y3
0
.
4
4
0
.
3
8
0
.
3
2
1
0
.
3
3
0
.
2
4
0
.
0
7
1
0
.
0
0
2
0
.
0
0
1
7
0
.
0
0
1
y
-
y4
0
.
3
9
9
0
.
2
9
1
0
.
2
1
0
.
3
5
1
0
.
3
1
4
0
.
0
0
4
0
.
0
0
3
0
.
0
0
1
5
0
.
0
0
2
5.
CO
NCLU
SI
O
N
I
n
th
is
w
o
r
k
,
a
n
e
w
ap
p
r
o
ac
h
f
o
r
I
MC
o
f
lin
ea
r
m
u
lti
v
ar
iab
le
u
n
ce
r
tai
n
s
y
s
te
m
s
is
d
e
v
elo
p
ed
in
d
is
cr
ete
-
ti
m
e.
T
h
e
r
ea
lized
r
e
s
ea
r
ch
is
an
e
x
te
n
s
io
n
o
f
th
e
I
MC
co
n
ce
p
t
d
ef
in
ed
f
o
r
d
is
cr
ete
m
u
lti
v
ar
iab
le
u
n
ce
r
tai
n
s
y
s
te
m
s
.
A
n
ap
p
licatio
n
o
f
a
d
o
u
b
le
-
d
a
m
p
s
y
s
te
m
w
it
h
u
n
ce
r
tai
n
p
ar
a
m
e
ter
s
i
s
p
r
o
p
o
s
ed
to
test
t
h
e
ef
f
ec
tiv
e
n
e
s
s
o
f
t
h
e
co
n
tr
o
l
d
esp
ite
th
e
p
r
esen
ce
o
f
d
is
t
u
r
b
an
ce
s
a
n
d
u
n
ce
r
tai
n
ties
.
T
h
e
ch
o
s
en
s
y
s
te
m
i
s
a
t
w
o
-
i
n
p
u
t
-
t
w
o
-
o
u
tp
u
t
li
n
ea
r
s
y
s
te
m
.
T
h
e
s
i
m
u
latio
n
r
es
u
lts
s
h
o
w
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
ca
p
ab
ilit
y
to
p
r
eser
v
e
th
e
s
y
s
te
m
s
tab
ilit
y
a
n
d
p
er
f
o
r
m
an
ce
s
o
n
p
r
eser
v
i
n
g
th
e
r
ej
ec
tio
n
o
f
t
h
e
ex
ter
n
al
d
is
tu
r
b
an
ce
s
.
RE
F
E
R
E
NC
E
S
[1
]
H.
T
re
b
ib
e
r,
J.
1
9
8
4
.
M
u
lt
iv
a
riab
le
Co
n
tr
o
l
o
f
No
n
-
s
q
u
a
re
S
y
ste
m
s.
In
d
u
strial
&
En
g
in
e
e
rin
g
Ch
e
m
istr
y
.
P
ro
c
e
ss
De
sig
n
a
n
d
De
v
e
lo
p
m
e
n
t,
v
o
l.
2
3
,
n
o
.
4
,
p
p
.
8
5
4
-
8
5
7
.
[2
]
Ka
rd
o
u
s
Kh
a
ld
i
Z
"
S
u
r
la
m
o
d
é
li
sa
ti
o
n
e
t
la
c
o
m
m
a
n
d
e
m
u
lt
im
o
d
è
le
d
e
s
p
ro
c
e
ss
u
s
c
o
m
p
le
x
e
s
e
t/
o
u
in
c
e
rtain
s
"
,
P
h
D T
h
e
sis,
UST
L
,
Dé
c
e
m
b
re
2
0
0
6
(i
n
F
re
n
c
h
).
[3
]
S
a
e
e
d
S
a
lv
a
ti
,
M
o
n
g
i
Be
h
r
o
u
z
E
b
r
a
h
im
i.
,
Ka
rlo
s
G
rig
o
riad
is
a
n
d
M
a
th
e
w
F
ra
n
c
h
e
k
,
“
in
ter
n
a
l
mo
d
e
l
c
o
n
tro
l
f
o
r
a
c
la
ss
o
f
u
n
c
e
rta
i
n
ti
me
-
d
e
l
a
y
sy
ste
ms
”
,
A
CC 2
0
1
6
,
Ju
ly
6
-
8
,
2
0
1
6
.
Bo
sto
n
,
M
A
,
USA
.
[4
]
R.
A
ru
lm
o
z
h
i
y
a
l
a
n
d
K.
