I
nte
rna
t
io
na
l J
o
urna
l o
f
Ro
bo
t
ics a
nd
Aut
o
m
a
t
io
n (
I
J
R
A)
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
,
p
p
.
69
~
79
I
SS
N:
2
0
8
9
-
4
8
5
6
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
r
a.
v
6
i2
.
p
p
69
-
79
69
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JR
A
A Guided
Ant
Co
lo
ny
O
pti
m
i
z
a
tion Alg
o
rith
m
for
Co
nflict
-
fre
e
Ro
uting Sche
duli
ng
of A
G
Vs Co
ns
idering
Waiting
T
i
m
e
L
I
J
un
-
j
un
1
,
XU
B
o
-
w
ei
2
,
Ya
ng
Yo
ng
-
s
heng
3
,
Wu H
ua
-
f
eng
4
1
,4
M
e
rc
h
a
n
t
M
a
rin
e
Co
ll
e
g
e
,
S
h
a
n
g
h
a
i
M
a
rit
im
e
Un
iv
e
rsit
y
,
S
h
a
n
g
h
a
i,
Ch
in
a
2
,3
In
sti
t
u
te o
f
L
o
g
isti
c
s S
c
ien
c
e
&
En
g
in
e
e
rin
g
,
S
h
a
n
g
h
a
i
M
a
rit
im
e
Un
iv
e
rsit
y
,
S
h
a
n
g
h
a
i,
C
h
in
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
r
2
9
,
2
0
1
7
R
ev
i
s
ed
A
p
r
1
7
,
2
0
1
7
A
cc
ep
ted
A
p
r
3
0
,
2
0
1
7
Eff
icie
n
t
c
o
n
f
li
c
t
-
f
re
e
ro
u
ti
n
g
sc
h
e
d
u
li
n
g
o
f
a
u
to
m
a
ted
g
u
i
d
e
d
v
e
h
icle
s
(AG
V
s)
in
a
u
t
o
m
a
ted
lo
g
isti
c
sy
ste
m
s
c
a
n
im
p
ro
v
e
d
e
li
v
e
r
y
ti
m
e
,
p
re
v
e
n
t
d
e
lay
s,
a
n
d
d
e
c
re
a
se
h
a
n
d
li
n
g
c
o
st.
On
c
e
p
o
ten
ti
a
l
c
o
n
f
li
c
ts
p
re
se
n
t
th
e
m
se
l
v
e
s
o
n
th
e
ir
ro
a
d
a
h
e
a
d
,
AG
V
s
m
a
y
w
a
it
f
o
r
a
w
h
il
e
u
n
ti
l
th
e
p
o
ten
ti
a
l
c
o
n
f
li
c
ts
d
isa
p
p
e
a
r
b
e
si
d
e
s
a
lt
e
rin
g
th
e
ir
ro
u
tes
.
T
h
e
re
fo
re
,
AG
V
c
o
n
f
li
c
t
-
f
re
e
ro
u
ti
n
g
sc
h
e
d
u
li
n
g
in
v
o
lv
e
s
m
a
k
in
g
ro
u
ti
n
g
a
n
d
w
a
it
in
g
ti
m
e
d
e
c
isio
n
s
sim
u
lt
a
n
e
o
u
sly
.
T
h
is
w
o
rk
c
o
n
stru
c
ts
a
c
o
n
f
li
c
t
-
f
r
e
e
ro
u
ti
n
g
sc
h
e
d
u
li
n
g
m
o
d
e
l
f
o
r
AG
V
s
w
it
h
c
o
n
sid
e
ra
ti
o
n
o
f
wa
it
in
g
ti
m
e
.
Th
e
p
ro
c
e
ss
o
f
th
e
m
o
d
e
l
is
b
a
se
d
o
n
c
a
lcu
lati
o
n
o
f
th
e
trav
e
l
ti
m
e
a
n
d
c
o
n
f
li
c
t
a
n
a
ly
sis
a
t
th
e
li
n
k
s
a
n
d
n
o
d
e
s.
A
g
u
id
e
d
a
n
t
c
o
lo
n
y
o
p
ti
m
iza
ti
o
n
(GA
CO)
a
lg
o
rit
h
m
,
in
w
h
ich
a
n
ts
a
re
g
u
id
e
d
to
a
v
o
id
c
o
n
f
li
c
ts
b
y
a
d
d
in
g
a
g
u
id
a
n
c
e
f
a
c
to
r
to
th
e
sta
te
tran
siti
o
n
ru
le,
is
d
e
v
e
lo
p
e
d
to
so
lv
e
th
e
m
o
d
e
l.
S
im
u
latio
n
s
a
re
c
o
n
d
u
c
ted
t
o
v
a
li
d
a
te t
h
e
e
f
f
e
c
ti
v
e
n
e
ss
o
f
th
e
m
o
d
e
l
a
n
d
t
h
e
so
lu
ti
o
n
m
e
th
o
d
.
K
ey
w
o
r
d
:
An
t c
o
lo
n
y
Au
to
m
a
ted
g
u
id
ed
v
eh
icle
s
C
o
n
f
lict
-
f
r
ee
P
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
R
o
u
ti
n
g
s
c
h
ed
u
li
n
g
W
aitin
g
t
i
m
e
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
L
I
J
u
n
-
j
u
n
,
Me
r
ch
an
t M
ar
i
n
e
C
o
lle
g
e,
Sh
a
n
g
h
ai
Ma
r
iti
m
e
U
n
i
v
er
s
it
y
,
Sh
an
g
h
ai,
C
h
i
n
a.
E
m
ail:
lij
j
@
s
h
m
t
u
.
ed
u
.
c
n
1.
I
NT
RO
D
UCT
I
O
N
Au
to
m
a
ted
g
u
id
ed
v
e
h
icles
(
A
G
Vs)
f
o
r
m
p
ar
t
o
f
a
n
u
n
m
a
n
n
ed
tr
a
n
s
p
o
r
t
s
y
s
te
m
u
s
ed
f
o
r
h
o
r
izo
n
tal
tr
an
s
p
o
r
tatio
n
tas
k
s
[
1
]
.
A
n
u
m
b
er
o
f
A
GV
s
p
r
esen
t
i
n
th
e
r
o
ad
n
et
w
o
r
k
af
f
ec
ts
t
h
e
ef
f
ec
tiv
e
A
GV
s
p
ee
d
,
an
d
ex
p
ec
ted
c
y
cle
ti
m
e,
w
h
ic
h
i
n
tu
r
n
a
f
f
ec
ts
th
e
au
to
m
ated
lo
g
is
t
ic
s
y
s
te
m
t
h
r
o
u
g
h
p
u
t.
F
u
r
t
h
er
m
o
r
e,
li
m
ited
b
y
th
e
co
m
m
o
n
r
o
ad
-
t
y
p
e
n
et
w
o
r
k
,
A
GVs
m
a
y
co
n
g
es
t
o
r
ev
e
n
co
llid
e
w
it
h
ea
c
h
o
th
er
w
h
e
n
to
o
m
a
n
y
A
GV
s
ar
e
r
u
n
n
i
n
g
alo
n
g
a
n
ar
r
o
w
la
n
e
o
r
p
ass
in
g
s
o
m
e
cr
o
s
s
in
g
r
o
ad
s
[
2
]
.
T
h
e
ef
f
ec
t
o
f
v
e
h
icle
co
n
g
esti
o
n
d
u
r
in
g
in
ter
n
a
l
tr
an
s
p
o
r
t
co
u
ld
n
o
t
b
e
ig
n
o
r
ed
b
ec
au
s
e
th
e
co
r
r
esp
o
n
d
in
g
t
h
r
o
u
g
h
p
u
t
r
ed
u
ct
io
n
s
w
er
e
as
lar
g
e
as
8
5
%[3
]
.
T
h
er
ef
o
r
e,
A
GV
co
n
f
lict
s
h
a
v
e
b
ee
n
t
h
e
m
o
s
t
s
i
g
n
i
f
ican
t
ch
alle
n
g
e
t
h
at
co
n
s
tr
ain
s
t
h
e
r
eliab
ilit
y
,
s
ec
u
r
it
y
,
an
d
ef
f
icie
n
c
y
o
f
au
to
m
ated
lo
g
is
tic
s
y
s
te
m
s
[
4
]
.
T
h
e
co
n
f
lict
-
f
r
ee
r
o
u
ti
n
g
s
c
h
ed
u
li
n
g
p
r
o
b
le
m
(
C
FR
SP
)
o
f
A
GVs,
w
h
ic
h
i
s
a
n
i
m
p
o
r
ta
n
t a
n
d
f
u
n
d
a
m
e
n
tal
p
r
o
b
lem
i
n
t
h
e
m
an
a
g
e
m
en
t o
f
A
GV
s
y
s
te
m
s
,
h
a
s
b
ee
n
in
v
esti
g
ated
b
y
a
n
u
m
b
er
o
f
s
tu
d
ie
s
.
Ma
n
y
s
t
u
d
ies
f
o
c
u
s
o
n
r
o
u
te
d
esig
n
a
n
d
ad
j
u
s
t
m
e
n
t,
w
h
ic
h
is
a
k
e
y
p
r
o
b
le
m
i
n
th
e
co
n
f
lict
-
f
r
ee
r
o
u
tin
g
o
f
A
G
Vs.
R
e
s
ea
r
ch
er
s
p
r
o
p
o
s
ed
a
r
ea
l
-
ti
m
e
tr
a
f
f
ic
co
n
tr
o
l
s
ch
e
m
e[
5
]
.
Sp
ec
if
icall
y
,
th
e
y
e
m
p
lo
y
ed
a
k
-
s
h
o
r
test
p
ath
s
ea
r
c
h
al
g
o
r
ith
m
to
co
n
s
tr
u
ct
a
p
ath
s
et;
t
h
u
s
,
t
h
e
o
n
lin
e
m
o
tio
n
p
la
n
n
in
g
o
p
er
atio
n
w
a
s
p
er
f
o
r
m
ed
i
n
r
ea
l
ti
m
e.
Oth
er
w
o
r
k
er
s
p
r
esen
ted
a
d
y
n
a
m
ic
r
o
u
ti
n
g
m
et
h
o
d
f
o
r
s
u
p
er
v
is
o
r
y
co
n
tr
o
l
o
f
tr
av
eli
n
g
AGVs
w
i
th
i
n
t
h
e
la
y
o
u
t
o
f
a
g
i
v
e
n
w
ar
eh
o
u
s
e[
6
]
an
d
u
s
ed
ti
m
e
w
i
n
d
o
w
s
i
n
a
v
ec
to
r
f
o
r
m
to
s
o
lv
e
th
e
s
h
o
r
test
p
at
h
p
r
o
b
lem
d
y
n
a
m
icall
y
.
H
u
et
al.
p
r
o
p
o
s
ed
a
d
y
n
a
m
ic
r
o
u
ti
n
g
p
lan
al
g
o
r
it
h
m
b
a
s
ed
o
n
a
ti
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N:
2
0
8
9
-
4856
I
J
R
A
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
:
69
–
79
70
w
i
n
d
o
w
[
7
]
.
B
ased
o
n
alter
n
ati
v
e
p
ath
s
a
n
d
id
ea
l
ti
m
e
w
i
n
d
o
w
s
,
th
e
ir
alg
o
r
it
h
m
u
p
d
ated
t
h
e
ti
m
e
w
in
d
o
w
s
o
f
lo
w
er
-
p
r
io
r
ity
AGVs.
T
y
p
icall
y
,
ea
c
h
AGV
w
is
h
i
n
g
to
p
ass
is
r
eq
u
ir
ed
to
b
o
o
k
a
p
ass
ag
e
ti
m
e
i
n
ter
v
a
l
an
d
a
r
o
u
te.
