I
nte
rna
t
io
na
l J
o
urna
l o
f
Appl
ied P
o
w
er
E
ng
ineering
(
I
J
AP
E
)
Vo
l.
7
,
No
.
1
,
A
p
r
il
201
8
,
p
p
.
6
5
~7
2
I
SS
N:
2252
-
8792
DOI
:
1
0
.
1
1
5
9
1
/i
j
ap
e.
v
7
.
i1
.
pp
65
-
72
65
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JA
P
E
Electros
tatic
Fiel
d Calcula
tions
for
Liqu
id
N
itrog
en
G
a
ps
Ass
u
m
i
ng
a
Decis
iv
e F
ield
Factor
Ste
f
a
n F
ink
Ka
rlsru
h
e
In
stit
u
te o
f
T
e
c
h
n
o
lo
g
y
(KIT
),
IT
EP
,
G
e
r
m
a
n
y
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
1
8
,
2
0
1
7
R
ev
i
s
ed
Feb
2
3
,
2
0
1
8
A
cc
ep
ted
Ma
r
7
,
2
0
1
8
V
o
l
u
m
e
e
ffe
c
t
o
n
b
re
a
k
d
o
w
n
v
o
lt
a
g
e
is
w
e
ll
k
n
o
w
n
in
h
ig
h
v
o
lt
a
g
e
e
n
g
in
e
e
rin
g
.
T
h
e
b
re
a
k
d
o
w
n
v
o
lt
a
g
e
b
e
h
a
v
io
r
o
f
li
q
u
id
n
it
ro
g
e
n
d
e
p
e
n
d
in
g
o
n
a
h
ig
h
f
ield
v
o
lu
m
e
h
a
d
b
e
e
n
q
u
a
n
ti
tativ
e
ly
d
e
sc
rib
e
d
f
o
r
g
a
p
len
g
th
s
u
p
to
2
0
m
m
.
Bre
a
k
d
o
w
n
c
u
rv
e
s
f
o
r
lo
n
g
e
r
g
a
p
len
g
th
s
u
p
t
o
9
6
m
m
d
e
ri
v
e
d
f
ro
m
m
e
a
su
re
m
e
n
ts
w
it
h
a
f
a
c
il
it
y
“
F
a
telin
i
2
”
sh
o
w
o
sc
il
latio
n
s
a
n
d
p
a
rtl
y
lo
w
w
it
h
sta
n
d
v
o
lt
a
g
e
s.
El
e
c
tro
sta
ti
c
f
ield
c
a
lcu
latio
n
f
o
r
su
c
h
lo
n
g
g
a
p
s
sh
o
w
s
re
m
a
rk
a
b
le
h
ig
h
f
i
e
ld
v
o
lu
m
e
d
iff
e
re
n
c
e
s
b
e
t
w
e
e
n
a
m
o
d
e
l
f
o
r
id
e
a
l
sp
h
e
re
a
n
d
m
o
d
e
ls
in
c
l
u
d
i
n
g
f
ix
a
ti
o
n
r
o
d
s
.
Ca
lcu
lati
o
n
f
o
r
th
e
u
se
d
se
tu
p
d
o
e
s
n
o
t
s
h
o
w
m
o
n
o
to
n
ica
ll
y
in
c
re
a
sin
g
h
ig
h
f
ield
v
o
lu
m
e
d
e
p
e
n
d
in
g
o
n
g
a
p
len
g
th
b
u
t
a
m
a
x
i
m
u
m
a
ro
u
n
d
6
0
m
m
w
h
ich
c
a
n
e
x
p
lain
t
h
e
sp
e
c
ial
b
re
a
k
d
o
w
n
b
e
h
a
v
io
r
in
a
“
m
id
ra
n
g
e
”
g
a
p
len
g
th
.
F
u
r
th
e
r
h
ig
h
f
ield
c
a
lcu
latio
n
s
w
e
re
d
o
n
e
f
o
r
n
o
t
y
e
t
u
se
d
se
tu
p
s
in
o
r
d
e
r
to
m
a
k
e
c
o
n
sid
e
ra
ti
o
n
s,
e
.
g
.
f
o
r
t
h
e
in
f
lu
e
n
c
e
o
f
c
r
y
o
sta
t
m
a
teria
l
o
r
d
iam
e
t
e
r.
K
ey
w
o
r
d
:
B
r
ea
k
d
o
w
n
v
o
ltag
e
L
iq
u
id
n
itro
g
e
n
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Stef
a
n
Fi
n
k
,
KI
T
-
C
a
m
p
u
s
No
r
d
-
I
n
s
tit
u
t f
ü
r
T
ec
h
n
is
ch
e
P
h
y
s
i
k
,
Her
m
an
n
-
v
o
n
-
Hel
m
h
o
ltz
-
P
lat
z
1
,
7
6
3
4
4
E
g
g
en
s
tei
n
-
L
eo
p
o
ld
s
h
a
f
en
,
Ger
m
an
y
.
