I
nte
rna
t
io
na
l J
o
urna
l o
f
Ro
bo
t
ics a
nd
Aut
o
m
a
t
io
n
(
I
J
RA
)
Vo
l.
4
,
No
.
3
,
Sep
tem
b
er
201
5
,
p
p
.
2
0
9
~
2
1
8
I
SS
N:
2089
-
4856
209
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
RA
No
nlinea
r H
y
br
id
Contro
ller
f
o
r a
Q
ua
dro
tor Ba
sed
o
n Sliding
M
o
de and Ba
ck
s
t
epping
Z
h
a
ng
L
ia
n C
hu
a
n
,
K
il T
o
Cho
ng
De
p
a
rt
m
e
n
t
o
f
El
e
c
tro
n
ic
E
n
g
in
e
e
rin
g
,
Ch
o
n
b
u
k
Na
ti
o
n
a
l
Un
iv
e
rsity
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
A
p
r
1
2
,
2
0
1
5
R
ev
i
s
ed
J
u
l 2
6
,
2
0
1
5
A
cc
ep
ted
A
u
g
1
0
,
2
0
1
5
In
th
is
p
a
p
e
r,
o
n
e
n
o
n
li
n
e
a
r
h
y
b
rid
c
o
n
tr
o
ll
e
r,
b
a
se
d
o
n
b
a
c
k
ste
p
p
in
g
a
n
d
slid
in
g
m
o
d
e
,
w
a
s
d
e
v
e
lo
p
e
d
a
n
d
a
p
p
li
e
d
to
a
q
u
a
d
r
o
t
o
r
f
o
r
w
a
y
p
o
in
t
n
a
v
ig
a
ti
o
n
a
p
p
l
ica
ti
o
n
.
A
f
t
e
r
d
y
n
a
m
i
c
s
m
o
d
e
li
n
g
,
th
e
w
h
o
le
q
u
a
d
r
o
t
o
r
d
y
n
a
m
ics
s
y
ste
m
c
o
u
ld
b
e
d
iv
id
e
d
in
t
o
tw
o
su
b
sy
ste
m
s:
ro
tatio
n
a
l
s
y
ste
m
a
n
d
tran
sla
ti
o
n
a
l
sy
ste
m
.
Ba
c
k
st
e
p
p
in
g
c
o
n
tro
l
law
w
a
s
d
e
ri
v
e
d
f
o
r
a
tt
it
u
d
e
c
o
n
tro
l
w
h
e
re
a
s
slid
in
g
m
o
d
e
c
o
n
tro
l
law
w
a
s
d
e
v
e
lo
p
e
d
f
o
r
p
o
siti
o
n
c
o
n
tr
o
l.
B
y
u
sin
g
Ly
a
p
u
n
o
v
th
e
o
ry
a
n
d
sa
ti
sfy
in
g
slid
in
g
sta
b
le
ru
le
s,
th
e
c
o
n
v
e
rg
e
n
c
e
o
f
s
y
ste
m
c
o
u
ld
b
e
g
u
a
ra
n
tee
d
.
A
n
o
n
li
n
e
a
r
e
q
u
a
ti
o
n
w
a
s
p
ro
p
o
se
d
to
s
o
lv
e
th
e
u
n
d
e
r
-
a
c
tu
a
ted
p
ro
b
lem
.
T
o
v
a
li
d
a
te
th
e
e
f
fe
c
ti
v
e
n
e
s
s
o
f
p
ro
p
o
se
d
n
o
n
li
n
e
a
r
h
y
b
rid
c
o
n
tro
ll
e
r,
w
a
y
p
o
in
t
n
a
v
ig
a
ti
o
n
sim
u
latio
n
w
a
s
p
e
rf
o
r
m
e
d
o
n
th
e
n
o
n
li
n
e
a
r
h
y
b
rid
c
o
n
tro
ll
e
r.
Re
su
lt
s
sh
o
w
ed
th
a
t
th
e
n
o
n
l
in
e
a
r
h
y
b
rid
c
o
n
tr
o
ll
e
r
f
in
ish
e
d
w
a
y
p
o
in
t
n
a
v
ig
a
ti
o
n
su
c
c
e
ss
f
u
ll
y
.
K
ey
w
o
r
d
:
B
ac
k
s
tep
in
g
No
n
li
n
ea
r
H
y
b
r
id
C
o
n
tr
o
l
Qu
ad
r
o
to
r
Sli
d
in
g
M
ode
Co
p
y
rig
h
t
©
2
0
1
x
In
sti
tu
te
o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Kil T
o
C
h
o
n
g
,
Dep
ar
t
m
en
t o
f
E
lectr
o
n
ic
E
n
g
in
ee
r
in
g
,
C
h
o
n
b
u
k
Natio
n
al
U
n
i
v
er
s
it
y
,
567
B
ae
k
j
e
-
d
ae
r
o
,
Deo
k
j
in
-
g
u
,
J
eo
n
j
u
-
s
i,
J
eo
llab
u
k
-
d
o
5
6
1
-
7
5
6
,
So
u
th
Ko
r
ea
.
E
m
ail:
k
itc
h
o
n
g
@
j
b
n
u
.
ac
.
k
r
1.
I
NT
RO
D
UCT
I
O
N
Fix
ed
w
i
n
g
u
n
m
an
n
ed
ae
r
ial
v
eh
icles
(
U
A
V)
h
av
e
b
ee
n
w
id
el
y
u
tili
ze
d
b
y
m
ili
tar
y
a
n
d
civ
il
ian
ap
p
licatio
n
s
s
u
c
h
as
r
ec
o
n
n
a
i
s
s
a
n
ce
an
d
r
e
s
cu
e.
C
o
m
p
ar
i
n
g
to
f
i
x
ed
w
i
n
g
U
A
V
s
,
r
ec
en
tl
y
,
q
u
ad
r
o
to
r
s
ar
e
b
ec
o
m
i
n
g
r
ea
ll
y
p
o
p
u
lar
a
m
o
n
g
r
esear
c
h
er
s
d
u
e
to
its
lo
w
co
s
t,
ea
s
y
m
ai
n
te
n
a
n
ce
an
d
v
e
r
tical
tak
in
g
o
f
f
an
d
lan
d
in
g
ca
p
ab
ilit
ies.
T
r
an
s
lati
o
n
al
a
n
d
r
o
tatio
n
al
m
o
tio
n
s
o
f
q
u
ad
r
o
to
r
s
ca
n
b
e
o
b
tain
ed
b
y
c
h
an
g
i
n
g
a
n
g
u
lar
s
p
ee
d
s
o
f
f
o
u
r
elec
tr
ic
m
o
to
r
s
[
1
]
.
On
e
q
u
ad
r
o
to
r
is
a
t
y
p
ic
al
u
n
d
er
-
ac
t
u
ated
a
n
d
co
u
p
li
n
g
s
y
s
te
m
,
s
o
t
h
er
e
ar
e
m
an
y
tec
h
n
ical
a
n
d
t
h
eo
r
etica
l
ch
al
len
g
es
o
n
t
h
e
d
y
n
a
m
i
cs
m
o
d
eli
n
g
an
d
d
esi
g
n
o
f
co
n
tr
o
ller
.
I
n
ter
m
s
o
f
d
y
n
a
m
ics
m
o
d
eli
n
g
,
ac
ad
e
m
i
c
r
esear
ch
ca
n
b
e
d
iv
id
ed
i
n
to
t
w
o
d
ir
ec
tio
n
s
:
li
n
ea
r
d
y
n
a
m
ic
m
o
d
els
a
n
d
n
o
n
li
n
ea
r
d
y
n
a
m
ic
m
o
d
els.
T
h
e
latter
o
n
e
co
n
ta
in
s
s
e
v
er
al
n
o
n
l
in
ea
r
f
ac
to
r
s
s
u
c
h
a
s
att
ac
k
o
f
an
g
les
an
d
b
lad
e
f
lap
p
in
g
.
S
m
al
l
an
g
le
s
a
p
p
r
o
x
im
a
ti
o
n
i
s
t
h
e
m
o
s
t
co
m
m
o
n
li
n
ea
r
izatio
n
o
f
li
n
ea
r
d
y
n
a
m
ic
m
o
d
els
a
f
ter
ig
n
o
r
i
n
g
n
o
n
li
n
ea
r
f
ac
to
r
s
.
I
n
ter
m
s
o
f
q
u
ad
r
o
to
r
co
n
tr
o
ller
s
,
it
i
s
u
n
iv
er
s
a
l
b
et
w
ee
n
i
n
d
o
o
r
an
d
o
u
td
o
o
r
q
u
ad
r
o
to
r
s
,
w
h
ic
h
also
h
av
e
t
w
o
m
ain
d
ir
ec
tio
n
s
:
li
n
ea
r
co
n
tr
o
ller
s
an
d
n
o
n
li
n
ea
r
c
o
n
tr
o
ller
s
.
P
r
o
p
o
r
tio
n
al
in
te
g
r
al
d
er
iv
ati
v
e
(
P
I
D)
an
d
lin
e
ar
q
u
ad
r
atic
r
eg
u
lato
r
(
L
QR
)
[
2
]
co
n
tr
o
ller
ar
e
r
ep
r
es
en
tati
v
es
o
f
li
n
ea
r
co
n
tr
o
ller
s
.
L
i
n
ea
r
co
n
tr
o
ller
s
,
esp
ec
iall
y
P
I
D
co
n
tr
o
ller
,
ca
n
g
et
g
o
o
d
r
esu
lt
s
in
b
o
th
s
i
m
u
latio
n
s
a
n
d
ex
p
er
i
m
e
n
ts
w
it
h
s
m
all
d
i
s
t
u
r
b
an
ce
s
a
n
d
o
p
er
atio
n
an
g
l
es.