I
n
o
r
d
er
to
av
o
id
p
o
s
s
ib
le
co
n
f
li
cts,
A
GVs
m
a
y
ch
o
o
s
e
a
w
a
i
tin
g
s
tr
ate
g
y
s
u
ch
a
s
d
ec
eler
atio
n
an
d
s
to
p
p
in
g
ex
ce
p
t
r
o
u
te
ad
j
u
s
t
m
e
n
t.
B
y
ch
an
g
i
n
g
t
h
e
p
r
io
r
it
y
o
f
AG
Vs
p
as
s
in
g
th
r
o
u
g
h
t
h
e
n
o
d
es
a
n
d
ad
j
u
s
ti
n
g
th
e
p
ass
in
g
s
eq
u
e
n
ce
s
o
f
co
r
r
esp
o
n
d
in
g
n
o
d
es,
Q
iao
et
a
l.
p
r
o
p
o
s
ed
an
u
p
d
atin
g
AGV
s
c
h
e
d
u
le
to
r
ea
lize
r
ea
l
-
ti
m
e
co
n
f
lict
-
f
r
ee
r
o
u
tin
g
in
a
d
y
n
a
m
ic
u
n
ce
r
tai
n
en
v
ir
o
n
m
en
t[
8
]
.
Sh
ao
et
al.
u
s
ed
a
t
r
af
f
ic
co
n
tr
o
ller
to
o
p
er
ate
ea
ch
m
o
v
i
n
g
A
GV
o
n
lin
e
a
f
ter
u
tili
z
in
g
t
h
e
A*
alg
o
r
ith
m
to
co
n
s
tr
u
ct
an
o
p
ti
m
al
p
at
h
s
et
f
o
r
A
G
V[
9
]
.
W
h
en
th
e
tr
af
f
ic
co
n
tr
o
ller
o
p
er
ates,
lo
w
er
p
r
io
r
it
y
A
GVs
n
ee
d
to
w
ait
if
t
h
ei
r
r
o
a
d
s
ah
ea
d
ar
e
o
cc
u
p
ied
b
y
h
i
g
h
-
p
r
io
r
it
y
A
GVs.
Ni
s
h
i
e
t
al.
s
t
u
d
ied
t
h
e
o
p
ti
m
izatio
n
o
f
co
n
f
lic
t
-
f
r
ee
r
o
u
tin
g
p
r
o
b
le
m
f
o
r
A
G
Vs
w
it
h
ac
ce
ler
atio
n
a
n
d
d
ec
el
er
atio
n
[
1
0
]
.
Fazlo
llah
tab
ar
et
al.
p
r
o
p
o
s
e
d
a
m
ath
e
m
atica
l
p
r
o
g
r
am
t
o
m
i
n
i
m
ize
th
e
p
en
alize
d
ea
r
lin
es
s
an
d
tar
d
in
ess
f
o
r
co
n
f
lict
-
f
r
ee
a
n
d
j
u
s
t
-
in
-
ti
m
e
p
r
o
d
u
ctio
n
,
co
n
s
id
er
in
g
t
h
e
d
u
e
d
ate
o
f
A
GVs
r
eq
u
ir
ed
f
o
r
m
ater
ial
h
an
d
li
n
g
a
m
o
n
g
s
h
o
p
s
in
a
j
o
b
s
h
o
p
l
ay
o
u
t[
4
]
.
L
u
d
ev
elo
p
ed
a
co
m
b
i
n
atio
n
o
f
p
r
o
b
ab
ilis
tic
an
d
p
h
y
s
ics
-
b
ased
m
o
d
el
s
f
o
r
tr
u
c
k
i
n
ter
r
u
p
tio
n
s
[
1
1
]
.
On
t
h
e
b
a
s
is
o
f
e
x
ac
tl
y
e
v
al
u
ati
n
g
th
e
e
x
p
ec
ted
lin
k
tr
av
el
ti
m
e,
Mi
y
a
m
o
to
an
d
I
n
o
u
e
s
o
lv
ed
a
m
i
x
ed
-
in
te
g
er
p
r
o
g
r
a
m
m
i
n
g
m
o
d
el
b
y
u
s
i
n
g
a
s
q
u
ea
k
y
-
w
h
e
e
l
o
p
tim
izatio
n
b
ased
m
eta
-
h
e
u
r
is
tic
to
m
i
n
i
m
ize
t
h
e
to
tal
e
x
p
ec
ted
tr
av
el
ti
m
e
r
eq
u
ir
ed
t
o
m
o
v
e
co
n
tai
n
er
s
ar
o
u
n
d
th
e
y
ar
d
.
T
h
ey
al
s
o
p
r
o
p
o
s
ed
lo
ca
l/ra
n
d
o
m
s
ea
r
ch
m
et
h
o
d
s
to
s
o
lv
e
t
h
e
d
is
p
atc
h
an
d
co
n
f
lict
-
f
r
ee
r
o
u
tin
g
p
r
o
b
lem
o
f
ca
p
ac
itated
A
GV
s
y
s
te
m
s
[
1
2
]
.
Ho
w
e
v
e
r
,
th
e
w
ai
tin
g
s
tr
ate
g
ie
s
in
t
h
eir
w
o
r
k
w
er
e
o
n
l
y
tr
ea
ted
as
te
m
p
o
r
ar
y
m
ea
s
u
r
es
to
av
o
id
co
n
f
lict
s
.
T
h
e
y
d
id
n
o
t
co
n
s
id
er
a
w
ait
in
g
s
tr
ateg
y
in
th
e
i
n
it
ia
l
s
ch
ed
u
lin
g
.
Dif
f
er
en
t
w
ai
tin
g
s
tr
ate
g
ie
s
r
esu
lt
i
n
d
if
f
er
en
t
r
u
n
n
i
n
g
s
tate
an
d
d
if
f
er
e
n
t
p
r
o
d
u
ctiv
it
y
.
I
t
is
b
etter
to
d
esig
n
th
e
r
o
u
te
a
n
d
w
aiti
n
g
ti
m
e
to
g
et
h
er
f
o
r
A
GV
s
in
ad
v
an
ce
,
r
ath
er
t
h
an
s
i
m
p
l
y
u
s
i
n
g
w
aiti
n
g
a
s
a
te
m
p
o
r
ar
y
m
ea
s
u
r
e
w
h
en
co
n
f
lict
h
ap
p
en
s
.
Z
h
o
u
et
al.
p
r
o
p
o
s
ed
a
co
n
f
lict
f
r
ee
O
v
er
h
ea
d
Ho
is
t
T
r
an
s
p
o
r
te
r
(
OHT
)
p
ath
s
ch
ed
u
li
n
g
m
e
th
o
d
b
ased
o
n
a
r
o
llin
g
h
o
r
izo
n
s
t
r
ateg
y
[
1
3
]
.
B
y
ex
ec
u
ti
n
g
s
p
ac
e
an
d
ti
m
e
co
n
f
lict
d
etec
tio
n
f
o
r
t
h
e
c
u
r
r
en
t
s
h
o
r
t
est
p
ath
,
th
e
y
co
n
f
ir
m
ed
t
h
e
c
o
n
f
lic
t
f
r
ee
p
ath
i
n
t
h
e
c
u
r
r
en
t
ti
m
e
w
i
n
d
o
w
b
y
tak
i
n
g
a
co
r
r
esp
o
n
d
in
g
co
llis
i
o
n
av
o
id
an
ce
s
tr
ate
g
y
,
w
h
ic
h
w
a
s
les
s
ti
m
e
co
n
s
u
m
in
g
,
a
n
d
th
e
y
also
co
n
d
u
cted
ev
en
t
-
d
r
iv
e
n
r
e
s
ch
ed
u
lin
g
.
Ho
w
e
v
er
,
th
e
ir
ass
u
m
p
tio
n
w
as
t
h
at
o
n
l
y
o
n
e
OHT
w
as
al
lo
w
e
d
to
r
u
n
o
r
s
to
p
a
t
ea
ch
n
o
d
e
at
th
e
s
a
m
e
m
o
m
e
n
t,
w
h
ic
h
li
m
ited
i
ts
ap
p
licati
o
n
r
an
g
e.
Said
i
-
Me
h
r
ab
ad
et
al.
p
r
o
p
o
s
ed
a
t
w
o
-
s
tag
e
a
n
t
co
lo
n
y
o
p
ti
m
izatio
n
al
g
o
r
ith
m
f
o
r
a
m
at
h
e
m
ati
ca
l
m
o
d
el
co
m
p
o
s
ed
o
f
t
h
e
j
o
b
s
h
o
p
s
ch
ed
u
lin
g
p
r
o
b
lem
an
d
co
n
f
lic
t
-
f
r
ee
r
o
u
tin
g
p
r
o
b
lem
[
1
4
]
.
A
G
Vs
co
u
l
d
m
o
v
e
to
n
o
d
es
n
ea
r
b
y
o
r
s
ta
y
at
t
h
e
o
r
ig
i
n
al
n
o
d
e
in
th
e
n
ex
t
ti
m
e
u
n
it.
Ho
w
e
v
er
,
th
e
r
o
ad
n
et
w
o
r
k
in
r
e
f
er
en
ce
[
1
4
]
co
n
s
is
ted
o
f
s
q
u
ar
e
g
r
id
s
,
w
h
ic
h
w
as
d
if
f
er
e
n
t f
r
o
m
m
o
s
t o
f
t
h
e
ac
t
u
al
s
it
u
atio
n
s
.
Af
ter
s
t
u
d
y
in
g
t
h
e
c
u
r
r
en
t
li
ter
atu
r
e,
it
is
clea
r
t
h
at
co
n
f
lict
-
f
r
ee
r
o
u
ti
n
g
s
ch
ed
u
li
n
g
o
f
A
GV
s
co
n
s
id
er
in
g
w
a
iti
n
g
ti
m
e
h
a
s
r
ec
eiv
ed
le
s
s
a
tten
tio
n
f
r
o
m
t
h
e
r
esear
ch
co
m
m
u
n
i
t
y
.
Ho
w
ev
er
,
d
eter
m
in
i
n
g
t
h
e
r
o
u
te
an
d
w
ai
tin
g
ti
m
e
s
i
m
u
lt
an
eo
u
s
l
y
f
o
r
A
G
Vs
i
n
ad
v
an
c
e
m
a
y
r
ed
u
ce
o
r
e
v
en
av
o
id
c
o
n
f
lic
ts
i
n
th
e
r
o
ad
-
t
y
p
e
n
et
w
o
r
k
w
it
h
a
g
r
ea
ter
a
cc
u
r
ac
y
.
I
n
t
h
i
s
w
o
r
k
,
th
e
AG
Vs
C
F
R
SP
is
r
e
g
ar
d
ed
as
a
m
ix
ed
co
m
b
in
a
t
o
r
ial
o
p
tim
izatio
n
p
r
o
b
le
m
co
m
p
o
s
ed
o
f
r
o
u
tin
g
an
d
w
aiti
n
g
ti
m
e
o
p
tim
izatio
n
s
.
A
g
u
id
ed
an
t
c
o
lo
n
y
o
p
ti
m
iza
tio
n
(
GACO)
alg
o
r
ith
m
is
d
esi
g
n
ed
to
o
p
tim
ize
A
GV
s
C
F
R
S
P
.
T
o
av
o
id
c
o
n
f
lict
s
,
th
e
r
o
u
tes
o
f
A
GV
s
ar
e
o
p
tim
ized
b
y
m
o
d
i
f
ied
s
tatu
s
t
r
an
s
f
er
r
u
le
i
n
w
h
ic
h
a
k
i
n
d
o
f
g
u
id
an
ce
f
ac
to
r
is
e
m
b
ed
d
ed
;
w
h
ile
th
e
w
aiti
n
g
ti
m
e
i
s
o
p
ti
m
ized
b
y
t
h
e
iter
at
iv
e
r
u
le
o
f
P
SO.