E
m
ail:
f
i
n
k
@
k
it.e
d
u
1.
I
NT
RO
D
UCT
I
O
N
P
r
esen
t
s
u
p
er
co
n
d
u
ct
in
g
ap
p
ar
atu
s
f
o
r
p
o
w
er
en
g
i
n
ee
r
in
g
l
ik
e
f
a
u
lt
c
u
r
r
en
t
li
m
iter
s
[
1
]
o
r
p
o
w
er
tr
an
s
m
is
s
io
n
ca
b
les
[
2
]
ar
e
u
s
u
all
y
b
ased
o
n
h
ig
h
te
m
p
er
atu
r
e
s
u
p
er
co
n
d
u
cto
r
s
w
i
th
liq
u
id
n
itro
g
e
n
a
s
co
o
lin
g
m
ater
ial.
T
h
e
d
eter
m
i
n
atio
n
o
f
t
h
e
d
ielec
tr
ic
s
tr
e
n
g
t
h
is
n
ec
e
s
s
ar
y
in
ca
s
e
o
f
u
s
in
g
th
e
liq
u
id
n
i
tr
o
g
e
n
also
f
o
r
h
ig
h
v
o
lta
g
e
in
s
u
latio
n
p
u
r
p
o
s
es.
B
r
ea
k
d
o
w
n
b
eh
a
v
io
r
o
f
liq
u
id
n
itro
g
en
i
s
in
v
esti
g
ated
b
y
n
u
m
er
o
u
s
r
esear
ch
er
s
b
u
t
f
o
r
g
ap
len
g
th
s
o
f
m
o
r
e
th
a
n
2
0
m
m
it i
s
d
if
f
i
cu
lt to
f
i
n
d
ex
p
er
i
m
en
ta
l d
ata
[
3
-
5
]
.
Hig
h
v
o
lta
g
e
test
s
w
it
h
a
“sp
h
er
e”
to
p
lan
e
s
etu
p
w
ith
g
ap
s
u
p
to
3
5
m
m
f
o
r
n
e
g
ati
v
e
[
6
]
an
d
6
0
m
m
f
o
r
p
o
s
itiv
e
[
6
-
7
]
s
ta
n
d
ar
d
lig
h
tn
in
g
i
m
p
u
ls
e
as
w
e
ll
a
s
f
o
r
AC
v
o
ltag
e
[
7
]
an
d
g
ap
len
g
t
h
s
u
p
to
9
6
m
m
h
ad
b
ee
n
p
er
f
o
r
m
ed
in
s
tep
s
i
n
a
f
ac
ilit
y
ca
lled
“
Fatel
in
i
2
”.
T
h
e
w
it
h
s
tan
d
v
o
lta
g
e
v
a
lu
e
s
h
a
d
b
ee
n
s
p
ec
if
ied
as
h
ig
h
e
s
t
v
o
ltag
e
s
tep
o
f
2
0
s
ta
n
d
ar
d
lig
h
t
n
in
g
i
m
p
u
ls
e
s
o
r
1
5
m
i
n
AC
v
o
lta
g
e
d
u
r
atio
n
w
h
er
e
n
o
b
r
ea
k
d
o
w
n
o
cc
u
r
s.
A
tr
an
s
itio
n
f
r
o
m
th
e
s
u
p
er
co
n
d
u
cti
n
g
to
th
e
n
o
r
m
a
l
co
n
d
u
ctiv
e
s
ta
te
w
i
th
i
n
a
s
u
p
er
c
o
n
d
u
cti
n
g
ap
p
ar
atu
s
m
a
y
ca
u
s
e
d
eg
r
ad
atio
n
o
f
th
e
d
ielec
tr
ic
s
tr
e
n
g
th
o
f
liq
u
id
n
itro
g
e
n
ca
u
s
ed
b
y
g
as
b
u
b
b
le
g
en
er
atio
n
.
Hen
ce
a
test
s
er
ie
s
w
i
th
b
u
b
b
le
g
e
n
er
atio
n
b
y
a
n
o
h
m
ic
h
ea
ter
w
as
also
p
er
f
o
r
m
ed
in
ad
d
itio
n
to
th
e
“n
o
r
m
al”
te
s
t
co
n
d
itio
n
s
w
it
h
s
li
g
h
t
l
y
b
o
ili
n
g
liq
u
id
n
i
tr
o
g
en
w
it
h
i
n
a
lo
w
lo
s
s
m
eta
l
cr
y
o
s
tat
eq
u
ip
p
ed
w
it
h
a
t
h
er
m
al
l
iq
u
id
n
itro
g
en
s
h
ield
i
n
ad
d
itio
n
to
th
e
t
h
er
m
al
v
ac
u
u
m
in
s
u
latio
n
.