B
esid
es
th
a
t,
m
o
s
t
co
m
m
er
cial
q
u
ad
r
o
to
r
s
’
co
n
tr
o
ller
ar
e
b
ased
o
n
P
I
D
a
l
g
o
r
ith
m
a
n
d
s
h
o
w
g
o
o
d
s
tab
ili
t
y
a
n
d
m
a
n
ip
u
lab
ili
t
y
.
W
h
er
ea
s
lin
ea
r
co
n
tr
o
ller
s
f
ail
to
f
in
is
h
a
g
g
r
ess
i
v
e
m
a
n
e
u
v
er
ex
p
er
i
m
en
t
s
s
i
n
ce
li
n
ea
r
i
za
tio
n
d
y
n
a
m
ic
s
m
o
d
el
is
n
o
lo
n
g
er
s
u
itab
le
f
o
r
b
ig
attac
k
a
n
g
les
an
d
h
ig
h
s
p
ee
d
s
itu
atio
n
.
T
o
o
v
er
co
m
i
n
g
li
m
itat
io
n
s
a
n
d
d
r
a
w
b
ac
k
s
o
f
lin
ea
r
co
n
tr
o
ller
s
,
r
esear
ch
er
s
b
eg
i
n
to
f
o
cu
s
o
n
n
o
n
l
in
ea
r
co
n
tr
o
ller
s
.
Fe
ed
b
ac
k
lin
ea
r
izatio
n
,
m
o
d
el
p
r
ed
ictiv
e
co
n
tr
o
l,
d
y
n
a
m
ics
in
v
er
s
io
n
,
ad
ap
tiv
e
co
n
tr
o
l,
s
lid
i
n
g
m
o
d
e,
n
ested
s
at
u
r
atio
n
-
b
ased
n
o
n
lin
ea
r
co
n
tr
o
ller
,
b
ac
k
s
tep
p
in
g
,
in
te
g
r
al
b
ac
k
s
te
p
p
in
g
an
d
q
u
ater
n
io
n
-
b
ased
n
o
n
lin
ea
r
co
n
tr
o
ller
h
a
v
e
b
ee
n
p
aid
m
u
ch
atte
n
tio
n
[
3
-
7
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
3
,
Sep
tem
b
er
201
5
:
2
0
9
–
2
1
8
210
A
lt
h
o
u
g
h
m
an
y
n
o
n
li
n
ea
r
co
n
tr
o
ller
h
av
e
b
ee
n
d
ev
elo
p
ed
f
o
r
q
u
ad
r
o
to
r
s
co
n
tr
o
l,
b
ac
k
s
tep
p
in
g
an
d
s
lid
in
g
m
o
d
e
s
h
o
w
b
etter
p
er
f
o
r
m
an
ce
o
n
s
o
l
v
in
g
u
n
d
er
-
ac
tu
ated
an
d
co
u
p
li
n
g
p
r
o
b
lem
o
f
t
h
e
q
u
ad
r
o
to
r
co
n
tr
o
l.
B
ased
o
n
th
at
r
ea
s
o
n
,
s
o
m
e
p
ap
er
s
tr
y
to
co
m
b
in
e
s
lid
in
g
m
o
d
e
an
d
b
ac
k
s
tep
p
in
g
s
ch
e
m
e
to
g
eth
er
.
Mo
d
ir
r
o
u
s
ta’
s
p
ap
er
[
8
]
co
m
b
in
es
i
n
te
g
r
al
b
ac
k
s
tep
p
in
g
co
n
tr
o
l
w
it
h
ad
ap
tiv
e
ter
m
in
al
s
lid
i
n
g
m
o
d
e
to
co
n
tr
o
l
th
e
attit
u
d
e
o
f
o
n
e
q
u
a
d
r
o
to
r
,
w
h
ic
h
e
f
f
ec
tiv
el
y
s
o
lv
es
ch
a
tter
in
g
p
r
o
b
le
m
o
f
s
lid
i
n
g
m
o
d
e
co
n
tr
o
l.
T
.
Ma
d
an
i’
s
p
ap
er
[
9
]
d
er
iv
es
a
s
lid
in
g
m
o
d
e
co
n
tr
o
ller
b
ased
o
n
b
ac
k
s
tep
p
in
g
co
n
tr
o
l,
w
h
i
ch
m
a
k
e
it
ea
s
ier
to
ch
o
o
s
e
s
lid
in
g
s
u
r
f
ac
e
f
o
r
s
lid
in
g
m
o
d
e
co
n
tr
o
l
an
d
en
s
u
r
e
L
y
ap
u
n
o
v
s
tab
ilit
y
.
His
an
o
t
h
er
p
ap
e
r
[
10
]
tr
ea
ts
s
lid
in
g
m
o
d
e
a
s
an
o
b
s
er
v
er
o
f
v
e
lo
cities
a
n
d
ex
ter
n
al
d
is
t
u
r
b
an
ce
s
,
w
h
ich
ca
n
co
m
p
e
n
s
at
e
co
n
tr
o
l
in
p
u
t
s
.
H.
B
o
u
ad
i’
s
p
ap
er
[
11
]
ex
p
lo
its
b
ac
k
s
tep
p
in
g
ap
p
r
o
ac
h
to
g
et
s
lid
in
g
m
o
d
e
co
n
tr
o
l
la
w
a
n
d
tak
es
t
h
e
h
ig
h
o
r
d
er
n
o
n
-
h
o
lo
n
o
m
ic
co
n
s
tr
ain
ts
i
n
to
ac
co
u
n
t.
B
ein
g
s
tab
le
is
cr
itical
f
o
r
o
n
e
q
u
ad
r
o
to
r
’
s
co
n
tr
o
l,
th
er
ef
o
r
e
r
o
tatio
n
al
s
y
s
te
m
s
h
o
u
ld
b
e
w
ith
f
a
s
t
d
y
n
a
m
ics
w
h
er
ea
s
tr
an
s
lat
io
n
al
s
y
s
te
m
is
s
u
i
tab
le
w
it
h
s
lo
w
d
y
n
a
m
ics.
B
ec
au
s
e
s
l
id
in
g
m
o
d
e
co
n
tr
o
l
la
w
s
d
o
n
o
t
d
ep
en
d
o
n
s
y
s
te
m
p
ar
a
m
eter
s
an
d
ca
n
b
e
m
o
r
e
r
o
b
u
s
t,
w
e
c
h
o
o
s
e
s
lid
in
g
m
o
d
e
as r
o
tatio
n
al
s
y
s
t
e
m
co
n
tr
o
ller
w
h
i
le
b
ac
k
s
tep
p
in
g
i
s
ad
o
p
te
d
as tr
an
s
latio
n
a
l s
y
s
te
m
co
n
tr
o
ller
.
T
h
e
m
ai
n
co
n
tr
ib
u
tio
n
o
f
th
i
s
p
ap
er
is
ad
o
p
tin
g
n
o
n
li
n
ea
r
q
u
ad
r
o
to
r
d
y
n
a
m
ics
m
o
d
el
to
d
ev
elo
p
a
n
e
w
h
y
b
r
id
co
n
tr
o
ller
b
ased
o
n
b
ac
k
s
tep
p
in
g
an
d
s
lid
i
n
g
m
o
d
e
m
et
h
o
d
.
First
l
y
,
Ne
w
to
n
-
E
u
ler
ap
p
r
o
ac
h
is
u
tili
ze
d
to
o
b
tai
n
n
o
n
li
n
ea
r
d
y
n
a
m
ics
m
o
d
el.
B
ased
o
n
th
e
d
y
n
a
m
ic
m
o
d
el,
t
h
e
w
h
o
le
s
y
s
t
e
m
ca
n
b
e
d
i
v
id
ed
in
to
t
w
o
s
u
b
s
y
s
te
m
s
:
tr
an
s
l
atio
n
al
an
d
r
o
tatio
n
a
l
s
y
s
te
m
.
B
ac
k
s
tep
p
in
g
co
n
tr
o
ller
is
d
ev
elo
p
ed
f
o
r
tr
an
s
latio
n
al
s
y
s
te
m
w
h
ile
s
lid
in
g
m
o
d
e
co
n
tr
o
ller
is
p
r
o
p
o
s
ed
f
o
r
r
o
ta
tio
n
al
s
y
s
te
m
.
Dep
en
d
in
g
o
n
tr
an
s
latio
n
al
m
o
tio
n
eq
u
atio
n
s
o
f
d
y
n
a
m
ics
m
o
d
el,
o
n
e
n
o
n
l
in
ea
r
eq
u
atio
n
is
d
er
i
v
ed
to
s
o
lv
e
u
n
d
er
-
ac
tu
ated
p
r
o
b
lem
a
n
d
b
u
i
ld
co
n
n
ec
tio
n
s
b
et
w
ee
n
t
h
ese
t
w
o
s
u
b
s
y
s
te
m
s
.
Fi
n
all
y
,
t
h
e
n
e
w
h
y
b
r
id
c
o
n
tr
o
ller
h
a
s
b
ee
n
o
b
tain
ed
.
W
ay
p
o
i
n
t
n
av
i
g
atio
n
s
i
m
u
latio
n
i
s
p
er
f
o
r
m
ed
o
n
th
e
h
y
b
r
id
co
n
tr
o
ller
to
v
alid
a
te
th
e
p
er
f
o
r
m
an
ce
o
f
th
e
n
o
n
li
n
ea
r
h
y
b
r
id
co
n
tr
o
ller
.