Sev
er
al
s
i
m
u
l
atio
n
s
s
h
o
w
t
h
at
t
h
e
p
r
o
p
o
s
ed
m
o
d
el
a
n
d
m
et
h
o
d
h
av
e
s
tr
o
n
g
r
atio
n
alit
y
an
d
ap
p
licab
ilit
y
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
T
h
e
r
o
ad
n
et
w
o
r
k
o
f
an
a
u
t
o
m
ated
lo
g
i
s
tic
s
y
s
te
m
i
s
d
en
o
ted
b
y
a
g
r
ap
h
s
u
ch
a
s
Fi
g
u
r
e
1
w
it
h
N
n
o
d
es
(
A
1
,
A
2
,
…,
A
N)
an
d
B
lin
k
s
.
T
h
er
e
ar
e
P
A
GVs
(
A
GV1
,
A
GV2
,
…,
A
GVP
)
.
T
h
e
s
tar
tin
g
n
o
d
e,
f
i
n
is
h
i
n
g
n
o
d
e,
an
d
s
p
ee
d
o
f
th
e
p
th
A
GV
(
d
en
o
ted
as
A
GV
p
)
ar
e
Sp
,
E
p
an
d
Vp
,
r
esp
ec
tiv
el
y
.
Fig
u
r
e
1
.
R
o
ad
n
et
w
o
r
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
R
A
I
SS
N:
2
0
8
9
-
4856
A
Gu
id
ed
A
n
t Co
lo
n
y
Op
timiz
a
tio
n
A
lg
o
r
ith
m
fo
r
C
o
n
flict
-
fr
ee
R
o
u
tin
g
S
ch
ed
u
lin
g
o
f A
GV
s
...
(
LI
Ju
n
-
ju
n
)
71
2
.
1
.
T
ra
v
el
t
i
m
e
o
f
AG
V
s
Ass
u
m
in
g
th
a
t
A
G
V
p
p
as
s
es
t
h
r
o
u
g
h
li
n
k
(
A
k
,
A
l
)
,
an
d
n
o
d
e
s
A
k
an
d
A
l
ar
e
th
e
i
th
an
d
(
i+
1
)
th
n
o
d
es
in
its
r
o
u
te
(
t
h
e
s
tar
ti
n
g
n
o
d
e
S
p
is
tak
e
n
a
s
th
e
1
st
n
o
d
e)
.
T
h
e
d
is
tan
ce
b
et
w
ee
n
n
o
d
es
A
k
a
n
d
A
l
is
d
en
o
ted
b
y
,1
p
ii
d
.
T
h
e
w
ait
in
g
ti
m
e
o
f
A
GV
p
i
n
f
r
o
n
t
o
f
n
o
d
es
A
k
an
d
A
l
ar
e
p
i
an
d
1
p
i
,
r
esp
ec
tiv
el
y
.
T
h
e
ti
m
e
i
n
ter
v
al
o
f
AGV
p
p
ass
i
n
g
t
h
r
o
u
g
h
n
o
d
es
A
k
an
d
A
l
is
p
k
t
an
d
p
l
t
,
r
esp
ec
tiv
el
y
,
as s
h
o
w
n
i
n
E
q
u
a
tio
n
(
1
)
an
d
(
2
)
.
1
,1
11
1
ii
p
p
p
k
j
j
j
jj
p
td
v
(
1
)
1
,1
11
1
ii
p
p
p
l
j
j
j
jj
p
td
v
(
2
)
Ob
v
io
u
s
l
y
,
th
er
e
s
h
o
u
ld
b
e
a
s
af
e
t
y
d
is
ta
n
ce
b
et
w
ee
n
t
w
o
AGVs
f
o
r
co
n
f
lict
p
r
ev
en
tio
n
.
L
et
t
h
e
d
u
r
a
tio
n
o
f
AGV
p
p
ass
in
g
t
h
r
o
u
g
h
li
n
k
(
A
k
,
A
l
)
b
e
,
p
kl
T
,
w
h
ic
h
c
an
b
e
ca
lcu
lated
ac
co
r
d
in
g
to
E
q
u
atio
n
(
3
)
.
I
n
E
q
u
atio
n
.
(
3
)
,
*
pp
kk
tt
,
*
pp
ll
tt
,
an
d
is
a
co
n
s
ta
n
t
m
o
r
e
th
a
n
ze
r
o
to
e
n
s
u
r
e
th
e
in
ter
v
al
o
f
k
ee
p
in
g
a
s
a
f
e
d
is
ta
n
ce
a
m
o
n
g
A
GV
s
.
I
f
A
GV
p
d
o
es n
o
t p
ass
th
r
o
u
g
h
li
n
k
(
A
k
,
A
l
)
,
let
,
p
kl
T
b
e
.
,
(
*
,
*
)
p
p
p
k
l
k
l
T
t
t
(
3
)
2
.
2
.
L
ink
co
nflict
I
f
,,
*
(
)
p
q
q
k
k
l
l
k
t
T
T
,
,
,
1
pq
kl
W
;
else,
,
,
0
pq
kl
W
.
I
f
,,
*
(
)
p
p
p
l
k
l
l
k
t
T
T
,
,
,
'1
pq
kl
W
;
else,
,
,
'0
pq
kl
W
.
W
h
er
e
,
q
kl
T
d
en
o
tes
th
e
d
u
r
atio
n
AGV
q
s
p
en
d
s
p
ass
i
n
g
th
r
o
u
g
h
li
n
k
(
A
k
,
A
l
)
f
r
o
m
n
o
d
e
A
k
,
an
d
,
q
lk
T
d
en
o
tes
th
e
d
u
r
atio
n
A
GV
q
s
p
e
n
d
s
p
ass
i
n
g
th
r
o
u
g
h
li
n
k
(
A
l
,
A
k
)
f
r
o
m
n
o
d
e
A
l
.
T
h
e
m
a
x
i
m
u
m
o
v
er
lap
n
u
m
b
er
m
a
x
,
kl
W
f
o
r
A
G
Vs
t
h
o
u
g
h
a
r
a
n
d
o
m
li
n
k
(
A
k
,
A
l
)
is
s
h
o
wn
in
E
q
u
atio
n
(
4
)
.
T
h
er
ef
o
r
e,
th
e
n
u
m
b
er
o
f
AGVs
tr
av
elli
n
g
s
i
m
u
ltan
eo
u
s
l
y
i
n
t
h
e
li
n
k
(
A
k
,
A
l
)
is
m
a
x
,
1
kl
W
.
T
h
e
n
u
m
b
er
o
f
r
u
n
n
i
n
g
A
GV
s
i
n
lin
k
(
A
k
,
A
l
)
n
ee
d
s
to
m
ee
t
E
q
u
atio
n
.
(
5
)
to
p
r
ev
en
t
li
n
k
c
o
n
f
lic
t.
I
n
E
q
u
a
tio
n
.
(
5
)
,
H
a
is
th
e
allo
w
ed
m
a
x
i
m
u
m
n
u
m
b
er
o
f
r
u
n
n
i
n
g
A
GVs p
er
u
n
it d
is
ta
n
ce
.
m
a
x
,
,
,
,
,
[
1
,
]
11
m
a
x
{
m
a
x
{
,
'
}
}
PP
p
q
p
q
k
l
k
l
k
l
iP
qq
W
W
W
(
pq
)
(
4
)
m
a
x
,
,
1
kl
a
kl
W
H
d
(
5
)
2
.
3
.
No
de
c
o
nflict
An
A
GV
h
a
s
a
ce
r
tain
len
g
t
h
,
w
h
i
le
a
j
u
n
ctio
n
in
t
h
e
r
o
ad
n
et
w
o
r
k
h
as
s
o
m
e
s
p
atial
s
c
o
p
e.
So
an
A
G
V
n
ee
d
s
s
o
m
e
t
i
m
e
to
p
as
s
th
r
o
u
g
h
a
n
o
d
e.
I
f
||
pq
k
k
t
t
t
h
(
t
h
is
ti
m
e
t
h
r
esh
o
ld
)
,
A
GV
p
an
d
A
GV
q
alm
o
s
t
g
o
th
r
o
u
g
h
n
o
d
e
A
k
at
th
e
s
a
m
e
m
o
m
e
n
t,
it
is
s
et
,
1
pq
k
Z
;
o
th
er
w
i
s
e,
,
0
pq
k
Z
.
T
h
en
,
th
e
n
u
m
b
er
o
f
A
G
Vs
p
ass
in
g
t
h
r
o
u
g
h
n
o
d
e
A
k
s
i
m
u
lta
n
eo
u
s
l
y
i
s
s
h
o
w
n
i
n
E
q
u
atio
n
.
(
6
)
,
an
d
th
e
m
a
x
i
m
u
m
n
u
m
b
er
o
f
AGVs
p
ass
in
g
th
r
o
u
g
h
n
o
d
e
A
k
s
i
m
u
lta
n
eo
u
s
l
y
is
s
h
o
w
n
i
n
E
q
u
atio
n
.
(
7
)
.
I
n
o
r
d
er
to
av
o
id
n
o
d
e
co
n
f
lict,
th
e
n
u
m
b
er
o
f
r
u
n
n
i
n
g
AGVs
i
n
a
n
o
d
e
n
ee
d
s
to
m
ee
t
F
o
r
m
u
la
(
8
)
.
I
n
Fo
r
m
u
la
(
8
)
,
H
b
is
th
e
allo
w
ed
m
a
x
i
m
u
m
n
u
m
b
er
o
f
A
GV
s
p
ass
i
n
g
th
r
o
u
g
h
a
n
o
d
e
s
i
m
u
lta
n
eo
u
s
l
y
.
#,
1
P
p
p
q
kk
q
ZZ
(
pq
)
(
6
)
m
a
x
#
{
1
,
,
}
m
a
x
{
}
1
p
kk
pP
ZZ
(
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N:
2
0
8
9
-
4856
I
J
R
A
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
:
69
–
79
72
m
a
x
kb
ZH
(
8
)
2
.4
.
Co
nflict
-
f
re
e
ro
uting
s
c
hedu
li
ng
m
o
del f
o
r
AG
V
s
B
ased
o
n
E
q
u
atio
n
.
(
1
)
,
t
h
e
ta
s
k
co
m
p
letio
n
ti
m
e
f
o
r
A
GV
p
is
s
h
o
w
n
i
n
E
q
u
atio
n
.
(
9
)
.
E
ac
h
A
GV
i
s
ex
p
ec
ted
to
r
ea
ch
t
h
e
f
i
n
is
h
i
n
g
n
o
d
e
i
n
t
h
e
s
h
o
r
test
ti
m
e.
T
h
en
th
e
o
b
j
ec
tiv
e
f
u
n
cti
o
n
is
e
x
p
r
ess
ed
i
n
E
q
u
at
io
n
.
(
1
0
)
.
E
q
u
atio
n
.
(
5
)
an
d
(
8
)
ar
e
th
e
co
n
s
tr
ain
ts
f
o
r
th
is
co
n
f
l
ict
-
f
r
ee
r
o
u
ti
n
g
s
c
h
ed
u
li
n
g
m
o
d
el.
I
n
E
q
u
atio
n
.
(
9
)
an
d
(
1
0
)
,
N
p
is
th
e
n
u
m
b
er
o
f
n
o
d
es p
ass
ed
b
y
A
G
V
p
in
cl
u
d
i
n
g
t
h
e
s
tar
ti
n
g
a
n
d
f
i
n
is
h
i
n
g
n
o
d
es.