T
h
e
n
eg
ati
v
e
s
t
a
n
d
ar
d
lig
h
t
n
i
n
g
i
m
p
u
ls
e
v
al
u
es
s
h
o
w
ed
li
n
ea
r
in
cr
ea
s
e
d
ep
en
d
in
g
o
n
t
h
e
g
ap
len
g
t
h
u
p
to
t
h
e
i
m
p
u
ls
e
f
ac
ilit
y
l
i
m
it
o
f
3
6
5
k
V.
I
n
co
n
tr
ad
ictio
n
a
te
n
d
en
c
y
o
f
s
w
i
n
g
i
n
g
w
a
s
f
o
u
n
d
f
o
r
p
o
s
itiv
e
i
m
p
u
l
s
es
a
n
d
AC
(
f
ac
i
lit
y
li
m
it
f
o
r
AC
test
s
w
as
2
3
0
k
Vr
m
s
=
3
2
5
k
Vp
ea
k
)
.
Fo
r
th
e
p
o
s
itiv
e
i
m
p
u
ls
e
a
n
d
AC
r
esu
lt
s
(
Fi
g
u
r
e
1
)
s
i
g
n
i
f
ica
n
t
“
o
s
cil
latio
n
s
”
o
cc
u
r
e
s
p
ec
iall
y
b
et
w
ee
n
2
0
m
m
an
d
7
0
m
m
.
T
h
ese
o
s
c
illatio
n
s
ar
e
a
co
n
s
id
er
ab
le
s
etu
p
is
s
u
e
b
u
t
a
n
e
x
p
la
n
atio
n
is
n
o
t
g
i
v
en
s
o
f
ar
.
N
u
m
er
ical
ca
lcu
la
ti
o
n
s
w
i
ll
b
e
u
s
ed
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
7
,
No
.
1
,
A
p
r
il
2
0
1
8
:
65
–
72
66
s
o
lv
e
t
h
i
s
p
r
o
b
lem
an
d
b
ased
o
n
t
h
is
m
et
h
o
d
a
p
r
ed
ictio
n
f
o
r
th
e
b
r
ea
k
d
o
w
n
b
eh
a
v
io
r
o
f
p
o
s
s
ib
le
f
u
tu
r
e
s
etu
p
s
i
s
p
r
esen
ted
.
Fig
u
r
e
1
.
W
ith
s
ta
n
d
v
o
ltag
e
s
o
f
liq
u
id
n
i
tr
o
g
en
f
o
r
a
p
r
ess
u
r
e
o
f
0
.
1
MP
a
(
“w
1
”)
d
ep
en
d
in
g
o
n
elec
tr
o
d
e
d
is
tan
ce
[
7
]
.
P
ea
k
alter
n
atin
g
a
n
d
p
o
s
itiv
e
s
ta
n
d
ar
d
i
m
p
u
ls
e
(“
i
m
p
u
l
s
e+
”)
v
o
lta
g
es
w
it
h
5
0
0
W
o
p
er
atio
n
o
f
a
h
ea
ter
(
“w
.
h
ea
ter
”,
f
illed
m
ar
k
er
s
)
an
d
w
it
h
o
u
t e
x
citatio
n
o
f
th
e
h
ea
ter
(
“w
/o
h
ea
ter
”,
u
n
f
il
led
m
ar
k
er
s
)
.
T
h
e
m
ax
i
m
u
m
av
a
ilab
le
h
i
g
h
v
o
lta
g
e
test
f
ac
ilit
y
v
alu
e
s
of
3
2
5
k
V
f
o
r
AC
o
p
er
atio
n
an
d
3
6
5
k
V
f
o
r
s
tan
d
ar
d
lig
h
tn
in
g
i
m
p
u
l
s
e
o
p
er
atio
n
ar
e
in
d
icate
d
b
y
b
l
u
e
h
o
r
izo
n
tal
lin
es
2.
RE
S
E
ARCH
M
E
T
H
O
D
T
h
e
p
o
ten
tial
r
ed
u
ctio
n
o
f
b
r
ea
k
d
o
w
n
v
o
lta
g
es
b
y
i
n
cr
ea
s
i
n
g
f
ield
s
tr
ess
ed
ar
ea
a
n
d
v
o
lu
m
e
s
ize
i
s
a
w
ell
k
n
o
w
n
p
h
en
o
m
e
n
a
in
h
ig
h
v
o
lta
g
e
en
g
i
n
ee
r
in
g
a
n
d
it
is
f
r
eq
u
e
n
tl
y
d
escr
ib
ed
f
o
r
liq
u
id
n
itro
g
e
n
b
r
ea
k
d
o
w
n
b
eh
a
v
io
r
.