Si
m
u
la
tio
n
r
es
u
lt
s
s
h
o
w
s
u
cc
e
s
s
f
u
l
p
er
f
o
r
m
a
n
c
e
o
f
t
h
e
p
r
o
p
o
s
ed
co
n
tr
o
ller
.
I
n
th
e
n
e
x
t
s
ec
tio
n
q
u
ad
r
o
to
r
d
y
n
a
m
ics
m
o
d
eli
n
g
is
d
is
c
u
s
s
ed
.
T
h
en
in
Secti
o
n
I
I
I
b
ac
k
s
tep
p
in
g
an
d
s
lid
i
n
g
m
o
d
e
co
n
tr
o
l
la
w
is
d
e
v
elo
p
ed
to
g
et
th
e
n
o
n
lin
ea
r
h
y
b
r
id
co
n
tr
o
ller
.
Si
m
u
latio
n
r
esu
lts
ar
e
d
escr
ib
ed
in
Sectio
n
I
V.
Fin
a
ll
y
,
in
Sect
io
n
V,
co
n
cl
u
s
io
n
an
d
d
is
cu
s
s
io
n
ar
e
p
r
esen
ted
.
2.
DYNA
M
I
CS M
O
DE
L
I
NG
Qu
ad
r
o
to
r
d
y
n
a
m
ic
s
m
o
d
el
i
s
u
s
u
all
y
o
b
tain
ed
b
y
t
w
o
d
if
f
er
en
t
ap
p
r
o
ac
h
es:
E
u
ler
-
L
a
g
r
an
g
e
an
d
Ne
w
to
n
-
E
u
ler
eq
u
atio
n
s
,
an
d
t
h
ese
t
w
o
ap
p
r
o
ac
h
es c
an
g
et
s
a
m
e
m
o
tio
n
eq
u
atio
n
s
.
T
h
er
e
ar
e
m
an
y
n
o
n
lin
ea
r
f
ac
to
r
s
o
f
co
m
p
le
te
d
y
n
a
m
ic
s
o
f
a
q
u
ad
r
o
to
r
s
u
ch
as
f
r
ee
-
s
tr
ea
m
v
elo
cit
y
,
b
lad
e
f
lap
p
in
g
a
n
d
g
y
r
o
s
co
p
ic
ef
f
ec
t.
I
t
w
o
u
ld
b
e
v
er
y
co
m
p
licated
ev
e
n
n
o
t
f
ea
s
ib
le
f
o
r
th
e
p
u
r
p
o
s
e
o
f
co
n
tr
o
l
i
f
o
n
e
d
y
n
a
m
ic
s
m
o
d
el
co
n
s
id
er
s
all
n
o
n
lin
ea
r
e
f
f
ec
t
f
ac
to
r
s
.
T
h
er
ef
o
r
e,
th
is
p
ap
er
b
u
ild
s
a
s
i
m
p
li
f
ied
d
y
n
a
m
ics
m
o
d
el
w
h
ich
r
et
ain
s
m
ai
n
f
ea
t
u
r
es
a
n
d
ig
n
o
r
es
s
o
m
e
n
o
n
li
n
ea
r
ef
f
ec
t
f
ac
to
r
s
s
u
ch
a
s
f
r
ee
-
s
tr
ea
m
v
elo
cit
y
a
n
d
b
lad
e
f
lap
p
in
g
,
w
h
ic
h
ar
e
ea
s
il
y
o
b
s
er
v
ed
i
n
a
g
g
r
e
s
s
i
v
e
m
o
tio
n
s
o
f
lar
g
e
q
u
ad
r
o
to
r
s
[
12
]
.
I
n
th
is
p
ap
er
,
th
e
d
y
n
a
m
ics
m
o
d
el
w
il
l
b
e
d
er
iv
ed
b
ased
o
n
Ne
wto
n
-
E
u
ler
eq
u
at
io
n
s
[
13
]
u
n
d
er
th
e
a
s
s
u
m
p
t
io
n
t
h
at
t
h
e
ce
n
te
r
o
f
m
a
s
s
co
i
n
cid
es
w
it
h
t
h
e
b
o
d
y
f
ix
ed
f
r
a
m
e.
B
ased
o
n
Ne
w
to
n
-
E
u
ler
f
o
r
m
a
l
is
m
,
t
h
e
d
y
n
a
m
ics
o
f
a
r
ig
id
b
o
d
y
in
b
o
d
y
f
r
a
m
e
B
ca
n
b
e
d
escr
ib
ed
as:
3
0
0
ext
m
I
m
V
F
V
JJ
,
(
1
)
W
h
er
e
I
is
t
h
e
id
en
t
it
y
m
a
tr
ix
;
(
,
,
)
V
u
v
w
an
d
(
,
,
)
pqr
r
ep
r
esen
t,
r
esp
ec
ti
v
el
y
,
t
h
e
li
n
ea
r
an
d
an
g
u
lar
v
elo
cities
i
n
t
h
e
b
o
d
y
-
f
ix
ed
f
r
a
m
e;
ext
F
an
d
ar
e
th
e
to
tal
ex
ter
n
al
f
o
r
ce
an
d
to
r
q
u
e,
r
esp
ec
tiv
el
y
;
an
d
J
is
th
e
m
o
m
en
t o
f
in
er
tia
wh
ich
i
s
g
iv
e
n
b
y
:
00
00
00
x
y
z
I
JI
I
.
(
2
)
Usi
n
g
E
u
ler
a
n
g
le
s
p
ar
a
m
ete
r
izatio
n
,
o
n
e
ca
n
u
s
e
a
r
o
tat
io
n
m
a
tr
ix
R
to
ex
p
r
ess
tr
an
s
l
atio
n
al
d
y
n
a
m
ics i
n
i
n
er
tial
f
r
a
m
e,
w
h
er
e
R
is
d
ef
in
ed
as
f
o
llo
w
s
:
c
c
s
s
c
c
s
c
s
c
s
s
R
c
s
s
s
s
c
c
c
s
s
s
c
s
s
c
c
c
.
(
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
N
o
n
lin
ea
r
Hyb
r
id
C
o
n
tr
o
ller
f
o
r
a
Qu
a
d
r
o
to
r
B
a
s
ed
o
n
S
lid
i
n
g
Mo
d
e
a
n
d
B
a
ck
s
tep
p
in
g
(
Z
h
a
n
g
Lia
n
C
h
u
a
n
)
211
W
h
er
e
(
,
,
)
d
en
o
tes
t
h
r
ee
E
u
ler
an
g
le
s
r
o
ll,
p
itch
,
a
n
d
y
a
w
,
r
esp
ec
tiv
el
y
;
S
an
d
C
ar
e
ab
b
r
ev
iatio
n
s
f
o
r
sin
an
d
c
o
s
f
u
n
c
ti
o
n
.
B
y
co
n
s
id
er
in
g
th
is
tr
an
s
f
o
r
m
atio
n
,
th
e
tr
an
s
latio
n
al
d
y
n
a
m
ic
s
o
f
in
er
tial
f
r
a
m
e
ar
e
co
m
p
u
ted
as f
o
llo
w
s
:
00
T
B
m
V
R
F
m
g
,
(
4
)
W
h
er
e
(
,
,
)
V
x
y
z
th
e
r
o
to
r
cr
af
t
v
elo
cit
y
in
i
n
er
tial
f
r
a
m
e
a
n
d
g
i
s
t
h
e
g
r
av
ita
tio
n
al
ac
ce
ler
atio
n
an
d
B
F
is
th
e
to
tal
f
o
r
ce
ex
clu
d
i
n
g
th
e
g
r
av
i
t
y
f
o
r
ce
.
T
h
e
o
r
i
g
in
al
Ne
w
to
n
-
E
u
ler
eq
u
atio
n
s
ar
e
d
er
iv
ed
b
ased
o
n
r
ig
id
b
o
d
y
w
h
ic
h
d
o
es
n
o
t
co
n
s
id
er
in
ter
n
a
l
d
y
n
a
m
ics.
Si
n
ce
elec
t
r
ic
m
o
to
r
’
s
g
y
r
o
s
co
p
ic
ef
f
ec
t
i
s
o
b
v
io
u
s
,
th
i
s
p
ap
er
ad
d
s
g
y
r
o
s
co
p
ic
ef
f
ec
t
ter
m
to
Ne
w
to
n
-
E
u
ler
eq
u
atio
n
s
.
T
h
e
n
e
w
d
y
n
a
m
ic
s
eq
u
atio
n
s
f
o
r
r
o
tatio
n
al
m
o
tio
n
ca
n
b
e
r
e
wr
itten
as:
00
T
rr
J
J
J
,
(
5
)
W
h
er
e
r
J
is
m
o
to
r
’
s
m
o
m
en
t
o
f
i
n
er
tia
a
n
d
r
is
r
esid
u
al
an
g
u
lar
s
p
ee
d
o
f
f
o
u
r
m
o
t
o
r
s
1
2
3
4
(
,
,
,
)
w
w
w
w
,
w
h
ich
ca
n
b
e
ex
p
r
ess
ed
as:
1
2
3
4
r
w
w
w
w
.
(
6
)
T
o
tr
an
s
f
o
r
m
att
itu
d
e
d
y
n
a
m
ics
i
n
b
o
d
y
-
f
i
x
ed
f
a
m
e
in
to
in
er
tia
f
r
a
m
e,
w
e
n
ee
d
t
h
e
k
i
n
e
m
atic
r
elatio
n
b
et
w
ee
n
an
d
:
r
R
,
(
7
)
W
h
er
e
th
e
E
u
ler
m
atr
ix
r
R
is
g
i
v
en
b
y
1
s
in
(
)
ta
n
(
)
c
o
s
(
)
ta
n
(
)
0
c
o
s
(
)
s
in
(
)
0
s
in
(
)
s
e
c
(
)
c
o
s
(
)
s
e
c
(
)
r
R
.