1
,1
11
1
pp
NN
p
p
p
E
j
j
j
jj
p
td
v
(
9
)
m
a
x
p
pE
ft
(
1
0
)
3.
G
ACO
A
L
G
O
R
I
T
H
M
T
h
e
A
GV
s
C
F
R
SP
p
r
i
m
ar
il
y
co
n
s
i
s
ts
o
f
t
h
e
r
o
u
te
an
d
waitin
g
ti
m
e
d
ec
i
s
io
n
s
.
T
h
e
f
o
r
m
er
is
a
d
is
cr
ete
r
o
u
te
o
p
ti
m
izatio
n
p
r
o
b
lem
,
w
h
ile
t
h
e
latter
is
a
co
n
ti
n
u
o
u
s
r
ea
l
n
u
m
b
er
o
p
ti
m
iz
atio
n
p
r
o
b
lem
.
AC
O
is
a
m
eta
-
h
eu
r
i
s
tic
b
ased
g
lo
b
al
o
p
tim
izatio
n
m
et
h
o
d
an
d
h
as
p
r
o
v
ed
its
elf
i
n
th
e
f
ield
o
f
r
o
u
te
o
p
tim
iza
tio
n
[15]
,
w
h
ile
P
SO
ex
h
ib
its
g
o
o
d
ab
ilit
y
to
s
o
lv
e
t
h
e
co
n
ti
n
u
o
u
s
o
p
ti
m
izatio
n
p
r
o
b
lem
[1
6]
.
T
h
er
ef
o
r
e,
GA
C
O
alg
o
r
ith
m
,
in
w
h
ich
AC
O
is
i
n
teg
r
ated
w
it
h
P
SO,
is
p
r
o
p
o
s
ed
to
s
o
lv
e
A
GVs
C
FR
SP
.
R
o
u
te
is
o
p
ti
m
ized
w
it
h
t
h
e
s
tate
tr
a
n
s
i
tio
n
r
u
le
o
f
A
C
O,
w
h
ile
t
h
e
w
aiti
n
g
ti
m
e
i
s
o
p
ti
m
ized
w
i
th
th
e
iter
ativ
e
r
u
le
o
f
P
SO.
B
esid
es,
a
t
y
p
e
o
f
g
u
id
an
ce
f
a
cto
r
is
ad
d
ed
t
o
th
e
s
tate
tr
an
s
i
tio
n
r
u
le
to
av
o
id
co
n
f
lict
s
a
m
o
n
g
A
GV
s
.
Firstl
y
,
t
h
e
a
n
t
co
lo
n
y
a
n
d
p
ar
ticle
s
w
ar
m
ar
e
i
n
itialized
in
Sectio
n
3
.
1
;
s
ec
o
n
d
l
y
,
s
ta
tu
s
t
r
an
s
f
er
r
u
l
e
b
ased
o
n
g
u
id
a
n
ce
f
ac
to
r
,
w
h
ich
ca
n
in
d
u
ce
A
GV
s
to
av
o
i
d
co
n
f
l
icts
in
li
n
k
s
a
n
d
n
o
d
es,
is
elab
o
r
ated
in
Sectio
n
3
.
2
;
th
ir
d
l
y
,
f
itn
e
s
s
f
u
n
ctio
n
s
o
f
s
i
n
g
le
an
t,
h
i
s
to
r
ical
o
p
ti
m
al
A
G
V
g
r
o
u
p
,
h
is
to
r
ical
in
d
i
v
id
u
al
a
n
d
g
lo
b
al
b
est p
ar
ticles ar
e
g
iv
e
n
in
Sectio
n
3
.
3
; la
s
tl
y
,
al
g
o
r
ith
m
ic
f
lo
w
o
f
G
AC
O
is
s
h
o
w
n
i
n
Sectio
n
3
.
4
.
3
.
1
.
I
nitia
liza
t
io
n
M
an
t
s
ar
e
r
an
d
o
m
l
y
s
et
f
o
r
ea
ch
A
GV.
T
h
e
s
tar
tin
g
n
o
d
e
o
f
in
itial
r
o
u
te
f
o
r
ea
ch
a
n
t i
s
S
p
.
T
h
e
o
th
er
n
o
d
es
in
s
et
{
A
1
,
A
2
,
…,
A
N
},
ar
e
r
an
d
o
m
l
y
d
is
r
u
p
ted
to
g
en
er
ate
a
s
eq
u
en
ce
.
An
A
GV
at
ea
ch
lin
k
h
as
th
e
s
a
m
e
p
h
er
o
m
o
n
e
in
te
n
s
it
y
(
,
0
)
kl
pC
.
T
h
e
p
h
er
o
m
o
n
e
i
n
te
n
s
it
y
f
o
r
AGV
p
at
li
n
k
(
A
k
,
A
l
)
in
t
h
e
t
th
it
er
atio
n
is
(
,
)
kl
pt
.
Fo
r
co
n
v
en
ien
ce
,
kl
is
u
s
ed
t
o
d
en
o
te
(
,
)
kl
pt
.
Me
an
w
h
ile,
M
p
ar
ticles
u
s
ed
t
o
o
p
tim
ize
w
ait
in
g
ti
m
e
ar
e
in
itialized
.
T
h
e
n
u
m
b
er
o
f
p
ar
ti
cles
is
s
et
eq
u
al
to
th
e
n
u
m
b
er
o
f
an
ts
.
A
p
ar
ticle
is
co
m
p
o
s
ed
o
f
th
e
w
aiti
n
g
ti
m
e
i
n
f
r
o
n
t
o
f
n
o
d
es
p
i
(
i
=1
,
2
,
…,
N
,
p
=1
,
2
,
……,
P
)
.
E
ac
h
p
ar
ticle
is
en
co
d
ed
as
a
PN
m
atr
ix
,
11
1
1
N
PP
N
.
E
ac
h
ele
m
e
n
t
in
th
is
m
atr
i
x
i
s
a
r
an
d
o
m
n
u
m
b
er
i
n
[
0
,
m
a
x
]
.
W
h
e
r
e,
m
a
x
is
th
e
m
a
x
i
m
u
m
ac
ce
p
tab
l
e
v
alu
e
o
f
p
i
.
I
n
ad
d
itio
n
,
let
th
e
in
itia
l
an
d
m
a
x
i
m
u
m
v
elo
cities o
f
ea
ch
ele
m
e
n
t i
n
p
ar
ticles b
e
0
v
an
d
m
a
x
v
,
r
esp
ec
tiv
el
y
.
3
.
2
.
St
a
t
us
t
ra
ns
f
er
rule
ba
s
ed
o
n g
uid
a
nce
f
a
ct
o
r
3
.
2
.
1
.
G
uid
a
nce
f
a
ct
o
r
T
h
er
e
ar
e
a
lar
g
e
n
u
m
b
er
o
f
s
to
ch
ast
ic
o
p
er
atio
n
s
in
t
h
e
p
r
o
ce
s
s
es
o
f
G
AC
O
alg
o
r
it
h
m
.
I
n
ea
c
h
g
en
er
atio
n
o
f
th
e
al
g
o
r
ith
m
,
if
A
G
Vs
ar
e
g
u
id
ed
o
n
l
y
ac
co
r
d
in
g
to
th
e
co
n
f
lict
a
n
al
y
s
i
s
a
m
o
n
g
t
h
e
co
n
te
m
p
o
r
ar
y
A
GV
s
,
th
er
e
wo
u
ld
b
e
g
r
ea
ter
b
lin
d
n
es
s
.
C
o
n
tr
ar
y
to
A
GV
s
in
g
en
er
atio
n
s
,
h
is
to
r
ical
o
p
ti
m
al
A
G
Vs
w
o
u
ld
g
r
ad
u
al
l
y
te
n
d
to
th
e
o
p
tim
al
s
o
l
u
tio
n
a
n
d
b
ec
o
m
e
s
tead
y
.
T
h
er
ef
o
r
e,
A
G
Vs
ar
e
g
u
i
d
ed
b
ased
o
n
th
e
co
n
f
lict
a
n
al
y
s
is
a
m
o
n
g
th
e
co
n
te
m
p
o
r
ar
y
A
GV
s
an
d
cu
r
r
en
t
h
is
to
r
ical
o
p
tim
a
l
AGVs
in
t
h
i
s
w
o
r
k
,
s
o
as to
en
h
a
n
ce
t
h
e
tar
g
et
-
o
r
ien
t
ed
o
p
tim
izatio
n
ab
ilit
y
o
f
th
e
alg
o
r
ith
m
.
a.
L
in
k
co
nflict
a
na
ly
s
is
co
ns
idering
curr
ent
hi
s
t
o
rica
l o
pti
m
a
l
A
G
V
s
A
t
t
h
e
e
n
d
o
f
ea
ch
g
e
n
er
atio
n
,
th
e
h
is
to
r
ical
o
p
ti
m
a
l
an
t
(
1
,
2
,
,
)
g
p
A
G
V
p
P
,
an
d
th
e
co
r
r
esp
o
n
d
in
g
d
u
r
atio
n
,
'
p
kl
T
an
d
,
'
p
lk
T
s
p
en
t
b
y
g
p
A
G
V
p
ass
i
n
g
t
h
r
o
u
g
h
lin
k
s
(
A
k
,
A
l
)
an
d
(
A
l
,
A
k
)
a
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
R
A
I
SS
N:
2
0
8
9
-
4856
A
Gu
id
ed
A
n
t Co
lo
n
y
Op
timiz
a
tio
n
A
lg
o
r
ith
m
fo
r
C
o
n
flict
-
fr
ee
R
o
u
tin
g
S
ch
ed
u
lin
g
o
f A
GV
s
...
(
LI
Ju
n
-
ju
n
)
73
r
ec
o
r
d
e
d
.
T
h
e
d
u
r
atio
n
s
o
f
an
t
m
p
A
G
V
(
th
e
m
th
an
t
f
o
r
A
GV
p
,
m
=1
,
2
,
…,
M
)
p
ass
in
g
th
r
o
u
g
h
li
n
k
(
A
k
,
A
l
)
an
d
(
A
l
,
A
k
)
ar
e
,
,
pm
kl
T
an
d
,
,
pm
lk
T
,
r
esp
ec
tiv
el
y
.
I
f
,
,
,
,
,
,
()
p
m
g
p
g
p
k
l
k
l
l
k
T
T
T
,
an
ts
m
p
A
G
V
an
d
g
q
A
G
V
p
ass
t
h
r
o
u
g
h
lin
k
(
A
k
,
A
l
)
s
i
m
u
lta
n
eo
u
s
l
y
,
l
et
,,
,
1
pqm
kl
Y
;
o
th
er
w
i
s
e,
,,
,
0
pqm
kl
Y
.
Fu
r
th
er
,
t
h
e
n
u
m
b
er
o
f
h
i
s
to
r
ical
o
p
ti
m
a
l
an
ts
p
as
s
in
g
t
h
r
o
u
g
h
li
n
k
(
A
k
,
A
l
)
w
it
h
an
t
m
p
A
G
V
s
i
m
u
lta
n
eo
u
s
l
y
,
,
,
pm
kl
NY
,
is
co
u
n
ted
in
E
q
u
atio
n
(
1
1
)
.
,
,
,
,,
1
P
p
m
p
q
m
k
l
k
l
q
N
Y
Y
(
1
1
)
w
h
er
e,
qp
.
I
f
o
n
l
y
,
pm
A
G
V
an
d
()
g
q
A
G
V
q
p
r
u
n
i
n
t
h
e
r
o
ad
n
et
w
o
r
k
,
th
e
AGV
d
en
s
it
y
at
li
n
k
(
A
k
,
A
l
)
is
:
,
,
,
,
,
1
pm
kl
pm
kl
kl
NY
d
(
1
2
)
A
cc
o
r
d
in
g
to
f
o
r
m
u
la
(
5
)
,
,
,
pm
kl
s
h
o
u
ld
m
ee
t i
n
eq
u
at
io
n
(
1
3
)
,
,
pm
k
l
a
H
(
1
3
)
b.