No
t
th
e
co
m
p
lete
liq
u
id
n
itro
g
e
n
test
v
o
lu
m
e
s
h
o
u
ld
b
e
co
n
s
id
er
ed
f
o
r
d
eter
m
i
n
atio
n
o
f
b
r
ea
k
d
o
w
n
b
eh
a
v
io
r
b
u
t
o
n
l
y
th
e
v
o
lu
m
e
w
h
er
e
th
e
elec
tr
ic
f
ield
ex
ce
e
d
s
a
ce
r
tai
n
v
o
ltag
e
in
r
elatio
n
to
t
h
e
m
ax
i
m
u
m
f
ield
v
al
u
e.
T
h
e
r
elatio
n
b
et
w
ee
n
t
h
i
s
th
r
e
s
h
o
ld
f
ield
s
tr
en
g
th
a
n
d
t
h
e
m
a
x
i
m
u
m
f
ield
s
tr
en
g
t
h
i
s
ca
lled
th
e
d
ec
is
iv
e
f
ield
f
ac
to
r
.
T
h
e
d
ec
is
iv
e
f
ield
f
ac
to
r
is
d
ep
en
d
in
g
o
n
p
r
ess
u
r
e
an
d
te
m
p
er
atu
r
e.
A
v
er
y
d
etailed
in
v
es
tig
a
tio
n
f
o
r
u
n
i
f
o
r
m
a
n
d
w
ea
k
l
y
n
o
n
-
u
n
i
f
o
r
m
f
ield
s
f
o
r
g
ap
len
g
th
s
u
p
to
2
0
m
m
is
p
er
f
o
r
m
ed
b
y
N.
Ha
y
a
k
a
w
a
in
[
8
]
an
d
allo
w
s
a
s
elec
tio
n
o
f
a
d
ec
is
iv
e
f
ield
f
ac
to
r
o
f
0
.
8
2
f
o
r
th
e
ex
a
m
in
ed
test
co
n
d
itio
n
s
o
f
Fig
u
r
e
1
.
T
h
e
m
ax
i
m
u
m
f
ield
v
al
u
e
o
f
a
s
i
m
p
le
s
p
h
er
e
to
p
lan
e
s
et
u
p
c
an
b
e
d
eter
m
i
n
ed
b
y
s
ev
er
al
to
o
ls
lik
e
a
n
al
y
tical
f
o
r
m
u
lae
o
r
tab
les
b
ased
o
n
co
n
f
o
r
m
al
m
ap
p
in
g
[
9
]
,
n
u
m
er
ica
l
f
ield
ca
lcu
lat
io
n
o
r
b
y
liter
atu
r
e
s
ea
r
ch
[
1
0
]
.
Nu
m
er
ical
f
ield
ca
lcu
lat
io
n
w
as
s
elec
ted
as
m
o
s
t
ap
p
r
o
p
r
iate
to
o
l
f
o
r
th
is
cr
y
o
g
en
ic
ap
p
licatio
n
co
n
s
id
er
in
g
t
h
e
n
ee
d
f
o
r
d
eter
m
i
n
atio
n
o
f
t
h
e
v
o
lu
m
e
“
V8
2
”,
w
h
er
e
th
e
elec
tr
ic
f
ield
is
h
ig
h
er
th
a
n
8
2
%
o
f
th
e
m
a
x
i
m
u
m
f
ield
.
I
t
s
h
o
u
ld
b
e
n
o
ticed
th
at
n
u
m
er
ical
f
ie
ld
ca
lcu
latio
n
is
w
ell
estab
lis
h
ed
f
o
r
r
o
o
m
te
m
p
er
at
u
r
e
h
i
g
h
v
o
lta
g
e
en
g
i
n
ee
r
in
g
,
e.
g
.
[
1
1
-
1
2
]
.
T
h
e
s
o
f
t
w
ar
e
C
o
m
s
o
l
M
u
ltip
h
y
s
ics
w
a
s
u
s
ed
in
v
er
s
io
n
4
.
3
b
.
T
h
is
p
r
o
g
r
a
m
o
f
f
er
s
a
s
w
ee
p
m
o
d
e
f
o
r
co
m
f
o
r
tab
le
d
ata
v
ar
iat
i
o
n
(
e.
g
.
g
ap
le
n
g
t
h
)
an
d
also
th
e
p
o
s
s
ib
ili
t
y
to
s
o
l
v
e
3
D
p
r
o
b
lem
s
.