Ba
sk
a
r
a
n
,
"
Im
p
le
m
e
n
tatio
n
o
f
a
F
u
z
z
y
P
I
Co
n
tro
l
ler
f
o
r
S
p
e
e
d
Co
n
tr
o
l
o
f
In
d
u
c
ti
o
n
M
o
to
rs
Us
in
g
F
P
G
A
,
"
J
o
u
rn
a
l
o
f
Po
we
r E
lec
tro
n
ics
,
v
o
l
.
1
0
,
p
p
.
6
5
-
7
1
,
2
0
1
0
.
[5
]
M
o
h
a
m
e
d
Be
n
re
jeb
,
M
o
n
g
i
Na
c
e
u
r.
,
a
n
d
Dh
a
o
u
S
o
u
d
a
n
i
.
,
“
On
a
n
in
ter
n
a
l
mo
d
e
c
o
n
tr
o
ll
e
r
b
a
se
d
o
n
t
h
e
u
se
of
a
sp
e
c
if
ic i
n
v
e
rs
e
mo
d
e
l”
,
A
CIDCA
2
0
0
5
,
p
p
.
6
2
3
-
6
2
6
,
T
o
z
e
u
r,
2
0
0
5
.
[6
]
Ik
b
e
l
Be
n
C
h
e
ik
h
A
h
m
e
d
,
Dh
a
o
u
S
o
u
d
a
n
i,
M
o
n
g
i
Na
c
e
u
r
a
n
d
M
o
h
a
m
e
d
Be
n
re
jeb
,
“
S
u
r
la
c
o
mm
a
n
d
e
st
a
b
il
isa
n
te
p
a
r mo
d
è
le i
n
ter
n
e
d
e
s
y
stè
me
s é
c
h
a
n
t
il
lo
n
n
é
”
,
J
ET
A
2
0
0
8
.
[7
]
Kh
a
rit
o
n
o
v
V
.
L
.
"
A
s
y
m
p
to
ti
c
sta
b
il
it
y
o
f
a
n
e
q
u
i
li
b
r
u
m
p
o
siti
o
n
o
f
a
f
a
m
il
y
o
f
s
y
ste
m
o
f
li
n
e
a
r
d
if
fe
re
n
ti
a
l
e
q
u
a
ti
o
n
"
,
Dif
fe
re
n
ti
a
l,
Ura
v
n
e
n
,
V
o
l
1
4
,
1
9
7
8
.
[8
]
S
.
Bo
y
d
,
L
.
El
G
h
a
o
u
i,
E.
F
e
ro
n
&
V
.
Ba
lak
rish
n
a
n
,
"
L
in
e
a
r
M
a
tri
x
In
e
q
u
a
li
ti
e
s
i
n
S
y
ste
m
a
n
d
Co
n
tr
o
l
T
h
e
o
ry
"
.
P
h
il
a
d
e
l
-
p
h
ia:
S
IA
M
P
re
ss
,
1
9
9
4
.
[9
]
J.
Ch
e
n
,
B.
Zh
a
n
g
&
X
.
Qi,
2
0
1
1
.
"
A
n
e
w
c
o
n
tro
l
m
e
th
o
d
f
o
r
M
IM
O
f
irst
o
rd
e
r
ti
m
e
d
e
la
y
n
o
n
-
sq
u
a
re
sy
ste
m
s
"
.
Jo
u
rn
a
l
o
f
P
ro
c
e
ss
Co
n
tr
o
l.
2
1
(
4
),
p
p
:
5
3
8
-
5
4
6
.
[1
0
]
M
.
Na
c
e
u
r,
F
.
2
0
0
8
.
"
S
u
r
la
Co
m
m
a
n
d
e
p
a
r
M
o
d
è
le
In
te
rn
e
d
e
s
S
y
stè
m
e
s
D
y
n
a
m
iq
u
e
s
Co
n
ti
n
u
s
e
t
Ech
a
n
ti
ll
o
n
n
é
s
"
.
T
h
è
se
d
e
d
o
c
to
r
a
t,
Eco
le Na
ti
o
n
a
le d
'
In
g
é
n
ieu
rs
d
e
T
u
n
is.