No
de
co
nflict
a
na
ly
s
is
co
ns
idering
curr
e
nt
his
t
o
rica
l o
pti
m
a
l A
G
Vs
Si
m
i
lar
to
th
e
ab
o
v
e
-
m
e
n
tio
n
ed
"
L
in
k
co
n
f
l
ict
a
n
al
y
s
is
co
n
s
id
er
in
g
c
u
r
r
en
t
h
i
s
to
r
ical
o
p
ti
m
a
l
A
G
Vs"
,
th
e
n
o
d
e
co
n
f
l
ict
i
s
j
u
d
g
ed
w
h
e
n
ea
c
h
an
t
o
f
A
G
V
p
(
1
,
2
,
,
)
pP
p
ass
es
t
h
r
o
u
g
h
ea
c
h
n
o
d
e.
Ass
u
m
in
g
t
h
at
b
o
th
,
pm
A
G
V
an
d
g
q
A
G
V
(
qp
)
p
ass
th
r
o
u
g
h
n
o
d
e
A
l
,
an
d
th
e
m
o
m
e
n
t
t
h
e
y
p
as
s
th
r
o
u
g
h
n
o
d
e
A
l
ar
e
p
l
t
an
d
'
q
l
t
.
Si
m
ilar
w
ith
Sectio
n
2
.
2
,
it
is
s
et
th
at
,
'1
pq
l
Z
if
|
'
|
pq
l
l
t
t
t
h
;
o
th
er
w
is
e,
,
'0
pq
l
Z
.
T
h
e
n
u
m
b
er
o
f
h
i
s
to
r
ical
o
p
ti
m
al
a
n
t
s
p
ass
in
g
t
h
r
o
u
g
h
n
o
d
e
A
k
w
it
h
a
n
t
m
p
A
G
V
s
i
m
u
lta
n
eo
u
s
l
y
,
'
p
l
NZ
,
is
co
u
n
ted
in
E
q
u
atio
n
.
(
1
4
)
.
,
1
''
P
p
p
q
ll
q
N
Z
Z
(
1
4
)
w
h
er
e,
qp
.
A
cc
o
r
d
in
g
to
f
o
r
m
u
la
(
8
)
,
'
p
l
NZ
s
h
o
u
ld
m
ee
t in
E
q
u
at
io
n
(
1
5
)
:
'1
q
lb
N
Z
H
(
1
5
)
c.
G
uid
a
nce
f
a
ct
o
r
E
ac
h
an
t
o
f
A
G
V
p
s
h
o
u
ld
c
o
n
s
cio
u
s
l
y
av
o
id
t
h
e
r
o
u
te
o
f
(
1
,
2
,
,
,
)
g
q
A
G
V
q
P
q
p
.
Her
e,
a
g
u
id
a
n
ce
f
ac
to
r
kl
,
w
h
ic
h
is
u
s
ed
in
th
e
s
tat
u
s
tr
an
s
f
er
r
u
le
(
in
Sectio
n
3
.
2
.
2
)
to
g
u
id
e
an
ts
a
v
o
id
in
g
co
n
f
lict
s
at
lin
k
s
a
n
d
n
o
d
es,
is
s
et
i
n
E
q
u
atio
n
.
(
1
6
)
.
,
,
1
(
1
)
(
'
1
)
kl
p
m
p
k
l
l
N
Y
N
Z
(
1
6
)
3
.
2
.
2
.
Sta
t
us
t
ra
ns
f
er
rule
a.
T
ra
ns
it
io
n pro
ba
bil
it
y
o
f
ba
s
ic
ACO
T
h
e
tr
an
s
itio
n
p
r
o
b
ab
ilit
y
g
r
e
atl
y
a
f
f
ec
ts
t
h
e
s
ea
r
c
h
i
n
b
asi
c
AC
O.
An
an
t
ch
o
o
s
es
th
e
n
ex
t
n
o
d
e
ac
co
r
d
in
g
to
p
h
er
o
m
o
n
e
in
te
n
s
it
y
kl
an
d
v
is
ib
ili
t
y
kl
.
T
h
e
tr
an
s
it
io
n
p
r
o
b
ab
ilit
y
kl
f
o
r
an
a
n
t
at
n
o
d
e
k
to
ch
o
o
s
e
n
o
d
e
j
is
s
h
o
w
n
i
n
E
q
u
atio
n
.
(
1
7
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N:
2
0
8
9
-
4856
I
J
R
A
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
:
69
–
79
74
,
0,
k
k
l
k
l
k
k
s
k
s
kl
s
a
l
l
o
w
e
d
j
a
l
l
o
w
e
d
o
t
h
e
r
w
i
s
e
(
1
7
)
w
h
er
e
k
a
l
l
o
w
e
d
is
an
o
p
tio
n
al
n
o
d
e
s
et.
A
GV
s
C
FR
SP
is
a
k
in
d
o
f
p
at
h
p
lan
n
in
g
p
r
o
b
le
m
[17]
to
f
i
n
d
th
e
s
h
o
r
test
p
at
h
f
r
o
m
t
h
e
s
tar
t
in
g
n
o
d
e
to
th
e
f
i
n
is
h
i
n
g
n
o
d
e
w
i
t
h
o
u
t r
eq
u
ir
i
n
g
tr
a
v
er
s
al
o
f
al
l t
h
e
n
o
d
es.
E
v
er
y
ti
m
e
a
n
an
t c
h
o
o
s
es t
h
e
n
e
x
t n
o
d
e
as c
lo
s
e
as p
o
s
s
ib
le
to
th
e
f
i
n
is
h
i
n
g
n
o
d
e
.
Her
e,
th
e
v
is
ib
ilit
y
f
ac
to
r
is
r
ed
esig
n
ed
b
ased
o
n
th
e
A*
al
g
o
r
ith
m
:
22
1
(
,
)
(
)
(
)
kl
l
E
p
l
E
p
d
k
l
x
x
y
y
(
1
8
)
w
h
er
e,
(
,
)
d
k
l
d
en
o
tes th
e
d
is
tan
ce
b
et
w
ee
n
n
o
d
es
A
k
a
n
d
A
l
,
(
,
)
ll
xy
d
en
o
tes th
e
co
o
r
d
in
ate
o
f
n
o
d
e
l
A
,
an
d
(
,
)
Z
p
Z
p
xy
d
en
o
tes th
e
co
o
r
d
in
ate
o
f
f
in
i
s
h
i
n
g
n
o
d
e
E
p
.
b.
Sta
t
us
t
ra
ns
f
er
rule
ba
s
ed
o
n g
uid
a
nce
f
a
ct
o
r
On
t
h
e
b
asis
o
f
t
h
e
g
u
id
a
n
ce
f
ac
to
r
,
a
n
e
w
tr
an
s
itio
n
p
r
o
b
ab
i
lit
y
i
s
co
n
s
tr
u
cted
in
E
q
u
at
io
n
.
(
1
9
)
.
,
0,
k
k
l
k
l
k
l
k
k
s
k
s
k
s
kl
s
a
l
l
o
w
e
d
j
a
l
l
o
w
e
d
o
t
h
e
r
w
i
s
e
(
1
9
)
W
h
en
,
pm
A
G
V
is
at
n
o
d
e
A
k
,
it
w
o
u
ld
ch
o
o
s
e
th
e
n
ex
t
n
o
d
e.
Fro
m
E
q
u
atio
n
.
(
1
6
)
an
d
(
1
9
)
,
it
ca
n
b
e
s
ee
n
th
a
t
th
e
tr
an
s
itio
n
p
r
o
b
ab
ilit
y
o
f
A
l
is
b
ig
g
er
i
f
th
e
n
u
m
b
er
o
f
()
g
q
A
G
V
q
p
at
l
in
k
(
A
k
,
A
l
)
an
d
n
o
d
e
A
l
is
lar
g
er
,
o
r
v
ice
v
er
s
a.
T
h
en
th
e
g
u
id
a
n
ce
f
ac
to
r
e
m
b
ed
d
ed
in
s
tatu
s
tr
an
s
f
er
r
u
le
ca
n
r
ed
u
ce
lin
k
an
d
n
o
d
e
co
n
f
lict
s
ef
f
icien
tl
y
.
Si
m
i
lar
to
th
e
b
asic
AC
O,
t
h
e
s
tatu
s
tr
a
n
s
f
er
r
u
le
s
h
o
w
n
in
E
q
u
atio
n
.
(
2
0
)
is
u
s
ed
to
c
h
o
o
s
e
th
e
n
e
x
t
n
o
d
e
n
e
x
t
A
,
w
h
er
e,
is
a
r
an
d
o
m
n
u
m
b
er
u
n
i
f
o
r
m
l
y
d
is
tr
ib
u
ted
o
n
th
e
i
n
ter
v
al
[
0
,
1
]
an
d
0
is
a
p
ar
a
m
eter
i
n
[
0
,
1
]
.
J
is
a
r
an
d
o
m
v
ar
iab
le
s
el
ec
ted
ac
co
r
d
in
g
to
th
e
p
r
o
b
ab
i
lit
y
d
is
tr
ib
u
tio
n
g
i
v
en
b
y
E
q
u
a
tio
n
.
(
1
9
)
.
0
a
r
g
m
a
x
{
}
,
,
k
k
l
k
l
k
l
l
a
l
l
o
w
e
d
n
e
x
t
A
J
o
t
h
e
r
w
i
s
e
(
2
0
)
3
.
3
.
F
i
t
nes
s
f
un
ct
io
n
3
.
3
.
1
.
F
it
nes
s
f
un
ct
io
n o
f
s
in
g
le
a
nt
I
n
co
n
s
id
er
atio
n
o
f
th
e
w
ait
i
n
g
ti
m
e,
t
h
e
to
tal
tr
av
el
ti
m
e
o
f
A
G
Vs,
r
ath
er
t
h
an
t
h
e
to
tal
tr
av
el
d
is
ta
n
ce
,
is
u
s
ed
in
f
it
n
es
s
f
u
n
ctio
n
.
A
p
en
alt
y
f
u
n
ctio
n
is
s
e
t
to
p
u
n
i
s
h
l
in
k
a
n
d
n
o
d
e
co
n
f
licts
,
an
d
t
h
e
n
th
e
f
it
n
es
s
o
f
A
GV
p
is
o
b
tai
n
ed
b
y
u
s
in
g
E
q
u
atio
n
.
(
2
3
)
.
I
n
E
q
u
atio
n
.
(
2
3
)
,
is
th
e
p
en
al
t
y
co
ef
f
icien
t,
an
d
th
e
s
ec
o
n
d
p
ar
t
t
o
th
e
r
ig
h
t
o
f
t
h
e
eq
u
al
s
ig
n
is
t
h
e
p
u
n
is
h
m
e
n
t
t
er
m
.
T
h
e
s
y
m
b
o
l
∑
m
ea
n
s
th
a
t
all
lin
k
an
d
n
o
d
e
co
n
f
lic
ts
h
a
v
e
b
ee
n
p
u
n
i
s
h
ed
.
,,
,,
[
m
a
x
(
0
,
)
m
a
x
(
0
,
'
1
)
]
p
m
p
m
p
p
m
E
k
l
a
l
b
f
t
H
N
Z
H
(
2
1
)
3
.
3
.
2
.
F
it
nes
s
ca
lcula
t
io
n o
f
his
t
o
rica
l o
pti
m
a
l A
G
V
g
ro
u
p
I
f
th
e
c
u
r
r
en
t
a
n
t
is
t
h
e
f
ir
s
t
a
n
t
o
f
th
e
f
ir
s
t
g
e
n
er
atio
n
A
G
V
p
,
let
th
i
s
an
t
b
e
g
p
A
G
V
.