(
8
)
W
e
ca
n
m
a
k
e
ass
u
m
p
tio
n
ar
o
u
n
d
h
o
v
er
s
tate
an
d
s
m
all
a
n
g
le
s
w
h
er
e
0
,
0
.
B
ased
o
n
th
at
ass
u
m
p
tio
n
,
th
is
tr
a
n
s
f
o
r
m
atio
n
m
atr
ix
ca
n
b
e
s
i
m
p
li
f
ied
to
an
id
en
ti
t
y
m
atr
i
x
,
w
h
ich
m
ea
n
s
t
h
at
ac
t
u
all
y
n
o
ch
an
g
es
ar
e
m
ad
e
o
n
r
o
tatio
n
al
d
y
n
a
m
ics.
Dep
e
n
d
in
g
o
n
th
is
ap
p
r
o
x
i
m
atio
n
,
th
e
r
o
ta
tio
n
al
d
y
n
a
m
ics
o
f
in
er
tial
f
r
a
m
e
ca
n
b
e
ca
lcu
late
d
as f
o
llo
w
s
:
00
T
rr
J
J
J
.
(
9
)
A
q
u
ad
r
o
to
r
is
an
u
n
d
er
-
ac
tu
a
ted
s
y
s
te
m
w
i
th
6
d
eg
r
ee
o
f
f
r
ee
d
o
m
an
d
4
co
n
tr
o
l
in
p
u
ts
,
w
h
ic
h
ar
e
th
e
to
tal
t
h
r
u
s
t
1
U
an
d
th
e
to
r
q
u
es
2
3
4
(
,
,
)
U
U
U
.
Hen
ce
th
e
f
o
r
ce
an
d
to
r
q
u
e
v
ec
to
r
s
i
n
eq
u
atio
n
(
4
)
an
d
eq
u
atio
n
(
5
)
ca
n
b
e
e
x
p
r
es
s
ed
as
1
00
T
B
FU
an
d
2
3
4
T
U
U
U
,
r
esp
ec
tiv
el
y
.
Un
d
er
th
e
ass
u
m
p
tio
n
th
at
t
h
r
u
s
ts
ar
e
p
r
o
p
o
r
tio
n
al
to
th
e
s
q
u
ar
e
o
f
p
r
o
p
eller
’
s
s
p
ee
d
,
th
e
r
elatio
n
s
h
ip
b
etw
ee
n
co
n
tr
o
l
in
p
u
t
s
1
2
3
4
(
,
,
,
)
U
U
U
U
an
d
r
o
to
r
s
’
s
p
ee
d
1
2
3
4
(
,
,
,
)
w
w
w
w
ca
n
b
e
g
iv
e
n
b
y
11
22
33
44
00
00
f
f
f
f
ff
ff
m
m
m
m
K
K
K
K
Uw
KK
Uw
KK
Uw
K
K
K
K
Uw
,
(
1
0
)
W
h
er
e
f
K
an
d
m
K
ar
e
th
e
ae
r
o
d
y
n
a
m
ic
f
o
r
ce
an
d
m
o
m
en
t
c
o
n
s
ta
n
ts
r
esp
ec
ti
v
el
y
.
R
ec
all
in
g
eq
u
atio
n
(
4
)
a
n
d
eq
u
atio
n
(
8
)
,
th
e
n
o
n
li
n
ea
r
m
o
d
el
o
f
a
q
u
ad
r
o
to
r
ca
n
b
e
ex
p
r
ess
ed
in
t
h
e
f
o
llo
w
i
n
g
f
o
r
m
,
w
h
er
e
l
d
en
o
tes th
e
d
is
tan
ce
b
et
w
ee
n
r
o
to
r
s
’
ce
n
ter
an
d
th
e
ce
n
ter
o
f
m
a
s
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
3
,
Sep
tem
b
er
201
5
:
2
0
9
–
2
1
8
212
2
3
4
1
1
1
()
()
()
1
(
c
os
c
os
)
1
(
c
os
si
n
c
os
si
n
si
n
)
1
(
c
os
si
n
si
n
si
n
si
n
)
yz
r
x
x
x
zx
r
y
y
y
xy
zz
II
J
l
U
I
I
I
II
J
l
U
I
I
I
II
l
U
II
z
g
U
m
xU
m
yU
m
.
(
1
1
)
T
h
e
d
y
n
a
m
ic
s
m
o
d
el
d
er
iv
ed
b
y
t
h
is
s
ec
t
io
n
is
s
u
itab
le
f
o
r
m
i
n
i
-
q
u
ad
r
o
to
r
w
i
th
s
m
all
p
r
o
p
eller
s
an
d
lo
w
f
l
y
i
n
g
s
p
ee
d
.
Fo
r
a
m
o
r
e
ac
cu
r
ate
d
y
n
a
m
ics
f
o
r
lar
g
e
q
u
ad
r
o
to
r
s
m
o
d
el
w
h
ich
co
n
s
id
er
s
b
lad
e
f
lap
p
in
g
,
b
ig
an
g
les o
f
at
tack
,
o
n
e
ca
n
r
ef
er
to
G.
M.
Ho
f
f
m
a
n
an
d
S.
B
o
u
ab
d
allah
’
s
p
ap
er
[
14
,
15
]
.
3.
NO
NL
I
N
E
AR
H
YB
RI
D
CO
NT
RO
L
L
E
R
DE
SI
G
N
I
t
is
o
b
v
io
u
s
th
a
t
t
h
er
e
is
n
o
co
u
p
lin
g
a
m
o
n
g
p
o
s
i
tio
n
co
n
t
r
o
l
o
u
tp
u
ts
i
n
co
m
p
ar
is
o
n
w
i
t
h
att
itu
d
e
co
n
tr
o
l
o
u
tp
u
t
s
,
s
o
w
e
ca
n
d
iv
id
e
th
e
w
h
o
le
d
y
n
a
m
ic
s
s
y
s
te
m
in
to
t
w
o
s
u
b
s
y
s
te
m
s
:
tr
an
s
lat
io
n
al
a
n
d
r
o
tatio
n
al
s
y
s
te
m
.
Sl
id
in
g
m
o
d
e
co
n
tr
o
ller
is
p
r
o
p
o
s
ed
f
o
r
attitu
d
e
co
n
tr
o
l
w
h
er
ea
s
t
r
an
s
latio
n
al
co
n
tr
o
l
ad
o
p
ts
b
ac
k
s
tep
p
in
g
co
n
tr
o
lle
r
.
Sli
d
in
g
m
o
d
e
is
a
k
i
n
d
o
f
n
o
n
li
n
ea
r
an
d
d
i
s
co
n
ti
n
u
o
u
s
co
n
tr
o
l,
w
h
ic
h
ca
n
f
o
r
ce
th
e
s
y
s
te
m
d
y
n
a
m
ic
s
s
li
d
e
alo
n
g
s
lid
i
n
g
s
u
r
f
ac
e.
T
h
e
b
ig
g
e
s
t
ad
v
a
n
ta
g
es
o
f
s
lid
i
n
g
m
o
d
e
is
th
at
s
y
s
te
m
d
y
n
a
m
ics
is
i
n
d
ep
en
d
en
t
o
f
c
o
n
tr
o
ller
’
s
p
ar
a
m
eter
s
b
ec
au
s
e
en
tire
d
y
n
a
m
ics
o
f
s
y
s
te
m
is
g
o
v
er
n
ed
b
y
th
e
s
lid
in
g
s
u
r
f
ac
e.
Ho
w
ev
er
,
o
s
c
illatio
n
ca
u
s
ed
b
y
s
w
i
tch
i
n
g
b
et
w
ee
n
s
l
id
in
g
s
u
r
f
ac
e
is
a
d
r
a
w
b
ac
k
o
f
s
lid
i
n
g
m
o
d
e
co
n
tr
o
l
[
16
]
.
I
n
ter
m
s
o
f
b
ac
k
s
tep
p
in
g
,
it
is
f
ea
s
ib
le
f
o
r
ca
s
ca
d
e
co
n
tr
o
l,
w
h
ic
h
p
r
o
v
id
es
a
r
ec
u
r
s
iv
e
m
et
h
o
d
to
s
tab
ilize
t
h
e
o
r
ig
i
n
o
f
a
s
y
s
te
m
i
n
s
tr
ict
f
ee
d
b
ac
k
f
o
r
m
[
3
]
.
I
n
o
r
d
er
to
ap
p
ly
s
lid
in
g
m
o
d
e
an
d
b
ac
k
s
tep
p
in
g
ap
p
r
o
ac
h
es,
th
e
eq
u
atio
n
s
o
f
d
y
n
a
m
ic
s
s
h
o
u
ld
b
e
r
e
w
r
it
ten
i
n
to
s
tate
s
p
ac
e
f
o
r
m
as f
o
llo
w
s
:
1
1
2
(
,
)
(
)
(
,
,
,
,
,
,
,
,
,
,
,
,
)
T
X
f
X
U
X
x
x
z
z
x
x
y
y
,
(
1
2
)
2
4
6
1
4
2
1
2
4
2
6
3
2
4
2
3
6
1
2
4
5
3
4
8
1
3
1
10
1
12
1
(
)
/
(
,
)
,
:
1
(
c
os
c
os
)
(
c
os
si
n
c
os
si
n
si
n
)
(
c
os
si
n
si
n
si
n
si
n
)
yz
x
x
x
a
x
a
b
U
x
x
x
a
x
a
b
U
x
a
I
I
x
x
a
b
U
x
f
X
U
wi
t
h
g
x
x
U
m
x
U
m
x
U
m
1
2
32
4
3
5
/
/
(
)
/
/
/
/
(
)
/
x
x
rx
z
x
y
y
ry
z
x
y
z
I
b
l
I
a
J
I
a
I
I
I
b
l
I
a
J
I
b
l
I
a
I
I
I
.