2
.
1
.
Relia
bil
it
y
o
f
t
he
us
ed
f
ield c
a
lcula
t
io
n t
o
o
l
T
h
e
p
o
s
s
ib
le
o
cc
u
r
r
en
ce
o
f
m
at
h
e
m
a
tical
p
r
o
b
le
m
s
m
u
s
t
b
e
tak
e
n
in
ac
co
u
n
t
b
y
u
s
in
g
f
ield
ca
lcu
latio
n
p
r
o
g
r
a
m
s
.
T
y
p
ical
p
r
o
b
lem
s
w
h
ile
u
s
i
n
g
elec
tr
o
s
tatic
f
ield
ca
lc
u
latio
n
o
cc
u
r
f
o
r
th
e
d
eter
m
i
n
atio
n
o
f
th
e
m
a
x
i
m
u
m
f
ie
ld
s
tr
en
g
t
h
o
n
s
h
ar
p
ed
g
e
s
,
tr
ip
le
p
o
in
t
s
o
r
at
d
is
co
n
ti
n
u
ities
.
T
h
e
u
s
ed
p
r
o
g
r
am
o
f
f
er
s
d
if
f
er
e
n
t
p
o
s
s
ib
ilit
ie
s
o
f
f
ield
s
tr
en
g
t
h
d
eter
m
i
n
atio
n
.
T
h
r
ee
m
et
h
o
d
s
w
er
e
u
s
ed
:
clic
k
i
n
g
i
n
f
ield
p
lo
ts
,
a
n
ex
p
r
ess
io
n
to
o
l
“
d
er
iv
ed
v
al
u
es”
(
w
h
ich
o
f
f
er
s
co
m
p
r
eh
e
n
s
iv
e
p
o
s
s
ib
ilit
ies
o
f
ca
lcu
la
ti
o
n
o
f
s
i
m
p
le
u
p
to
v
er
y
s
o
p
h
is
ticated
p
r
o
b
le
m
s
)
,
an
d
d
ata
ex
p
o
r
t o
f
a
m
a
tr
ix
w
i
th
f
ield
v
al
u
es.
I
t
ca
n
b
e
ex
p
ec
ted
th
at
f
o
r
th
e
s
p
ec
if
ied
s
p
h
er
e
to
p
lan
e
s
etu
p
th
e
d
is
co
n
tin
u
it
y
at
t
h
e
s
p
h
e
r
e
s
u
r
f
ac
e
r
ep
r
esen
ts
t
h
e
m
o
s
t
cr
it
ical
i
s
s
u
e.
A
co
m
p
ar
is
o
n
w
a
s
d
o
n
e
b
et
w
ee
n
t
h
e
3
d
if
f
er
en
t
f
ield
d
eter
m
in
a
tio
n
m
et
h
o
d
s
f
o
r
o
n
e
s
p
h
er
e
to
p
lan
e
g
eo
m
etr
y
(
1
0
m
m
g
ap
le
n
g
t
h
,
5
0
m
m
d
ia
m
eter
o
f
s
p
h
er
e)
.
An
ex
p
o
r
ted
m
atr
i
x
o
f
f
ield
v
alu
e
s
f
r
o
m
a
s
i
m
p
le
s
p
h
er
e
to
p
la
n
e
m
o
d
el
w
ith
ca
lc
u
latio
n
s
tep
s
o
f
0
.
0
1
m
m
g
i
v
e
s
a
n
i
m
p
r
ess
io
n
o
f
t
h
e
f
ie
ld
d
ata
r
e
p
r
esen
tatio
n
o
r
ig
in
ated
f
r
o
m
C
o
m
s
o
l (
Fig
u
r
e
2
)
.
0
50
1
0
0
1
5
0
2
0
0
2
5
0
3
0
0
3
5
0
0
20
40
60
80
1
0
0
U
A
C
pea
k
w
1
w
/
o
hea
t
e
r
U
A
C
pea
k
w
1
w
.
hea
t
er
U
i
m
pul
se+
w
1
w
/
o
hea
t
er
U
i
m
pul
se+
w
1
w
.
h
eat
er
Vo
l
t
a
g
e
(kV
)
El
e
ct
ro
d
e
d
i
st
a
n
ce
(mm)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
A
P
E
I
SS
N:
2252
-
8792
E
lectro
s
ta
tic
field
ca
lcu
la
tio
n
s
fo
r
liq
u
id
n
itr
o
g
en
g
a
p
s
a
s
s
u
min
g
a
d
ec
is
ive
field
fa
cto
r
(
S
tefa
n
F
in
k
)
67
Fig
u
r
e
2
.