E
ls
e,
co
m
p
ar
i
n
g
th
e
cu
r
r
en
t
an
t
w
it
h
g
p
A
G
V
,
u
p
d
atin
g
g
p
A
G
V
o
n
ce
th
e
cu
r
r
en
t
an
t
i
s
m
o
r
e
o
p
ti
m
a
l.
I
t
ca
n
b
e
s
ee
n
th
at
g
p
A
G
V
o
f
d
i
f
f
er
e
n
t
AGVs
ar
e
n
o
t
u
p
d
ated
s
i
m
u
lta
n
eo
u
s
l
y
.
T
h
en
t
h
e
f
i
n
es
s
es
o
f
(
1
,
2
,
,
)
g
p
A
G
V
p
P
at
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
R
A
I
SS
N:
2
0
8
9
-
4856
A
Gu
id
ed
A
n
t Co
lo
n
y
Op
timiz
a
tio
n
A
lg
o
r
ith
m
fo
r
C
o
n
flict
-
fr
ee
R
o
u
tin
g
S
ch
ed
u
lin
g
o
f A
GV
s
...
(
LI
Ju
n
-
ju
n
)
75
en
d
o
f
ea
ch
g
e
n
er
atio
n
ar
e
n
o
t
r
ea
s
o
n
ab
le
if
all
(
1
,
2
,
,
)
g
p
A
G
V
p
P
ar
e
co
m
b
in
ed
as
a
g
r
o
u
p
o
f
AGVs
m
o
v
i
n
g
in
t
h
e
r
o
ad
n
et
w
o
r
k
m
ea
n
ti
m
e.
T
h
e
r
ef
o
r
e,
at
th
e
en
d
o
f
ea
c
h
g
en
er
atio
n
,
th
e
lin
k
a
n
d
n
o
d
e
co
n
f
lic
ts
o
f
ea
c
h
g
p
A
G
V
ar
e
r
ea
n
al
y
z
ed
,
an
d
th
eir
f
it
n
es
s
ar
e
r
ec
alcu
lated
.
I
n
th
is
w
a
y
,
all
(
1
,
2
,
,
)
g
p
A
G
V
p
P
ca
n
b
e
tr
ea
ted
as
an
A
GV
s
et
w
it
h
m
atc
h
ed
f
i
n
es
s
es.
Fo
r
th
i
s
A
GV
s
e
t,
its
f
i
tn
e
s
s
i
s
ca
lcu
lated
ac
co
r
d
in
g
to
E
q
u
atio
n
(
2
4
)
af
ter
s
y
n
t
h
etica
l
l
y
c
o
n
s
id
er
in
g
th
e
m
a
x
i
m
u
m
an
d
a
v
er
a
g
e
v
alu
es
o
f
A
GV
‟
s
f
itn
e
s
s
.
I
n
E
q
u
atio
n
.
(
2
4
)
,
p
f
is
also
ca
lcu
la
ted
ac
co
r
d
in
g
to
E
q
u
atio
n
.
(
2
3
)
.
I
n
ea
ch
g
en
er
a
tio
n
,
th
e
b
est
g
p
A
G
V
g
r
o
u
p
in
h
is
to
r
y
is
tr
ea
ted
as th
e
c
u
r
r
en
t
h
is
to
r
i
ca
l o
p
tim
a
l
A
G
V
g
r
o
u
p
.
{
1
,
2
,
,
}
{
1
,
2
,
,
}
m
i
n
m
a
x
m
pp
p
P
p
P
f
f
e
a
n
f
(
2
4
)
3
.
3
.
3
.
H
is
t
o
rica
l indi
v
idu
a
l a
nd
g
lo
ba
l best
pa
rt
icles
B
y
th
e
en
d
o
f
t
h
e
f
ir
s
t
g
e
n
er
atio
n
,
w
aiti
n
g
ti
m
e
o
f
ea
c
h
a
n
t
i
s
s
e
t
as
th
e
h
is
to
r
ical
i
n
d
i
v
id
u
al
b
est
p
ar
ticle,
an
d
f
it
n
ess
o
f
ea
ch
a
n
t
is
s
et
as
f
it
n
es
s
o
f
t
h
e
h
i
s
t
o
r
ical
in
d
iv
id
u
a
l
b
est
p
ar
ticle.
Fro
m
t
h
e
s
ec
o
n
d
g
en
er
atio
n
,
an
an
t
i
n
ea
ch
g
en
er
atio
n
is
co
m
p
ar
ed
w
it
h
its
h
is
to
r
ical
i
n
d
iv
id
u
al
b
es
t
p
ar
t
icle
w
h
e
n
it
co
m
p
lete
s
its
r
o
u
te,
an
d
th
e
h
i
s
to
r
ical
in
d
iv
id
u
al
b
est p
ar
ticl
e
w
o
u
ld
b
e
u
p
d
ated
if
th
e
cu
r
r
en
t a
n
t i
s
b
etter
.
Fo
r
ea
ch
g
en
er
atio
n
,
th
e
h
i
s
t
o
r
ical
b
est
g
p
A
G
V
o
f
ea
ch
A
GV
is
r
e
-
ev
a
lu
ated
ac
co
r
d
in
g
to
Sect
io
n
3
.
3
.
2
.
T
h
en
,
t
h
e
w
a
iti
n
g
ti
m
e
o
f
g
p
A
G
V
is
s
et
as
th
e
h
i
s
to
r
ical
g
lo
b
al
b
est
p
ar
ticle,
w
h
ile
f
it
n
e
s
s
o
f
g
p
A
G
V
is
s
et
as th
e
f
it
n
es
s
o
f
h
is
to
r
ical
g
lo
b
al
b
est p
ar
ticle.
3
.
4
.
Alg
o
rit
h
m
ic
F
lo
w
T
h
e
p
s
eu
d
o
-
co
d
e
o
f
t
h
e
a
lg
o
r
i
th
m
i
s
as
f
o
llo
w
s
(
ite
r
i
s
t
h
e
n
u
m
b
er
o
f
iter
ati
v
e
c
y
cle
s
,
Ma
xiter
i
s
t
h
e
m
ax
i
m
u
m
n
u
m
b
er
o
f
iter
ativ
e
c
y
cles)
:
I
n
itializatio
n
o
f
a
n
t c
o
lo
n
y
a
n
d
p
ar
ticle
s
w
ar
m
i
n
f
ir
s
t
ite
r
.
Fo
r
iter
=1
:
Ma
xiter
I
f
iter
>1
T
h
e
w
aiti
n
g
t
i
m
e
i
s
ca
lcu
lated
ac
co
r
d
in
g
to
iter
ativ
e
r
u
le
o
f
P
SO.
en
d
Fo
r
p
=1
:
P
Fo
r
m
=1
:
M
Settin
g
t
h
e
f
ir
s
t n
o
d
es
f
o
r
an
ts
.
W
h
ile
th
e
c
u
r
r
en
t
n
o
d
e
is
n
o
t t
h
e
f
i
n
i
s
h
i
n
g
n
o
d
e
C
h
o
o
s
i
n
g
th
e
n
ex
t
n
o
d
e
A
next
ac
co
r
d
in
g
to
th
e
s
tat
u
s
tr
an
s
f
er
r
u
le
b
ased
o
n
b
ased
o
n
g
u
id
a
n
ce
f
ac
to
r
.
E
n
d
W
h
ile
C
alcu
lati
n
g
f
it
n
es
s
o
f
an
ts
.
L
o
ca
l u
p
d
ate
o
f
p
h
er
o
m
o
n
e.
E
n
d
Fo
r
E
n
d
Fo
r
Up
d
ate
o
f
h
is
to
r
ical
o
p
ti
m
al
AGV
g
r
o
u
p
.
Glo
b
al
u
p
d
ate
o
f
p
h
er
o
m
o
n
e.
Up
d
ate
o
f
h
is
to
r
ical
i
n
d
iv
id
u
al
b
est o
f
p
ar
ticles.
Up
d
ate
o
f
h
is
to
r
ical
g
lo
b
al
b
est o
f
p
ar
ticles.
E
n
d
Fo
r
E
n
d
th
e
o
p
ti
m
izat
io
n
an
d
o
u
tp
u
t th
e
r
es
u
lt
s
.
4.
SI
M
UL
AT
I
O
N
S
4
.
1
.
E
x
a
m
p
le
1
4
.
1
.
1
.
P
ro
ble
m
des
cr
iptio
n
T
ak
in
g
Fi
g
u
r
e
1
as a
n
A
G
V
r
o
ad
n
et
w
o
r
k
ex
a
m
p
le,
th
e
p
r
o
p
o
s
ed
m
eth
o
d
is
v
er
if
ied
b
y
s
i
m
u
latio
n
.
I
f
th
er
e
is
a
d
o
tted
li
n
e
b
et
w
ee
n
an
y
t
w
o
p
o
in
ts
,
t
h
e
r
o
ad
b
et
w
ee
n
t
h
e
m
is
clea
r
.
Ot
h
er
w
i
s
e,
th
er
e
is
n
o
r
o
ad
,
o
r
an
i
m
p
a
s
s
ab
le
r
o
ad
.
T
h
e
h
o
r
izo
n
tal
d
is
tan
ce
b
et
w
ee
n
th
e
ad
j
ac
en
t
n
o
d
es
is
1
.
8
u
n
its
,
an
d
t
h
e
v
er
tical
d
is
ta
n
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N:
2
0
8
9
-
4856
I
J
R
A
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
:
69
–
79
76
b
et
w
ee
n
t
h
e
ad
j
ac
en
t
n
o
d
es
is
1
u
n
it
s
.
T
h
e
n
u
m
b
er
o
f
AG
Vs
P
is
3
.
T
h
e
s
tar
ti
n
g
n
o
d
e,
f
i
n
is
h
i
n
g
n
o
d
e,
an
d
v
elo
c
it
y
o
f
A
GV
ar
e
s
h
o
w
n
i
n
T
a
b
le
1
.
0
.
1
,
1
a
H
,
0
.
2
t
h
,
2
b
H
.
I
n
Fig
u
r
e
1
,
th
e
h
o
llo
w
an
d
s
o
lid
d
o
ts
d
en
o
te
th
e
s
tar
tin
g
an
d
f
in
is
h
i
n
g
p
o
in
ts
o
f
AGV
1
,
r
esp
ec
tiv
el
y
;
th
e
h
o
llo
w
an
d
s
o
lid
tr
ian
g
le
s
d
en
o
te
th
e
s
tar
ti
n
g
an
d
f
i
n
i
s
h
in
g
p
o
in
ts
o
f
AGV
2
,
r
esp
ec
ti
v
el
y
;
t
h
e
h
o
llo
w
a
n
d
s
o
lid
s
q
u
ar
es
d
en
o
te
th
e
s
tar
ti
n
g
a
n
d
f
in
i
s
h
in
g
p
o
in
ts
o
f
A
G
V
3
,
r
esp
ec
tiv
el
y
.
T
h
ese
th
r
ee
A
G
Vs
d
o
n
o
t
h
av
e
d
if
f
er
e
n
t p
r
io
r
ities
.
T
ab
le
1
Star
tin
g
n
o
d
es,
f
in
is
h
i
n
g
n
o
d
es,
an
d
v
elo
citie
s
o
f
AGVs
A
G
V
st
a
r
t
i
n
g
n
o
d
e
f
i
n
i
s
h
i
n
g
n
o
d
e
v
e
l
o
c
i
t
y
d
e
p
a
r
t
u
r
e
t
i
me
1
15
3
1
.
1
0
.