[1
1
]
M
a
rw
a
Ha
n
n
a
c
h
i,
Dh
a
o
u
S
o
u
d
a
n
i,
"
In
tern
a
l
M
o
d
e
l
Co
n
tro
l
o
f
M
u
lt
iv
a
riab
le
Disc
re
te
-
T
i
m
e
S
y
s
t
e
m
s
"
,
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
M
o
d
e
ll
i
n
g
,
Id
e
n
ti
f
ica
ti
o
n
a
n
d
C
o
n
tr
o
l,
IC
M
IC,
S
o
u
s
se
,
2
0
1
5
.
[1
2
]
El
Ka
m
e
l
A
.
,
Bo
rn
e
P
.
,
Ks
o
u
ri
-
L
a
h
m
a
ri
M
.
a
n
d
Be
n
re
jeb
M
.
"
On
th
e
sta
b
i
li
ty
o
f
n
o
n
l
in
e
a
r
m
u
lt
imo
d
e
l
sy
ste
m
s
"
,
S
A
C
TA
,
V
o
l.
2
,
N°
1
-
2
,
p
p
.
4
0
-
5
2
.
[1
3
]
G
h
o
rb
e
l
C.
,
A
b
d
e
lk
ri
m
A
.
a
n
d
t
Be
n
re
jeb
M
.
"
A
n
a
d
a
p
ti
v
e
f
u
z
z
y
c
o
n
tro
l
o
f
c
o
n
ti
n
u
o
u
s
n
o
n
li
n
e
a
r
s
y
st
e
m
s
"
.
6
th
In
tern
a
ti
o
n
a
l
M
u
lt
i
-
Co
n
f
e
re
n
c
e
o
n
S
y
ste
m
s,
S
ig
n
a
ls
a
n
d
De
v
ice
s,
S
S
D,
2
3
-
2
6
m
a
rs2
0
0
9
,
Dje
rb
a
,
T
u
n
isie.
[1
4
]
Ch
a
p
e
ll
a
H.
a
n
d
B
h
a
tt
a
c
h
a
ry
y
a
S
.
P
.
"
A
g
e
n
e
ra
li
z
a
ti
o
n
o
f
Kh
a
rit
o
n
o
v
’s
th
e
o
re
m
:
Ro
b
u
st
sta
b
il
it
y
o
f
in
terv
a
l
p
lan
ts
"
.
IEE
E
tran
s.
o
n
A
u
to
m
a
ti
c
Co
n
tr
o
l,
v
o
l.
3
4
,
n
°
3
,
3
0
6
-
3
1
1
,
1
9
8
9
.
[1
5
]
De
l
m
o
te F
.
"
A
n
a
l
y
s
e
m
u
lt
im
o
d
è
le"
.
P
h
D T
h
e
sis,
UST
L
,
L
il
le,
1
9
9
7
.
[1
6
]
S
.
Du
ss
y
,
J.
2
0
0
0
.
"
Ro
b
u
st
Dia
g
o
n
a
l
S
tab
il
iza
ti
o
n
:
A
n
LM
I
A
p
p
ro
a
c
h
"
.
IEE
E
T
R
A
NS
A
C
T
ION
S
ON
A
U
T
OM
AT
IC
CON
T
RO
L
,
V
OL.
4
5
,
NO
.
[1
7
]
A
.
F
o
ss
a
rd
,
"
Co
m
m
a
n
d
e
d
e
s sy
st
è
m
e
s
m
u
lt
id
im
e
n
sio
n
n
e
ls"
,
Du
n
o
d
,
P
.
1
9
7
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
Dis
crete
-
ti
me
I
n
ve
r
s
io
n
Mo
d
el
C
o
n
tr
o
l
o
f a
d
o
u
b
le
-
d
a
mp
er sys
tem
w
ith
…
(
Ma
r
w
a
Ha
n
n
a
c
h
i
)
177
B
I
O
G
RAP
I
E
S
O
F
AU
T
H
O
RS
M
a
r
w
a
H
a
n
n
a
c
h
i
w
a
s
b
o
rn
i
n
T
u
n
is,
T
u
n
isia,
i
n
J
u
n
e
1
9
8
8
.
S
h
e
re
c
e
iv
e
d
th
e
En
g
in
e
e
rin
g
De
g
re
e
in
M
e
c
a
tro
n
ic
,
f
ro
m
th
e
Na
ti
o
n
a
l
En
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
Ca
rth
a
g
e
in
2
0
13
,
t
h
e
M
a
ste
r
De
g
re
e
in
A
u
to
m
a
ti
c
a
n
d
sig
n
a
l
p
ro
c
e
ss
in
g
f
ro
m
th
e
Na
ti
o
n
a
l
En
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
T
u
n
is
in
20
14
.