E
x
a
m
p
le
d
ata
s
et
d
el
iv
er
in
g
t
h
e
f
ie
ld
s
tr
en
g
t
h
v
al
u
e
s
(
s
ec
o
n
d
co
lu
m
n
,
u
n
i
t
: k
V
/
m
m
)
d
ep
en
d
i
n
g
o
n
g
eo
m
etr
y
v
ar
iab
l
e
z
(
f
ir
s
t c
o
lu
m
n
,
u
n
it
:
m
m
)
f
o
r
a
s
i
m
p
le
s
p
h
er
e
to
p
lan
e
m
o
d
el.
T
h
e
liq
u
id
n
itro
g
en
to
s
teel
b
o
u
n
d
ar
y
is
lo
ca
te
d
at
z
=
0
.
0
1
m
m
.
A
p
p
ar
en
t
l
y
t
h
e
elec
tr
ic
f
i
eld
in
cr
ea
s
e
o
f
t
h
e
last
s
tep
is
r
elativ
el
y
h
i
g
h
C
o
m
s
o
l
ca
lcu
late
s
a
f
ield
v
alu
e
ev
e
n
w
it
h
i
n
th
e
b
o
u
n
d
ar
y
s
u
r
f
ac
e
its
el
f
b
u
t
t
h
i
s
v
alu
e
s
ee
m
s
u
n
e
x
p
ec
ted
h
ig
h
if
t
h
e
f
ield
i
n
cr
ea
s
e
w
as
co
m
p
ar
ed
w
it
h
t
h
e
p
r
ec
ed
in
g
d
ata
p
o
in
ts
.
I
n
th
e
ex
a
m
p
le
o
f
Fi
g
u
r
e
2
o
n
e
m
a
y
e
x
p
ec
t a
v
al
u
e
o
f
1
2
.
7
5
k
V
/
m
m
in
s
tead
o
f
1
2
.
8
9
k
V
/
m
m
w
h
ich
is
a
d
if
f
er
en
c
e
o
f
ab
o
u
t 1
.
1
%.
I
n
co
m
p
ar
is
o
n
th
e
f
ield
p
lo
t
click
i
n
g
d
eli
v
er
s
1
2
.
8
0
k
V
/
m
m
a
n
d
th
e
“
d
er
iv
ed
v
al
u
es”
to
o
l
d
eliv
er
ed
1
2
.
8
9
kV
/
m
m
.
T
h
e
r
esu
lt
o
f
a
t
w
o
d
i
m
e
n
s
io
n
al
(
2
D)
m
o
d
el
o
f
th
e
b
o
u
n
d
ar
y
ele
m
e
n
t
m
e
th
o
d
p
r
o
g
r
am
C
SP
[
1
3
]
w
as 1
2
.
7
6
k
V
/
m
m
.
On
e
m
a
y
n
o
w
co
n
f
es
s
th
at
t
h
e
ex
p
o
r
t
d
ata
w
ith
f
o
llo
w
in
g
p
o
s
t
p
r
o
ce
s
s
in
g
o
r
ev
en
t
h
e
zo
o
m
an
d
click
m
et
h
o
d
s
ee
m
s
to
d
eliv
er
m
o
r
e
ac
cu
r
ate
m
a
x
i
m
u
m
f
iel
d
s
tr
en
g
t
h
v
al
u
es.
O
n
th
e
o
t
h
e
r
h
an
d
th
e
“
d
er
i
v
ed
v
alu
e”
m
e
th
o
d
o
f
f
er
s
a
n
ea
s
y
to
h
an
d
le
to
o
l
w
it
h
d
ir
ec
t
ca
l
cu
latio
n
o
f
t
h
e
v
o
lu
m
e
w
h
er
e
th
e
f
ield
is
h
i
g
h
er
th
an
t
h
e
d
ec
is
iv
e
f
iel
d
f
ac
to
r
m
u
ltip
lied
w
i
th
th
e
m
ax
i
m
u
m
f
ield
v
al
u
e.
A
tes
t
ca
lc
u
latio
n
w
i
th
th
e
d
er
iv
ed
v
alu
e
to
o
l
f
o
r
th
e
v
o
lu
m
e
ca
l
cu
latio
n
o
f
a
s
p
h
er
e
r
esu
l
ted
in
a
d
if
f
er
en
ce
o
f
le
s
s
t
h
an
1
%
co
m
p
ar
ed
to
th
e
an
al
y
tical
v
al
u
e.
Fi
n
all
y
it
w
a
s
d
ec
id
ed
to
u
s
e
th
e
“
d
er
iv
ed
v
a
lu
e”
to
o
l
f
o
r
th
e
f
o
llo
w
in
g
m
ax
i
m
u
m
f
ield
an
d
v
o
lu
m
e
ca
lc
u
latio
n
s
.