7
2
5
6
0
.
9
0
3
12
4
1
1
.
5
4
.
1
.
2
.
So
lutio
n o
f
ba
s
ic
ACO
(
B
ACO
)
T
h
e
b
asic
A
C
O
i
s
u
s
ed
to
s
o
l
v
e
C
F
R
SP
.
M
=
2
0
,
Ma
xiter
=
1
0
0
,
3
,
5
,
3
,
0
.
1
,
0
0
.
1
.
T
h
e
r
o
u
tes
attain
ed
b
y
B
AC
O
ar
e
s
h
o
w
n
in
Fi
g
u
r
e
2
.
Mo
r
e
th
an
t
w
o
A
GVs
p
ass
t
h
r
o
u
g
h
n
o
d
es
4
,
7
,
8
,
an
d
9
.
T
h
e
m
o
m
en
t
t
h
es
e
th
r
ee
A
G
Vs
p
as
s
t
h
r
o
u
g
h
th
ese
n
o
d
es
i
s
li
s
ted
i
n
T
ab
le
2
f
o
r
th
e
co
n
v
e
n
ie
n
ce
o
f
n
o
d
e
co
n
f
lict
s
an
a
l
y
s
is
.
T
h
e
n
o
d
e
o
r
d
er
s
o
f
A
GV
1
,
A
GV
2
,
a
n
d
A
G
V
3
p
ass
i
n
g
th
r
o
u
g
h
ar
e
9
→8
,
4
→9
→8
→7
,
an
d
7
→8
→9
→4
,
r
esp
ec
tiv
el
y
.
T
h
er
ef
o
r
e,
n
o
d
es
ar
e
lis
ted
in
ac
co
r
d
an
ce
w
it
h
t
h
e
o
r
d
er
4
→9
→8
→7
.
(
a)
R
o
u
te
o
f
A
GV
1
(
b
)
R
o
u
te
o
f
AGV
2
(
c)
R
o
u
te
o
f
A
GV
3
Fig
u
r
e
2
.
So
lu
tio
n
o
f
b
asic
A
C
O
T
ab
le
2
.
Mo
m
en
t
f
o
r
AGVs p
a
s
s
i
n
g
t
h
r
o
u
g
h
4
,
9
,
8
,
an
d
7
n
o
d
es
A
G
V
4
9
8
7
1
3
.
2
5
4
.
1
5
2
1
.
1
1
3
.
1
1
4
.
2
2
5
.
3
3
3
7
.
1
0
5
.
3
0
4
.
3
0
3
.
3
0
Fig
u
r
e
2
s
h
o
w
s
t
h
at
all
t
h
ese
t
h
r
ee
A
GVs
p
a
s
s
t
h
r
o
u
g
h
l
in
k
(
8
,
9
)
an
d
n
o
d
es
8
an
d
9
.
B
o
th
A
G
V
2
an
d
A
G
V
3
p
ass
t
h
r
o
u
g
h
li
n
k
(
7
,
8
)
an
d
n
o
d
es
4
an
d
7
.
T
h
er
ef
o
r
e,
lin
k
s
(
8
,
9
)
an
d
(
7
,
8
)
,
n
o
d
es
8
,
9
,
4
,
an
d
7
ar
e
n
ee
d
ed
to
b
e
an
al
y
ze
d
f
o
r
co
n
f
licts
.
O
n
t
h
e
b
asi
s
o
f
t
h
e
m
o
m
e
n
t
AGVs
p
ass
th
r
o
u
g
h
th
e
n
o
d
es
i
n
T
ab
le3
,
A
G
V
1
an
d
AGV
2
ar
e
co
n
g
es
ted
at
lin
k
(
8
,
9
)
,
w
h
ile
A
G
V
2
an
d
A
GV
3
ar
e
co
n
g
e
s
ted
a
t
lin
k
(
7
,
8
)
.
Fro
m
E
q
u
atio
n
(
8
)
,
th
ese
t
h
r
ee
A
G
Vs
ar
e
co
n
g
e
s
ted
at
n
o
d
e
8
.
I
t
ca
n
b
e
s
ee
n
t
h
at
B
A
C
O
ca
n
n
o
t
av
o
id
t
h
e
A
G
V
co
n
f
lic
t p
r
o
b
lem
; t
h
er
ef
o
r
e,
it
is
n
o
t
f
ea
s
ib
le.
4
.
1
.
3
.
So
lutio
n o
f
t
i
m
e
-
w
ind
o
w
-
ba
s
ed
ACO
(
T
ACO
)
T
h
e
tim
e
w
i
n
d
o
w
m
et
h
o
d
ass
u
m
e
s
th
at
t
h
e
p
r
io
r
ities
o
f
th
e
th
r
ee
A
GV
s
ar
e
g
r
ad
u
all
y
r
e
d
u
ce
d
.
T
h
e
p
ar
am
eter
s
e
tti
n
g
f
o
r
T
A
C
O
is
th
e
s
a
m
e
a
s
th
at
o
f
B
AC
O
.
T
h
e
r
o
u
tes
attain
ed
b
y
T
A
C
O
ar
e
th
e
s
a
m
e
as
th
o
s
e
in
F
ig
u
r
e
2
.
T
h
e
w
aiti
n
g
ti
m
e
i
n
f
r
o
n
t
o
f
n
o
d
es
(
“w
a
i
tin
g
ti
m
e”
f
o
r
s
h
o
r
t)
f
o
r
A
GV
s
is
s
h
o
w
n
in
T
ab
le
3,
w
h
er
e
„
9
(
1
.
1
4
)
‟
in
T
a
b
le
3
d
en
o
tes
th
e
w
ai
tin
g
ti
m
e
i
n
f
r
o
n
t
o
f
n
o
d
e
9
as
1
.
1
4
tim
e
u
n
i
tes.
As
f
o
r
T
ab
le
3
,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
R
A
I
SS
N:
2
0
8
9
-
4856
A
Gu
id
ed
A
n
t Co
lo
n
y
Op
timiz
a
tio
n
A
lg
o
r
ith
m
fo
r
C
o
n
flict
-
fr
ee
R
o
u
tin
g
S
ch
ed
u
lin
g
o
f A
GV
s
...
(
LI
Ju
n
-
ju
n
)
77
n
o
d
es
ar
e
lis
ted
in
t
h
e
o
r
d
er
4
→9
→8
→7
.
T
h
e
ti
m
e
th
e
A
G
Vs
r
eq
u
ir
e
to
p
as
s
t
h
r
o
u
g
h
th
e
s
e
n
o
d
es
is
l
is
ted
i
n
T
ab
le
3
.
T
h
e
r
esu
lts
in
T
ab
le
3
s
h
o
w
t
h
at
th
e
w
ai
tin
g
ti
m
e
in
f
r
o
n
t
o
f
n
o
d
es
9
an
d
8
f
o
r
A
GV
2
an
d
A
G
V
3
is
1
.
1
4
an
d
1
.
1
6
ti
m
e
u
n
ite
s
,
r
esp
ec
tiv
el
y
.
Fro
m
E
q
u
atio
n
(
5
)
an
d
(
8
)
,
it
ca
n
b
e
s
ee
n
th
a
t
th
er
e‟
s
n
o
tr
af
f
ic
co
n
f
lic
t in
ea
c
h
lin
k
a
n
d
n
o
d
e.
I
t is cle
ar
th
at
T
A
C
O
ca
n
av
o
id
th
e
AGV
co
n
f
lict p
r
o
b
le
m
;
th
u
s
,
it is
f
ea
s
ib
le.
T
ab
le
3
.
W
aitin
g
T
im
e
f
o
r
A
G
Vs
A
G
V
W
a
i
t
i
n
g
t
i
me
4
9
8
7
1
0
3
.
2
5
4
.
1
5
2
9
(
1
.
1
4
)
1
.
1
1
4
.
2
5
5
.
3
6
6
.
4
7
3
8
(
1
.
1
6
)
8
.
2
6
6
.
4
6
5
.
4
6
3
.
3
0
4
.
1
.
4
So
lutio
n
o
f
G
ACO
T
h
e
p
ar
am
eter
s
etti
n
g
f
o
r
GACO
is
t
h
e
s
a
m
e
as
th
a
t
o
f
B
AC
O.
B
esid
e
s,
ω
=0
.
7
2
9
8
,
c
1
=
c
2
=1
.
4
9
6
1
8
in
t
h
e
iter
ati
v
e
eq
u
a
tio
n
o
f
p
ar
ticles.
T
h
e
r
o
u
tes a
ttain
ed
b
y
GACO a
r
e
s
h
o
w
n
i
n
Fi
g
u
r
e
3
.
T
h
er
e‟
r
e
m
o
r
e
th
a
n
t
w
o
AGVs
p
ass
in
g
t
h
r
o
u
g
h
n
o
d
es
4
,
8
,
an
d
9
.
T
h
e
o
r
d
er
s
o
f
AGV
1
,
A
G
V
2
,
a
n
d
A
GV
3
p
ass
i
n
g
t
h
r
o
u
g
h
th
e
s
e
n
o
d
es
ar
e
9
→8
,
4
→9
→8
an
d
9
→4
r
esp
ec
tiv
el
y
.
Si
m
ilar
to
T
ab
le
1
,
th
e
w
aiti
n
g
ti
m
e
o
f
th
e
A
G
Vs
a
n
d
t
h
e
m
o
m
e
n
t
s
th
e
y
p
ass
t
h
r
o
u
g
h
n
o
d
es a
r
e
s
h
o
w
n
i
n
T
ab
le
4
.
(
a)
R
o
u
te
o
f
A
GV
1
(
b
)
R
o
u
te
o
f
AGV
2
(
c)
R
o
u
te
o
f
A
GV
3
Fig
u
r
e
3
.
So
lu
tio
n
o
f
G
A
C
O
T
ab
le
4
.
A
GVs W
aitin
g
T
i
m
e
an
d
Mo
m
en
ts
P
ass
i
n
g
T
h
r
o
u
g
h
No
d
es
A
G
V
W
a
i
t
i
n
g
t
i
me
8
9
4
1
9
(
0
.
9
8
)
5
.
1
3
4
.
2
3
2
0
4
.
2
2
3
.
1
1
1
.
1
1
3
0
0
5
.
3
7
.
1
Fig
u
r
e
3
s
h
o
w
s
t
h
at
t
h
e
r
o
u
tes
o
f
AGV
1
a
n
d
A
GV
2
ar
e
t
h
e
s
a
m
e
a
s
t
h
o
s
e
o
f
B
A
C
O,
w
h
ile
th
e
r
o
u
te
o
f
A
GV
3
is
d
if
f
er
e
n
t
f
r
o
m
th
at
o
f
B
AC
O.
T
h
en
A
GV
3
ca
n
a
v
o
id
th
e
co
n
g
est
io
n
at
li
n
k
(
7
,
8
)
an
d
n
o
d
e
8
.
Nev
er
th
e
less
,
b
o
th
AGV
1
an
d
A
G
V
2
p
ass
t
h
r
o
u
g
h
li
n
k
(
8
,
9
)
an
d
n
o
d
e
8
.
B
o
th
A
GV
2
a
n
d
A
G
V
3
p
ass
t
h
r
o
u
g
h
lin
k
(
9
,
4
)
an
d
n
o
d
e
4
.
A
ll
A
G
Vs
p
ass
t
h
r
o
u
g
h
n
o
d
e
9
.
T
h
e
r
esu
lt
s
i
n
T
ab
le
4
in
d
icate
th
at
th
e
w
ait
in
g
ti
m
e
i
n
f
r
o
n
t
o
f
n
o
d
e
9
f
o
r
A
GV
1
is
0
.
9
8
ti
m
e
u
n
i
ts
.