,
S
h
e
is
c
u
rre
n
t
ly
a
P
h
D
S
t
u
d
e
n
t
o
f
th
e
A
u
to
m
a
ti
c
R
e
se
a
r
c
h
L
a
b
LAR
A
“
L
a
b
o
ra
to
ire
d
e
Re
c
h
e
rc
h
e
e
n
A
u
to
m
a
ti
q
u
e
”
o
f
th
e
Na
ti
o
n
a
l
E
n
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
T
u
n
is.
I
k
b
e
l
B
e
n
C
h
e
i
k
h
Ah
m
e
d
wa
s
b
o
rn
in
T
u
n
is,
T
u
n
isia,
in
M
a
y
1
9
8
1
.
S
h
e
re
c
e
iv
e
d
th
e
En
g
in
e
e
rin
g
De
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
f
ro
m
th
e
Na
ti
o
n
a
l
En
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
M
o
n
a
stir
i
n
2
0
0
5
,
th
e
M
a
ste
r
De
g
re
e
in
A
u
to
m
a
ti
c
a
n
d
sig
n
a
l
p
ro
c
e
ss
in
g
f
ro
m
th
e
Na
ti
o
n
a
l
En
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
T
u
n
is
i
n
2
0
0
7
.
S
h
e
o
b
tain
e
d
th
e
D
o
c
to
ra
te
o
f
En
g
in
e
e
r
in
El
e
c
tri
c
En
g
in
e
e
rin
g
f
ro
m
th
e
Na
ti
o
n
a
l
En
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
T
u
n
is
in
2
0
1
1
,
S
h
e
is
c
u
rre
n
tl
y
A
s
sista
n
t
P
r
o
f
e
ss
o
r
a
t
th
e
F
a
c
u
lt
y
o
f
sc
ien
c
e
s
o
f
Biz
e
rte
a
n
d
a
m
e
m
b
e
r
o
f
th
e
A
u
to
m
a
ti
c
Re
se
a
rc
h
L
a
b
LA
R
A
“
L
a
b
o
ra
to
ire
d
e
Re
c
h
e
rc
h
e
e
n
A
u
to
m
a
ti
q
u
e
”
o
f
th
e
Na
t
io
n
a
l
En
g
in
e
e
ri
n
g
S
c
h
o
o
l
o
f
T
u
n
is.
Dh
a
o
u
S
o
u
d
a
n
i
wa
s
b
o
rn
in
T
u
n
isia,
in
Ju
ly
1
9
5
4
.
He
re
c
e
i
v
e
d
th
e
M
a
ste
rs
d
e
g
re
e
in
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ic
En
g
in
e
e
rin
g
a
n
d
t
h
e
“
Dip
lô
m
e
d
e
s
Et
u
d
e
s
A
p
p
ro
f
o
n
d
ies
”
in
A
u
to
m
a
ti
c
Co
n
tro
l
f
ro
m
th
e
No
rm
a
l
S
u
p
e
rio
r
S
c
h
o
o
l
o
f
T
e
c
h
n
ica
l
Ed
u
c
a
ti
o
n
i
n
1
9
8
2
a
n
d
1
9
8
4
,
re
sp
e
c
ti
v
e
ly
.
He
o
b
tai
n
e
d
th
e
Do
c
to
ra
te
o
f
En
g
in
e
e
r
in
El
e
c
tri
c
En
g
in
e
e
rin
g
f
r
o
m
th
e
N
a
ti
o
n
a
l
En
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
T
u
n
is
in
1
9
9
7
,
a
n
d
t
h
e
Ha
b
il
it
a
ti
o
n
Un
iv
e
rsi
taire
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
f
ro
m
th
e
sa
m
e
S
c
h
o
o
l
i
n
2
0
0
7
.
He
is
c
u
rre
n
tl
y
a
P
r
o
f
e
ss
o
r
in
A
u
to
m
a
ti
c
Co
n
tr
o
l
a
t
t
h
e
Na
ti
o
n
a
l
En
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
T
u
n
is
a
n
d
a
m
e
m
b
e
r
o
f
th
e
A
u
to
m
a
ti
c
Re
s
e
a
rc
h
L
a
b
LA
R
A
“
L
a
b
o
ra
to
ire
d
e
Re
c
h
e
rc
h
e
e
n
A
u
to
m
a
ti
q
u
e
”
o
f
th
e
Na
ti
o
n
a
l
E
n
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
T
u
n
is.
Evaluation Warning : The document was created with Spire.PDF for Python.