(
1
3
)
3
.
1
.
Sli
di
ng
M
o
de
Co
ntr
o
ller
Desig
n
f
o
r
At
t
it
ud
e
Co
ntr
o
l
Sli
d
in
g
m
o
d
e
co
n
tr
o
l
in
v
o
l
v
e
s
2
s
tep
s
.
Firstl
y
,
s
lid
i
n
g
s
u
r
f
ac
e
s
h
o
u
ld
b
e
ch
o
s
e
n
s
o
th
a
t
th
e
s
y
s
te
m
ex
h
ib
it
s
d
esira
b
le
b
eh
av
io
r
w
h
en
co
n
f
i
n
ed
to
th
i
s
m
a
n
i
f
o
ld
.
Af
ter
th
at
o
n
e
n
ee
d
s
to
d
er
iv
e
r
ea
ch
i
n
g
la
w
s
o
th
at
t
h
e
s
y
s
te
m
in
ter
s
ec
ts
o
r
s
ta
y
s
o
n
th
e
s
lid
in
g
s
u
r
f
ac
e.
T
o
s
tar
t
o
u
r
d
esig
n
,
r
o
ll
an
g
l
e
tr
ac
k
in
g
er
r
o
r
is
d
ef
in
ed
as
1
r
e
f
e
an
d
co
m
p
u
te
its
d
y
n
a
m
ic
s
as:
1
r
e
f
de
w
dt
.
(
1
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
N
o
n
lin
ea
r
Hyb
r
id
C
o
n
tr
o
ller
f
o
r
a
Qu
a
d
r
o
to
r
B
a
s
ed
o
n
S
lid
i
n
g
Mo
d
e
a
n
d
B
a
ck
s
tep
p
in
g
(
Z
h
a
n
g
Lia
n
C
h
u
a
n
)
213
On
e
ca
n
o
b
tain
e
x
p
o
n
en
t
ial
co
n
v
er
g
e
n
ce
o
f
th
e
s
y
s
te
m
b
y
c
h
o
o
s
i
n
g
th
e
a
n
g
u
lar
v
el
o
cit
y
w
as
11
r
e
f
w
c
e
.
Ho
w
e
v
er
,
an
g
u
lar
v
elo
cit
y
w
is
o
n
l
y
a
s
y
s
te
m
v
ar
iab
le
in
s
te
ad
o
f
s
y
s
te
m
co
n
tr
o
l
in
p
u
ts
[
17
]
.
I
t o
n
l
y
ca
n
b
e
tr
ea
t a
s
v
ir
tu
al
c
o
n
tr
o
l in
p
u
t a
n
d
th
e
d
esira
b
le
b
eh
av
io
r
f
o
r
th
i
s
v
ir
t
u
al
co
n
tr
o
l in
p
u
t i
s
11
r
e
f
r
e
f
w
c
e
.
(
1
5
)
A
lt
h
o
u
g
h
w
is
n
o
t o
n
e
o
f
o
u
r
co
n
tr
o
l in
p
u
ts
,
it c
a
n
m
ak
e
t
h
e
r
o
ll a
n
g
le
tr
ac
k
i
n
g
er
r
o
r
co
n
v
er
g
en
t.
So
w
e
c
h
o
o
s
e
th
e
tr
ac
k
in
g
er
r
o
r
o
f
w
as o
u
r
s
lid
in
g
m
o
d
e
s
u
r
f
ac
e,
w
h
ic
h
ca
n
b
e
d
ef
i
n
ed
as:
2
1
1
2
1
1
1
r
e
f
r
e
f
r
e
f
S
w
w
w
c
e
x
x
c
e
.
(
1
6
)
T
h
er
e
ar
e
th
r
ee
g
en
er
al
f
o
r
m
s
f
o
r
s
lid
in
g
m
o
d
e
co
n
tr
o
l
la
w
:
co
n
s
ta
n
t
r
ate
r
ea
ch
in
g
la
w
,
co
n
s
ta
n
t
a
n
d
p
r
o
p
o
r
tio
n
al
r
ea
ch
in
g
la
w
a
n
d
p
o
w
er
r
ate
r
ea
ch
in
g
la
w
,
w
h
ic
h
ca
n
b
e
r
esp
ec
tiv
el
y
g
iv
en
b
y
f
o
llo
w
in
g
eq
u
atio
n
s
:
sg
n
sg
n
,
0
1
s
k
s
s
q
s
k
s
s
k
s
.
(
1
7
)
W
e
ch
o
o
s
e
th
e
s
ec
o
n
d
f
o
r
m
t
o
o
b
tain
s
lid
in
g
m
o
d
e
co
n
tr
o
l
la
w
.
I
n
o
r
d
er
to
s
atis
f
y
0
SS
,
th
e
tim
e
d
er
iv
ativ
e
o
f
w
a
s
ch
o
s
e
n
to
b
e
s
lid
in
g
m
o
d
e
r
ea
ch
i
n
g
la
w
.
2
2
2
2
2
2
1
1
1
4
6
1
4
2
1
2
1
1
1
()
r
e
f
r
e
f
S
q
s
i
g
n
S
k
S
x
x
c
e
x
x
a
x
a
b
U
x
c
e
.
(
1
8
)
T
h
e
co
n
tr
o
l la
w
o
f
2
U
ca
n
b
e
s
y
n
th
e
s
ized
b
y
u
s
i
n
g
eq
u
a
tio
n
(
1
3
)
an
d
q
u
atio
n
(
1
6
)
,
2
2
4
6
1
4
2
1
1
2
2
2
2
1
1
(
(
)
)
U
x
x
a
x
a
c
e
q
s
i
g
n
S
k
S
b
.
(
1
9
)
W
h
er
e
1
c
,
2
q
an
d
2
k
ar
e
p
o
s
itiv
e
co
n
s
tan
t
s
w
h
ich
d
eter
m
i
n
e
s
th
e
co
n
v
er
g
e
n
ce
s
p
ee
d
o
f
r
ea
ch
i
n
g
la
w
.
B
y
f
o
llo
w
i
n
g
t
h
e
s
a
m
e
s
t
ep
s
,
w
e
ca
n
g
et
o
th
er
t
w
o
attit
u
d
e
co
n
tr
o
l la
w
s
as:
2
3
2
6
3
2
4
3
3
3
3
3
3
2
2
4
2
4
5
5
5
4
4
4
4
3
1
(
(
)
)
1
(
(
)
)
U
x
x
a
x
a
c
e
q
sig
n
S
k
S
b
U
x
x
a
c
e
q
sig
n
S
k
S
b
,
(
2
0
)
3
3
3
3
4
3
3
3
5
5
5
4
6
5
5
5
r
e
f
r
e
f
r
e
f
r
e
f
e
x
x
S
x
x
c
e
with
e
x
x
S
x
x
c
e
.
(
2
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
3
,
Sep
tem
b
er
201
5
:
2
0
9
–
2
1
8
214
3
.
2
.
B
a
ck
s
t
epp
ing
Co
ntr
o
ller
Desig
n
f
o
r
P
o
s
it
io
n Co
ntr
o
l
W
e
w
ill
tak
e
o
n
e
o
f
p
o
s
i
tio
n
o
u
tp
u
ts
as
a
n
e
x
a
m
p
le
to
d
er
i
v
e
b
ac
k
s
tep
p
in
g
co
n
tr
o
l
la
w
[
3
]
.
Firstl
y
,
w
e
d
ef
in
e
t
h
e
tr
ac
k
i
n
g
er
r
o
r
as
7
7
7
r
e
f
r
e
f
e
z
z
x
x
.
(
2
2
)
C
o
n
s
id
er
i
n
g
th
e
L
y
ap
u
n
o
v
f
u
n
ct
io
n
o
f
7
e
p
o
s
itiv
e
d
e
f
in
ite,
w
e
c
h
o
o
s
e
th
e
f
o
llo
w
i
n
g
L
y
ap
u
n
o
v
f
u
n
ctio
n
f
o
r
7
e
:
2
77
7
7
7
8
1
()
2
(
)
(
)
r
e
f
V
e
e
V
e
e
x
x
.
(
2
3
)
W
e
ca
n
ch
o
o
s
e
8
x
as
8
7
7
7
r
e
f
x
x
e
to
s
tab
ilize
7
e
b
u
t
8
x
is
o
n
e
o
f
co
n
tr
o
l
o
u
t
p
u
ts
i
n
s
tead
o
f
co
n
tr
o
l in
p
u
t
s
.
So
w
e
tr
ea
t
8
x
as o
u
r
v
ir
tu
al
co
n
tr
o
l in
p
u
t a
n
d
d
ef
i
n
e
its
tr
ac
k
in
g
er
r
o
r
as:
8
8
7
7
7
r
e
f
e
x
x
e
.
(
2
4
)
T
h
e
s
tab
ilizatio
n
o
f
8
e
ca
n
b
e
o
b
tain
ed
b
y
au
g
m
en
ted
L
y
ap
u
n
o
v
f
u
n
ctio
n
:
22
7
8
7
8
7
8
8
8
8
7
7
7
7
7
1
(
,
)
(
)
2
(
,
)
(
)
r
e
f
V
e
e
e
e
V
e
e
e
x
e
x
e
e
e
.