A
cc
o
r
d
in
g
to
E
q
u
atio
n
.
(
5
)
an
d
(
8
)
,
th
er
e
i
s
n
o
A
GV
co
n
f
lict
i
n
ea
ch
o
f
t
h
ese
li
n
k
s
an
d
n
o
d
es.
4
.
1
.
5
.
Co
m
pa
riso
n
s
o
f
t
hes
e
t
hree
m
et
ho
d
s
T
h
e
ab
o
v
e
an
al
y
s
is
r
ev
ea
l
s
t
h
at
T
AC
O
a
n
d
G
A
C
O
ar
e
s
u
p
er
io
r
to
B
A
C
O
f
o
r
t
h
eir
c
o
n
f
lic
t
-
f
r
ee
s
o
lu
tio
n
s
.
I
n
t
h
e
f
o
llo
w
i
n
g
,
T
AC
O,
G
AC
O,
a
n
d
B
AC
O
ar
e
co
m
p
ar
ed
f
r
o
m
a
tr
a
v
el
ti
m
e
p
er
s
p
ec
tiv
e.
T
h
e
ti
m
e,
a
v
er
ag
e
ti
m
e,
an
d
m
a
x
i
m
u
m
ti
m
e
o
f
A
GV
s
r
ea
ch
in
g
th
e
f
i
n
i
s
h
i
n
g
n
o
d
e
ar
e
ca
lcu
l
ated
b
y
t
h
ese
t
h
r
ee
m
et
h
o
d
s
.
B
ar
g
r
ap
h
s
ar
e
u
s
ed
to
co
m
p
ar
e
th
e
s
e
m
o
m
en
ts
i
n
Fig
u
r
e
4
.
Fig
u
r
e
4
s
h
o
w
s
t
h
at
th
e
ti
m
e
a
t
w
h
ich
A
GV
1
r
ea
ch
e
s
t
h
e
f
i
n
i
s
h
i
n
g
n
o
d
e
in
G
AC
O
is
lo
n
g
e
r
th
a
n
t
h
a
t
in
T
AC
O,
w
h
er
ea
s
th
e
ti
m
e
a
t
w
h
ic
h
AGV
2
a
n
d
A
GV
3
r
ea
ch
t
h
e
f
i
n
is
h
i
n
g
n
o
d
e
i
n
G
AC
O
ar
e
s
h
o
r
ter
th
a
n
th
at
i
n
T
A
C
O.
B
o
th
t
h
e
av
er
a
g
e
ti
m
e
an
d
m
a
x
i
m
u
m
t
i
m
e
at
w
h
ich
AGVs
r
ea
ch
t
h
e
f
i
n
is
h
in
g
n
o
d
e
in
G
AC
O
ar
e
s
h
o
r
ter
th
an
th
at
i
n
T
AC
O
.
Fu
r
th
er
m
o
r
e,
th
e
m
ax
i
m
u
m
ti
m
e
at
w
h
ic
h
A
GV
s
r
ea
ch
t
h
e
f
in
is
h
i
n
g
n
o
d
e
in
GACO i
s
th
e
s
a
m
e
a
s
th
at
i
n
B
A
C
O.
T
h
er
ef
o
r
e,
GA
C
O
is
o
b
v
io
u
s
l
y
s
u
p
e
r
io
r
to
T
A
C
O.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N:
2
0
8
9
-
4856
I
J
R
A
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
:
69
–
79
78
Fig
u
r
e
4
T
im
e
A
GV
s
r
eq
u
ir
e
to
r
ea
ch
th
e
f
i
n
i
s
h
i
n
g
n
o
d
e
4
.
2
.
E
x
a
m
p
le
2
I
n
o
r
d
er
to
f
u
r
th
er
v
er
i
f
y
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
G
AC
O,
B
A
C
O,
T
A
C
O,
an
d
G
AC
O
ar
e
u
s
ed
to
s
o
lv
e
C
F
R
SP
f
o
r
1
2
,
1
4
,
an
d
1
6
A
G
Vs
i
n
an
8
*
1
2
r
o
ad
n
et
wo
r
k
.
Fo
r
th
e
th
r
ee
p
r
o
b
lem
s
izes,
s
tar
ti
n
g
n
o
d
es,
f
i
n
is
h
i
n
g
n
o
d
es,
v
elo
citie
s
an
d
d
ep
ar
tu
r
e
tim
e
ar
e
all
r
a
n
d
o
m
l
y
s
et.
Velo
citie
s
ar
e
li
m
ited
in
[
0
.
8
,
1
.
2
]
,
w
h
il
e
d
ep
ar
tu
r
e
ti
m
e
is
li
m
ited
i
n
[
0
,
5
]
.
Si
m
i
lar
to
ex
a
m
p
le
1
,
th
e
ti
m
e
at
w
h
ic
h
AGVs
r
ea
c
h
t
h
e
f
i
n
is
h
i
n
g
n
o
d
e
is
th
e
ea
r
lie
s
t
i
n
B
A
C
O
f
o
r
d
is
ca
r
d
in
g
AGV
co
n
f
lict
s
.
A
t
th
e
s
a
m
e
ti
m
e,
o
n
l
y
t
h
e
r
es
u
lt
o
f
B
AC
O
p
r
ese
n
ts
co
n
f
l
icts
.
T
h
e
m
a
x
i
m
u
m
ti
m
e
an
d
av
er
ag
e
ti
m
e
o
f
A
G
Vs
r
ea
ch
in
g
t
h
e
f
i
n
i
s
h
in
g
n
o
d
e,
an
d
th
e
n
u
m
b
er
o
f
li
n
k
an
d
n
o
d
e
co
n
f
lic
ts
attai
n
ed
b
y
B
A
C
O
ar
e
s
h
o
w
n
in
Fi
g
u
r
e
5
.
T
h
e
m
a
x
i
m
u
m
ti
m
e
an
d
av
er
ag
e
ti
m
e
at
w
h
ich
A
GV
s
r
ea
ch
th
e
f
i
n
i
s
h
in
g
n
o
d
e
attain
ed
by
t
h
ese
t
h
r
ee
m
et
h
o
d
s
ar
e
p
lo
tted
in
Fig
u
r
e
6
.
Fig
u
r
e
5
.
R
esu
lt a
ttai
n
ed
b
y
B
AC
O
Fig
u
r
e
6
.
C
o
m
p
ar
is
o
n
o
f
t
i
m
e
r
ea
ch
in
g
t
h
e
f
i
n
i
s
h
i
n
g
n
o
d
e
Fig
u
r
e
5
s
h
o
w
s
th
e
r
e
s
u
l
t
atta
in
ed
b
y
B
A
C
O.
T
h
e
s
o
lid
li
n
es
w
it
h
u
p
p
er
tr
ian
g
les,
lo
w
er
tr
ian
g
les,
d
ia
m
o
n
d
s
,
an
d
s
q
u
ar
es
d
en
o
t
e
th
e
m
a
x
i
m
u
m
an
d
av
er
a
g
e
ti
m
e
at
w
h
ic
h
A
GVs
r
ea
ch
th
e
f
i
n
i
s
h
i
n
g
n
o
d
e,
n
u
m
b
er
o
f
li
n
k
an
d
n
o
d
e
co
n
f
lict
s
,
r
esp
ec
ti
v
el
y
.
Fi
g
u
r
e
5
s
h
o
w
s
t
h
at
t
h
e
m
a
x
i
m
u
m
a
n
d
av
er
ag
e
ti
m
e
ar
e
al
m
o
s
t
u
n
a
f
f
ec
ted
b
y
t
h
e
n
u
m
b
er
o
f
AGVs.
Ho
w
e
v
er
,
as
th
e
n
u
m
b
er
o
f
A
GV
s
i
n
cr
ea
s
es,
th
e
n
u
m
b
er
o
f
li
n
k
an
d
n
o
d
e
co
n
f
lic
ts
i
n
cr
ea
s
e
r
ap
id
ly
.
I
n
Fi
g
u
r
e
6
,
t
h
e
s
o
lid
a
n
d
d
o
tted
lin
es
w
i
th
u
p
p
er
tr
ian
g
les
d
en
o
te
th
e
m
a
x
i
m
u
m
an
d
a
v
er
ag
e
ti
m
e
a
t
w
h
ic
h
AGVs
r
ea
ch
th
e
f
i
n
is
h
in
g
n
o
d
e
o
b
tain
ed
b
y
B
AC
O,
r
esp
ec
tiv
el
y
.
T
h
e
s
o
lid
an
d
d
o
tte
d
lin
es
w
it
h
s
q
u
ar
es
d
en
o
te
th
e
m
a
x
i
m
u
m
an
d
av
er
a
g
e
ti
m
e
at
w
h
ic
h
A
GVs
r
ea
ch
th
e
f
in
i
s
h
in
g
n
o
d
e
o
b
tain
ed
b
y
T
A
C
O,
r
esp
ec
tiv
el
y
.
T
h
e
s
o
lid
an
d
d
o
tted
lin
es
w
it
h
d
ia
m
o
n
d
s
d
e
n
o
te
th
e
m
a
x
i
m
u
m
a
n
d
av
er
ag
e
ti
m
e
at
w
h
ic
h
A
G
Vs
r
ea
ch
t
h
e
f
in
is
h
i
n
g
n
o
d
e
o
b
tain
ed
b
y
G
AC
O,
r
esp
ec
ti
v
el
y
.
Fig
u
r
e
6
s
h
o
w
s
p
lo
ts
o
f
th
e
m
ax
i
m
u
m
an
d
av
er
ag
e
ti
m
e
o
b
tain
ed
b
y
T
AC
O
an
d
G
AC
O
i
n
cr
ea
s
e
s
w
it
h
th
e
n
u
m
b
er
o
f
AGVs,
w
h
ic
h
is
d
i
f
f
er
en
t
f
r
o
m
B
A
C
O.
T
h
e
m
a
x
i
m
u
m
a
n
d
av
er
ag
e
ti
m
e
o
b
tain
ed
b
y
G
AC
O
is
s
h
o
r
ter
th
a
n
t
h
at
o
f
T
A
C
O.
Fu
r
th
er
m
o
r
e,
th
e
lar
g
er
th
e
n
u
m
b
er
o
f
A
GVs
is
,
th
e
m
o
r
e
o
b
v
io
u
s
th
e
a
d
v
an
ta
g
e
o
f
G
A
C
O
i
s
.
I
n
s
u
m
m
ar
y
,
th
e
G
AC
O
p
r
o
p
o
s
ed
in
th
is
w
o
r
k
is
f
ea
s
ib
le,
an
d
it o
u
tp
er
f
o
r
m
s
B
AC
O
an
d
T
A
C
O.
12
14
16
18
10
20
30
40
50
60
70
A
G
V
n
u
m
b
e
r
t
i
m
e
/
c
o
n
f
l
i
c
t
n
u
m
b
e
r
m
a
x
i
m
u
m
t
i
m
e
a
v
e
r
a
g
e
t
i
m
e
l
i
n
k
c
o
n
f
l
i
c
t
n
u
m
b
e
r
n
o
d
e
c
o
n
f
l
i
c
t
n
u
m
b
e
r
12
14
16
18
0
50
100
150
200
250
300
350
400
A
G
V
n
u
m
b
e
r
m
a
x
i
m
u
m
/
a
v
e
r
a
g
e
t
i
m
e
av
er
ag
e
t
im
e
of
BAC
O
av
er
ag
e
t
im
e
of
T
AC
O
av
er
ag
e
t
im
e
of
GAC
O
m
ax
im
um
t
im
e
of
BAC
O
m
ax
im
um
t
im
e
of
T
AC
O
m
ax
im
um
t
im
e
of
GAC
O
Evaluation Warning : The document was created with Spire.PDF for Python.