2
.
2
.
M
esh
ing
I
n
f
i
n
ite
ele
m
e
n
t
m
et
h
o
d
p
r
o
g
r
a
m
s
t
h
e
m
e
s
h
s
ize
m
u
s
t
b
e
ad
j
u
s
ted
in
o
r
d
er
to
f
in
d
a
u
s
ef
u
l
co
m
p
r
o
m
is
e
b
et
w
ee
n
h
i
g
h
s
o
lu
tio
n
ac
cu
r
ac
y
a
n
d
ca
lc
u
lati
o
n
ti
m
e.
C
o
m
s
o
l
o
f
f
er
s
a
n
u
m
b
er
o
f
p
r
ed
ef
i
n
ed
m
es
h
s
ize
q
u
a
liti
e
s
in
o
r
d
er
to
o
p
tim
ize
ca
lcu
la
tio
n
ti
m
e.
T
w
o
s
p
h
er
e
to
p
lan
e
m
o
d
els ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
3
.
Fig
u
r
e
3
.
Fu
ll
v
ie
w
o
f
3
D
m
o
d
el
w
it
h
co
ar
s
e
m
e
s
h
in
g
(
le
f
t)
an
d
zo
o
m
ed
v
ie
w
o
n
a
cr
o
s
s
s
e
ctio
n
o
f
a
2
D
s
p
h
er
e
to
p
lan
e
g
eo
m
e
tr
y
w
it
h
9
d
o
m
ain
s
(
r
ig
h
t)
.
T
h
e
in
n
er
m
o
s
t
h
alf
cir
cle
o
f
th
e
2
D
m
o
d
el
r
ep
r
esen
ts
th
e
h
ig
h
v
o
ltag
e
s
p
h
er
e
.
T
h
e
p
late
an
d
th
e
cr
y
o
s
tat
w
a
lls
ar
e
g
r
o
u
n
d
ed
.
T
h
e
ot
h
er
s
p
ac
e
is
liq
u
i
d
n
itro
g
en
(
i.e
.
7
o
f
th
e
9
d
o
m
ain
s
o
f
t
h
e
2
D
m
o
d
el;
th
e
cr
y
o
s
tat
w
al
ls
ar
e
n
o
t
v
is
ib
le
i
n
t
h
e
zo
o
m
ed
v
ie
w
)
I
t
ca
n
b
e
u
s
e
f
u
l
to
d
i
v
id
e
s
p
ac
es
(
e.
g
.
t
h
e
e
n
tire
liq
u
id
n
itro
g
e
n
s
p
ac
e)
i
n
s
u
b
s
p
ac
e
s
(
C
o
m
s
o
l:
“
d
o
m
ai
n
s
”)
i
n
o
r
d
er
to
i
m
p
r
o
v
e
t
h
e
s
o
l
u
tio
n
p
r
o
ce
s
s
.
A
f
u
r
th
er
ac
cu
r
ac
y
i
m
p
r
o
v
e
m
e
n
t
ca
n
b
e
ac
h
ie
v
ed
b
y
r
ef
in
e
m
e
n
t
o
f
t
h
e
m
e
s
h
w
it
h
i
n
a
b
o
x
.
T
h
is
r
e
f
i
n
e
m
e
n
t
m
e
t
h
o
d
w
as
u
s
ed
in
s
o
m
e
m
o
d
els
f
o
r
ac
h
ie
v
i
n
g
h
ig
h
ac
cu
r
ac
y
esp
ec
iall
y
ar
o
u
n
d
th
e
b
o
tto
m
p
o
in
t o
f
t
h
e
s
p
h
er
e
w
h
ich
h
as t
h
e
lo
w
est
d
i
s
tan
ce
to
th
e
p
lan
e.
C
o
m
p
ar
is
o
n
o
f
m
a
x
i
m
u
m
f
iel
d
v
alu
e
s
an
d
h
i
g
h
f
ie
ld
v
o
l
u
m
es
f
o
r
a
s
p
h
er
e
to
p
lan
e
s
etu
p
w
a
s
d
o
n
e
b
et
w
ee
n
eig
h
t
2
D
C
o
m
s
o
l
m
o
d
els
an
d
f
i
v
e
3
D
C
o
m
s
o
l
m
o
d
els
w
it
h
d
i
f
f
er
e
n
t
m
es
h
es
a
n
d
r
ef
i
n
e
m
e
n
t
s
.
T
h
e
m
o
s
t
d
etailed
2
D
C
o
m
s
o
l
m
o
d
el
w
as
u
s
ed
as
r
ef
er
en
ce
m
o
d
el.