(
2
5
)
B
y
u
s
i
n
g
eq
u
atio
n
(
1
3
)
an
d
e
q
u
atio
n
(
2
4
)
,
th
e
ti
m
e
d
er
iv
a
ti
v
e
o
f
a
u
g
m
e
n
ted
L
y
ap
u
n
o
v
f
u
n
ctio
n
ca
n
b
e
r
ew
r
it
ten
a
s
:
2
1
1
3
7
8
8
8
7
7
8
7
7
7
8
7
7
c
o
s
c
o
s
(
,
)
(
)
(
(
)
)
r
e
f
U
x
x
V
e
e
e
g
e
x
e
e
e
e
e
m
.
(
2
6
)
T
h
e
co
n
tr
o
l
in
p
u
t
1
U
h
as
ap
p
ea
r
ed
in
eq
u
atio
n
(
2
6
)
.
I
n
o
r
d
er
to
s
atis
f
y
78
(
,
)
0
V
e
e
,
th
e
co
n
tr
o
l
la
w
1
U
ca
n
b
e
ex
tr
ac
ted
as:
1
7
7
8
7
7
8
8
13
(
(
)
)
c
o
s
c
o
s
m
U
e
g
e
e
e
xx
.
(
2
7
)
T
h
e
ter
m
88
e
is
ad
d
ed
to
s
tab
ilize
7
e
.
An
d
s
a
m
e
s
tep
s
ca
n
b
e
f
o
llo
w
ed
to
o
b
tain
co
n
tr
o
l
la
w
o
f
x
U
an
d
y
U
as:
1
9
9
1
0
9
9
1
0
1
0
1
1
1
1
1
1
2
1
1
1
1
1
2
1
2
(
/
)
(
(
)
)
(
/
)
(
(
)
)
x
y
U
m
U
e
e
e
e
U
m
U
e
e
e
e
,
(
2
8
)
9
9
9
1
0
1
0
9
9
9
1
1
1
1
1
1
1
2
1
2
1
1
1
2
1
2
d
d
d
d
e
x
x
e
x
x
e
e
x
x
e
x
x
e
.
(
2
9
)
Fro
m
th
e
tr
an
s
latio
n
al
m
o
tio
n
eq
u
atio
n
s
,
w
e
ca
n
s
ee
t
h
at
d
es
ir
ed
an
g
le
s
(
,
,
)
d
d
d
ar
e
th
e
o
u
tp
u
t
s
o
f
p
o
s
itio
n
s
y
s
te
m
.
C
o
n
s
id
er
in
g
d
is
g
i
v
en
b
y
a
n
o
p
er
ato
r
[
18
]
,
On
e
ca
n
u
s
e
eq
u
a
tio
n
(
3
0
)
to
s
o
lv
e
u
n
d
er
-
ac
tu
ated
p
r
o
b
lem
a
n
d
g
et
eq
u
a
tio
n
(
3
1
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
N
o
n
lin
ea
r
Hyb
r
id
C
o
n
tr
o
ller
f
o
r
a
Qu
a
d
r
o
to
r
B
a
s
ed
o
n
S
lid
i
n
g
Mo
d
e
a
n
d
B
a
ck
s
tep
p
in
g
(
Z
h
a
n
g
Lia
n
C
h
u
a
n
)
215
1
1
1
1
(
c
o
s
c
o
s
)
1
(
c
o
s
sin
c
o
s
sin
sin
)
1
(
c
o
s
sin
sin
sin
sin
)
z
x
y
U
g
U
m
UU
m
UU
m
,
(
3
0
)
2
2
2
1
1
1
1
1
(
(
)
)
sin
c
os
sin
(
)
c
os
sin
ta
n
(
)
x
y
z
x
d
y
d
d
x
d
y
d
d
U
m
U
U
g
U
UU
m
U
UU
m
gU
.
(
3
1
)
W
ith
(
3
1
)
,
th
e
u
n
d
er
-
ac
tu
a
te
d
p
r
o
b
lem
is
s
o
l
v
ed
an
d
t
h
e
n
th
e
co
n
tr
o
l
s
y
s
te
m
ad
v
o
ca
t
ed
f
o
r
th
e
o
v
er
al
l s
y
s
te
m
is
s
c
h
e
m
atize
d
in
f
ig
u
r
e
1
.
Fig
u
r
e
1
.
Sch
e
m
a
tic
o
f
n
o
n
li
n
ea
r
h
y
b
r
id
co
n
tr
o
ller
4.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
Fig
u
r
e
2
d
escr
ib
es
w
a
y
p
o
i
n
t
n
av
i
g
atio
n
s
i
m
u
latio
n
.
I
n
t
h
is
test
,
t
h
e
q
u
ad
r
o
to
r
is
co
m
m
an
d
ed
to
p
er
f
o
r
m
a
u
to
m
a
tic
tak
eo
f
f
,
wa
y
p
o
in
t
n
a
v
i
g
atio
n
,
a
n
d
s
tatio
n
ar
y
f
lig
h
t
at
2
0
m
h
i
g
h
,
an
d
au
to
m
at
ic
lan
d
i
n
g
.
T
h
e
f
i
g
h
t
p
ath
is
d
ef
i
n
ed
b
y
4
p
o
in
ts
a
n
d
t
h
e
r
e
f
er
en
ce
tr
aj
ec
to
r
ies
ar
e
g
en
er
ated
i
n
r
ea
l
ti
m
e.
A
s
f
ig
u
r
e
2
s
h
o
w
s
,
t
h
e
s
i
m
u
lat
io
n
tr
aj
ec
to
r
y
e
x
ac
tl
y
m
atc
h
es
d
esire
d
tr
aj
ec
to
r
y
a
n
d
tr
a
ck
i
n
g
er
r
o
r
is
alm
o
s
t
ze
r
o
.
Fig
u
r
e
3
p
r
esen
ts
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
e
ac
h
ax
i
s
tr
ac
k
i
n
g
r
esu
lts
w
h
il
e
f
ig
u
r
e
4
s
h
o
w
s
th
at
at
tit
u
d
e
tr
ac
k
in
g
er
r
o
r
s
in
r
ad
ian
is
s
m
all.
T
h
ese
r
es
u
lt
s
d
em
o
n
s
tr
ate
th
a
t
t
h
e
q
u
ad
r
o
to
r
p
ass
ed
s
u
cc
ess
f
u
ll
y
t
h
r
o
u
g
h
all
t
h
e
p
o
in
t
s
a
n
d
th
e
p
er
f
o
r
m
a
n
ce
o
f
n
o
n
li
n
ea
r
h
y
b
r
id
co
n
tr
o
ller
is
g
o
o
d
an
d
r
o
b
u
s
t.
Fig
u
r
e
2
.
W
ay
p
o
in
t
n
av
i
g
atio
n
in
s
i
m
u
la
tio
n
.
-5
0
5
10
15
20
25
-5
0
5
10
15
20
25
0
5
10
15
20
25
X
[
m]
Y[
m]
Z
[
m]
re
sp
o
n
se
re
f
e
rn
ce
T
ra
j
e
c
t
or
y
ge
ne
ra
t
i
on
T
ra
ns
l
a
t
i
on
a
l
c
ont
rol
l
e
r
N
on
l
i
ne
a
r
e
qu
a
t
i
on
R
ot
a
t
i
on
a
l
c
ont
rol
l
e
r
D
yn
a
m
i
c
s
m
od
e
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
3
,
Sep
tem
b
er
201
5
:
2
0
9
–
2
1
8
216
Fig
u
r
e
3
.
P
o
s
itio
n
o
u
tp
u
ts
o
f
w
a
y
p
o
in
t
n
av
i
g
atio
n
s
i
m
u
latio
n
.
5.
CO
NCLU
SI
O
N
T
h
is
r
esear
ch
d
ea
lt
w
i
th
d
y
n
a
m
ic
m
o
d
elin
g
w
h
ic
h
co
n
s
id
er
s
m
ai
n
f
ea
tu
r
es
a
n
d
ig
n
o
r
es
s
o
m
e
n
o
n
li
n
ea
r
f
ac
to
r
s
.
I
n
th
i
s
p
ap
er
,
w
e
h
av
e
d
escr
ib
ed
th
e
d
esig
n
o
f
a
n
o
n
li
n
ea
r
h
y
b
r
id
co
n
tr
o
ller
o
f
a
q
u
ad
r
o
t
o
r
b
ased
o
n
b
ac
k
s
tep
p
in
g
an
d
s
lid
in
g
m
o
d
e,
w
h
ic
h
ca
n
f
u
lf
i
l
l
w
a
y
p
o
i
n
t
n
a
v
i
g
atio
n
.
I
n
d
ee
d
,
w
e
ap
p
l
y
b
ac
k
s
tep
p
in
g
an
d
s
lid
in
g
m
o
d
e
to
tr
an
s
latio
n
al
a
n
d
r
o
tatio
n
al
co
n
tr
o
l
o
f
q
u
ad
r
o
to
r
,
r
esp
e
ctiv
el
y
.
T
h
e
s
y
s
te
m
s
tab
ilit
y
is
g
u
ar
an
teed
b
y
L
y
a
p
u
n
o
v
th
eo
r
y
a
n
d
s
ati
s
f
y
i
n
g
s
lid
in
g
m
o
d
e
s
tab
ile
r
u
les.
Si
m
u
latio
n
s
h
a
v
e
b
ee
n
d
o
n
e
to
d
e
m
o
n
s
tr
ate
t
h
e
ab
ilit
y
o
f
th
e
h
y
b
r
id
co
n
tr
o
ller
to
p
r
o
v
id
e
ef
f
ec
t
iv
e
w
a
y
p
o
i
n
t
n
a
v
ig
a
tio
n
.
Fro
m
t
h
e
s
i
m
u
lat
io
n
r
es
u
lts
,
i
t
is
co
n
c
lu
d
ed
th
at
d
esig
n
ed
h
y
b
r
id
co
n
t
r
o
ller
s
h
o
w
s
g
o
o
d
an
d
r
eliab
le
p
er
f
o
r
m
a
n
ce
a
n
d
m
ak
e
i
t p
o
s
s
ib
le
f
o
r
p
r
ac
tical
ex
p
er
i
m
e
n
ts
.
R
ec
en
t
l
y
,
t
h
er
e
ar
e
m
a
n
y
b
i
g
b
r
ea
k
th
r
o
u
g
h
s
ab
o
u
t
q
u
ad
r
o
to
r
s
’
f
u
ll
y
a
u
to
m
atic
f
l
ig
h
t
co
n
tr
o
l
an
d
f
o
r
m
atio
n
co
n
tr
o
l.
Ho
w
e
v
er
,
lar
g
e
co
m
p
u
tatio
n
b
u
r
d
en
m
a
k
e
s
it
d
if
f
icu
lt
to
i
m
p
l
e
m
en
t
co
m
p
licated
alg
o
r
ith
m
s
o
n
h
ar
d
w
ar
e
an
d
s
h
o
r
t
cr
u
is
e
ti
m
e
also
co
n
f
in
e
s
q
u
ad
r
o
to
r
s
to
b
e
ap
p
lied
in
p
r
ac
tical
ap
p
licatio
n
s
.
I
n
th
e
f
u
tu
r
e
w
o
r
k
,
t
h
e
co
n
tr
o
l
s
y
s
te
m
ca
n
b
e
i
m
p
r
o
v
ed
b
y
c
o
n
s
id
er
in
g
n
o
n
li
n
ea
r
f
ac
to
r
s
c
au
s
ed
b
y
h
ig
h
s
p
ee
d
f
li
g
h
t a
n
d
ag
g
r
ess
iv
e
m
a
n
eu
v
e
r
s
.
0
20
40
60
80
100
120
140
-5
0
5
10
15
20
25
X[
m]
T
i
me
[
s]
re
sp
o
n
se
re
f
e
rn
ce
0
20
40
60
80
100
120
140
-5
0
5
10
15
20
25
Y[
m]
T
i
me
[
s]
re
sp
o
n
se
re
f
e
rn
ce
0
20
40
60
80
100
120
140
0
5
10
15
20
25
Z
[
m]
T
i
me
[
s]
re
sp
o
n
se
re
f
e
rn
ce
0
20
40
60
80
100
120
140
-
0
.
0
1
-
0
.
0
0
5
0
0
.
0
0
5
0
.
0
1
p
h
i
[
ra
d
]
T
i
me
[
s]
re
sp
o
n
se
re
f
e
rn
ce
0
20
40
60
80
100
120
140
-
0
.
0
1
-
0
.
0
0
5
0
0
.
0
0
5
0
.
0
1
t
h
e
t
a
[
ra
d
]
T
i
me
[
s]
re
sp
o
n
se
re
f
e
rn
ce
0
20
40
60
80
100
120
140
0
0
.
2
0
.
4
0
.
6
0
.
8
p
si
[
ra
d
]
T
i
me
[
s]
re
sp
o
n
se
re
f
e
rn
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
N
o
n
lin
ea
r
Hyb
r
id
C
o
n
tr
o
ller
f
o
r
a
Qu
a
d
r
o
to
r
B
a
s
ed
o
n
S
lid
i
n
g
Mo
d
e
a
n
d
B
a
ck
s
tep
p
in
g
(
Z
h
a
n
g
Lia
n
C
h
u
a
n
)
217
Fig
u
r
e
4
.
An
g
le
s
o
u
tp
u
ts
o
f
wa
y
p
o
in
t n
a
v
i
g
atio
n
s
i
m
u
latio
n
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
is
r
esear
ch
w
a
s
s
u
p
p
o
r
ted
b
y
B
asic
Scie
n
ce
R
e
s
ea
r
ch
P
r
o
g
r
a
m
th
r
o
u
g
h
th
e
Natio
n
al
R
esear
ch
Fo
u
n
d
atio
n
o
f
Ko
r
ea
(
NR
F
)
f
u
n
d
ed
b
y
th
e
Mi
n
i
s
tr
y
o
f
Scien
ce
,
I
C
T
&
Fu
t
u
r
e
P
lan
n
in
g
(
NR
F
-
2
0
1
3
R
1
A
2
A
2
A
0
1
0
6
8
1
2
7
)
.
RE
F
E
R
E
NC
E
S
[
1
]
W
.
W
an
g
,
K.
No
n
am
i,
M.
Hir
ata,
an
d
O.
Miy
az
a
w
a,
"
A
u
to
n
o
m
o
u
s
co
n
tr
o
l
o
f
m
icr
o
f
l
y
in
g
r
o
b
o
t,
"
Jo
u
r
n
a
l o
f V
i
b
r
a
tio
n
a
n
d
C
o
n
t
r
o
l,
v
o
l.
1
6
,
p
p
.
5
5
5
-
5
7
0
,
2
0
1
0
.
[
2
]
S.
B
o
u
ab
d
allah
,
A
.
No
t
h
,
an
d
R
.
Sie
g
w
ar
t,
"
P
I
D
v
s
L
Q
co
n
tr
o
l
tech
n
iq
u
es
ap
p
lied
to
a
n
in
d
o
o
r
m
icr
o
q
u
ad
r
o
to
r
,
"
in
I
n
tellig
en
t
R
o
b
o
ts
a
n
d
S
ystems
,
2
0
0
4
.
(
I
R
OS
2
0
0
4
)
.
P
r
o
ce
ed
in
g
s
.
2
0
0
4
I
E
E
E
/RS
J
I
n
tern
a
tio
n
a
l Co
n
feren
ce
o
n
,
2
0
0
4
,
p
p
.
2
4
5
1
-
2
4
5
6
.
[
3
]
T
.
Ma
d
an
i
an
d
A
.
B
en
al
leg
u
e
,
"
B
ac
k
s
tep
p
in
g
co
n
tr
o
l
f
o
r
a
q
u
ad
r
o
to
r
h
elico
p
ter
,
"
in
I
n
tel
lig
en
t
R
o
b
o
ts
a
n
d
S
ystems
,
2
0
0
6
I
E
E
E
/RS
J
I
n
tern
a
tio
n
a
l Co
n
feren
ce
o
n
,
2
0
0
6
,
p
p
.
3
2
5
5
-
3260.
[
4
]
P
.
B
o
u
f
f
ar
d
,
A
.
As
w
a
n
i,
an
d
C
.
T
o
m
li
n
,
"
L
ea
r
n
i
n
g
-
b
ased
m
o
d
el
p
r
ed
ictiv
e
co
n
tr
o
l
o
n
a
q
u
ad
r
o
to
r
:
On
b
o
ar
d
i
m
p
le
m
e
n
tatio
n
a
n
d
ex
p
er
i
m
e
n
tal
r
es
u
lt
s
,
"
in
R
o
b
o
tics
a
n
d
A
u
to
ma
ti
o
n
(
I
C
R
A
)
,
2
0
1
2
I
E
E
E
I
n
tern
a
tio
n
a
l Co
n
feren
ce
o
n
,
2
0
1
2
,
p
p
.
2
7
9
-
284.
[
5
]
A
.
Da
s
,
K.
Su
b
b
ar
ao
,
an
d
F.
L
e
w
i
s
,
"
D
y
n
a
m
ic
in
v
er
s
io
n
with
ze
r
o
-
d
y
n
a
m
ic
s
s
tab
ilis
atio
n
f
o
r
q
u
ad
r
o
to
r
co
n
tr
o
l,"
I
E
T c
o
n
tr
o
l th
eo
r
y
&
a
p
p
lica
tio
n
s
,
v
o
l.
3
,
p
p
.
3
0
3
-
3
1
4
,
2
0
0
9
.
[
6
]
T
.
L
ee
,
M.
L
eo
k
y
,
a
n
d
N.
H.
Mc
C
la
m
r
o
ch
,
"
Geo
m
etr
ic
tr
ac
k
in
g
co
n
tr
o
l
o
f
a
q
u
ad
r
o
to
r
U
A
V
o
n
SE
(
3
)
,
"
in
Dec
is
io
n
a
n
d
C
o
n
tr
o
l (
C
DC
)
,
2
0
1
0
4
9
th
I
E
E
E
C
o
n
f
eren
ce
o
n
,
2
0
1
0
,
p
p
.
5
4
2
0
-
5
4
2
5
.
[
7
]
I
.
Vo
o
s
,
"
No
n
lin
ea
r
co
n
tr
o
l
o
f
a
q
u
ad
r
o
to
r
m
icr
o
-
U
AV
u
s
in
g
f
ee
d
b
ac
k
-
li
n
ea
r
izatio
n
,
"
in
Mech
a
tr
o
n
ics,
2
0
0
9
.
I
C
M 2
0
0
9
.
I
E
E
E
I
n
tern
a
tio
n
a
l Co
n
feren
ce
o
n
,
2
0
0
9
,
p
p
.
1
-
6.
[
8
]
A
.
Mo
d
ir
r
o
u
s
ta
a
n
d
M.
K
h
o
d
ab
an
d
eh
,
"
A
n
o
v
el
n
o
n
li
n
ea
r
h
y
b
r
id
co
n
tr
o
ller
d
esi
g
n
f
o
r
an
u
n
ce
r
tai
n
q
u
ad
r
o
to
r
w
it
h
d
is
t
u
r
b
an
ce
s
,
"
A
ero
s
p
a
ce
S
cien
ce
a
n
d
Tech
n
o
lo
g
y,
v
o
l.
4
5
,
p
p
.
2
9
4
-
3
0
8
,
2
0
1
5
.
[
9
]
T
.
Ma
d
an
i
an
d
A
.
B
en
alle
g
u
e,
"B
ac
k
s
tep
p
in
g
s
l
id
in
g
m
o
d
e
co
n
tr
o
l
ap
p
lied
to
a
m
in
iat
u
r
e
q
u
ad
r
o
to
r
f
l
y
in
g
r
o
b
o
t,"
in
I
E
E
E
I
n
d
u
s
tr
ia
l
E
lectro
n
ics,
I
E
C
ON
2
0
0
6
-
3
2
n
d
A
n
n
u
a
l
C
o
n
feren
ce
o
n
,
2
0
0
6
,
p
p
.
7
0
0
-
705.
[
1
0
]
T
.
Ma
d
an
i
an
d
A
.
B
en
alle
g
u
e,
"
Sli
d
in
g
m
o
d
e
o
b
s
er
v
er
an
d
b
ac
k
s
tep
p
in
g
co
n
tr
o
l
f
o
r
a
q
u
ad
r
o
to
r
u
n
m
a
n
n
ed
ae
r
ial
v
eh
icle
s
,
"
in
A
merica
n
C
o
n
tr
o
l Co
n
feren
ce
,
2
0
0
7
.
A
C
C
'0
7
,
2
0
0
7
,
p
p
.
5
8
8
7
-
5892.
[
1
1
]
H.
B
o
u
ad
i,
M.
B
o
u
ch
o
u
c
h
a,
a
n
d
M.
T
ad
j
in
e,
"
Sli
d
in
g
m
o
d
e
co
n
tr
o
l b
ased
o
n
b
ac
k
s
tep
p
in
g
ap
p
r
o
ac
h
f
o
r
an
U
A
V
t
y
p
e
-
q
u
ad
r
o
to
r
,
"
W
o
r
ld
A
ca
d
emy
o
f
S
cien
ce
,
E
n
g
i
n
ee
r
in
g
a
n
d
Tech
n
o
lo
g
y,
v
o
l.
2
6
,
p
p
.
2
2
-
2
7
,
2007.
[
1
2
]
P
.
C
.
Gar
cia,
R
.
L
o
za
n
o
,
an
d
A
.
E
.
Dzu
l,
Mo
d
ellin
g
a
n
d
co
n
tr
o
l
o
f
min
i
-
flyin
g
ma
ch
i
n
es
:
Sp
r
in
g
er
Scien
ce
&
B
u
s
i
n
e
s
s
Me
d
ia,
2
0
0
6
.
[
1
3
]
M.
K.
Hab
ib
,
W
.
G.
A
.
A
b
d
el
aa
l,
an
d
M.
S.
Saad
,
"
D
y
n
a
m
i
c
m
o
d
eli
n
g
an
d
co
n
tr
o
l o
f
a
Q
u
ad
r
o
to
r
u
s
i
n
g
lin
ea
r
an
d
n
o
n
li
n
ea
r
ap
p
r
o
ac
h
es,"
2
0
1
4
.
[
1
4
]
G.
M.
Ho
f
f
m
a
n
n
,
H.
Hu
an
g
,
S.
L
.
W
aslan
d
er
,
an
d
C
.
J
.
T
o
m
li
n
,
"
Qu
ad
r
o
to
r
h
elico
p
ter
f
lig
h
t
d
y
n
a
m
ic
s
an
d
co
n
tr
o
l:
T
h
eo
r
y
a
n
d
ex
p
er
im
e
n
t,"
in
P
r
o
c.
o
f
th
e
A
I
A
A
Gu
id
a
n
ce
,
N
a
vig
a
tio
n
,
a
n
d
C
o
n
tr
o
l
C
o
n
feren
ce
,
2
0
0
7
.
[
1
5
]
S.
B
o
u
ab
d
allah
,
"
Desig
n
a
n
d
co
n
tr
o
l
o
f
q
u
ad
r
o
to
r
s
w
it
h
ap
p
licatio
n
to
au
to
n
o
m
o
u
s
f
l
y
in
g
,
"
É
co
le
P
o
ly
tec
h
n
iq
u
e
f
ed
er
ale
d
e
L
a
u
s
an
n
e,
2
0
0
7
.
[
1
6
]
R
.
Xu
a
n
d
Ü.
Özg
ü
n
er
,
"
Sli
d
in
g
m
o
d
e
co
n
tr
o
l
o
f
a
cla
s
s
o
f
u
n
d
er
ac
tu
ated
s
y
s
te
m
s
,
"
A
u
to
ma
tica
,
v
o
l
.
4
4
,
p
p
.
2
3
3
-
2
4
1
,
2
0
0
8
.
[
1
7
]
F.
Me
h
az
ze
m
,
A
.
L
.
Ne
m
m
o
u
r
,
A
.
R
ea
m
a,
an
d
H.
B
en
alla,
"No
n
li
n
ea
r
in
te
g
r
al
b
ac
k
s
tep
p
i
n
g
co
n
tr
o
l
f
o
r
in
d
u
ctio
n
m
o
to
r
s
,
"
in
E
lect
r
ica
l
Ma
ch
in
es
a
n
d
P
o
w
er
E
lectro
n
ics
a
n
d
2
0
1
1
E
lectro
mo
tio
n
Jo
in
t
C
o
n
feren
ce
(
A
C
E
MP)
,
2
0
1
1
I
n
tern
a
tio
n
a
l A
e
g
ea
n
C
o
n
feren
ce
o
n
,
2
0
1
1
,
p
p
.
3
3
1
-
336.
[
1
8
]
F.
Ken
d
o
u
l,
Z
.
Yu
,
a
n
d
K.
N
o
n
a
m
i,
"
Gu
id
an
ce
a
n
d
n
o
n
li
n
ea
r
co
n
tr
o
l
s
y
s
te
m
f
o
r
au
to
n
o
m
o
u
s
f
l
ig
h
t
o
f
m
i
n
ir
o
to
r
cr
af
t u
n
m
a
n
n
ed
ae
r
ial
v
eh
ic
les,"
Jo
u
r
n
a
l
o
f F
ield
R
o
b
o
tics
,
v
o
l.
2
7
,
p
p
.
3
1
1
-
3
3
4
,
2
0
1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
3
,
Sep
tem
b
er
201
5
:
2
0
9
–
2
1
8
218
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
S
in
c
e
2
0
1
4
,
C
h
u
a
n
L
ian
Z
h
a
n
g
is
a
m
a
ste
r
o
f
e
le
c
tro
n
ic
e
n
g
in
e
e
rin
g
sc
h
o
o
l
o
f
Ch
o
n
b
u
k
Na
ti
o
n
a
l
Un
iv
e
rsit
y
.
He
g
ra
d
u
a
ted
w
it
h
h
o
n
o
rs
in
M
e
c
h
a
n
ica
l
E
n
g
in
e
e
rin
g
f
ro
m
HU
A
IH
A
I
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
.
His
re
s
e
a
rc
h
a
re
a
is
a
b
o
u
t
P
L
C
a
u
to
m
a
ti
o
n
c
o
n
tr
o
l
a
n
d
w
a
y
p
o
in
t
n
a
v
ig
a
ti
o
n
,
traje
c
to
ry
tra
c
k
in
g
a
n
d
o
b
sta
c
les
a
v
o
id
a
n
c
e
o
f
q
u
a
d
r
o
to
rs.
Cu
rre
n
tl
y
,
Kil
T
o
Ch
o
n
g
is
a
p
r
o
f
e
ss
o
r
a
n
d
th
e
d
e
a
n
o
f
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
Div
isio
n
i
n
Ch
o
n
b
u
k
Na
ti
o
n
a
l
Un
iv
e
rsit
y
,
p
re
sid
e
n
t
o
f
El
e
c
tro
n
ics
a
n
d
IT
Ne
w
Tec
h
n
o
lo
g
ies
Re
se
a
rc
h
Ce
n
ter
in
Ch
o
n
b
u
k
Na
ti
o
n
a
l
Un
iv
e
rsit
y
.
He
re
c
e
iv
e
d
h
is
B
S
d
e
g
re
e
f
ro
m
Ore
g
o
n
S
tate
Un
iv
e
rsit
y
in
M
e
c
h
a
n
ica
l
En
g
in
e
e
rin
g
,
g
o
t
a
m
a
ste
r
d
e
g
re
e
in
M
e
c
h
a
n
ica
l
En
g
in
e
e
rin
g
a
t
G
e
o
rg
i
a
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
,
US
a
n
d
a
P
h
D
in
M
e
c
h
a
n
ica
l
En
g
in
e
e
rin
g
a
t
T
e
x
a
s
A
&
M
Un
iv
e
rsit
y
,
US.
He
h
a
s
p
u
b
li
sh
e
d
d
o
z
e
n
s
o
f
p
a
e
rs
in
in
tern
a
ti
o
n
a
l
j
o
u
r
n
a
ls
a
n
d
c
o
n
f
e
rn
n
c
e
s.
His
in
tere
ste
d
f
ield
s are
T
i
m
e
-
D
e
la
y
,
Ro
b
o
ti
c
s,
A
rti
f
icia
l
In
telli
g
e
n
c
e
a
n
d
S
e
n
so
r
Ne
tw
o
rk
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.