T
h
e
s
i
m
p
le
m
o
d
els
w
it
h
o
n
l
y
o
n
e
d
o
m
ai
n
f
o
r
th
e
w
h
o
le
liq
u
id
n
itro
g
en
s
p
ac
e
s
h
o
w
d
i
f
f
er
en
ce
s
o
f
m
o
r
e
th
an
1
%
f
o
r
th
e
m
a
x
i
m
u
m
elec
tr
ic
f
ield
.
Ma
x
i
m
u
m
p
er
ce
n
tag
e
d
e
v
iatio
n
w
it
h
les
s
th
a
n
1
%
w
a
s
f
o
u
n
d
f
o
r
th
e
ca
lcu
latio
n
o
f
t
h
e
m
a
x
i
m
u
m
ele
ctr
ical
f
ield
i
n
ca
s
e
o
f
C
o
m
s
o
l
2
D
an
d
3
D
m
o
d
els
w
it
h
a
liq
u
id
n
i
tr
o
g
en
s
p
ac
e
d
iv
id
ed
in
s
e
v
er
al
d
o
m
ain
s
.
A
C
SP
m
o
d
el
d
eliv
er
s
a
d
if
f
er
en
ce
o
f
0
.
5
%
f
o
r
th
e
ca
lcu
latio
n
o
f
th
e
m
ax
i
m
u
m
f
ield
v
al
u
e.
Hi
g
h
f
ield
v
o
l
u
m
e
ca
lcu
lat
io
n
w
i
th
h
i
g
h
v
o
l
t
a
g
e
sp
h
e
r
e
g
r
o
u
n
d
e
d
p
l
a
t
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
7
,
No
.
1
,
A
p
r
il
2
0
1
8
:
65
–
72
68
m
ax
i
m
u
m
p
er
ce
n
ta
g
e
d
ev
iat
io
n
less
t
h
a
n
1
%
r
eq
u
ir
ed
v
er
y
d
etailed
m
e
s
h
e
s
.
T
h
is
h
ad
als
o
b
e
o
b
tain
ed
w
it
h
th
e
m
o
s
t
d
etailed
3
D
m
o
d
e
l
b
u
t
ca
lcu
latio
n
ti
m
e
co
m
p
ar
ed
to
th
e
b
est
2
D
m
o
d
el
is
lo
n
g
er
th
a
n
a
f
ac
to
r
o
f
2
0
0
.
Hen
ce
2
D
m
o
d
els
w
ith
s
u
b
d
o
m
ai
n
s
o
f
th
e
liq
u
id
n
itro
g
e
n
s
p
ac
e
an
d
a
d
d
itio
n
al
b
o
x
r
ef
in
e
m
en
t
w
er
e
u
s
ed
f
o
r
th
e
f
o
llo
w
i
n
g
s
p
h
er
e
o
r
r
o
d
to
p
lan
e
ca
lcu
latio
n
s
.
3.
RE
SU
L
T
S AN
D
AN
AL
Y
SI
S
A
t
h
eo
r
etica
l
2
D
s
p
h
er
e
to
p
la
n
e
m
o
d
el
d
eliv
er
ed
i
n
cr
ea
s
i
n
g
h
ig
h
f
ield
v
o
l
u
m
es
V8
2
w
it
h
in
cr
ea
s
i
n
g
g
ap
len
g
th
,
e.
g
.
a
v
o
lu
m
e
V8
2
o
f
1
5
5
5
m
m
3
fo
r
2
0
m
m
g
ap
len
g
t
h
an
d
a
v
o
l
u
m
e
V8
2
o
f
1
8
6
7
4
m
m
3
f
o
r
100
m
m
g
ap
len
g
t
h
.
R
ea
l
w
o
r
ld
s
etu
p
s
w
it
h
f
i
x
atio
n
r
o
d
s
o
r
tu
b
es
s
h
o
w
co
n
s
id
er
ab
le
ch
a
n
g
e
o
f
v
o
l
u
m
e
V8
2
f
o
r
lo
n
g
g
ap
s
in
co
m
p
ar
i
s
o
n
to
th
is
t
h
eo
r
etica
l
m
o
d
el
alth
o
u
g
h
th
e
m
a
x
i
m
u
m
f
ield
s
tr
e
n
g
t
h
i
s
v
er
y
s
i
m
ilar
(
Fig
u
r
e
4
)
.
T
h
e
Fatelin
i
t
y
p
e
r
o
d
s
w
ith
r
o
u
n
d
ed
h
alf
s
p
h
er
e
d
esig
n
d
o
n
o
t
s
h
o
w
a
m
o
n
o
t
o
n
icall
y
i
n
cr
ea
s
i
n
g
b
eh
av
io
r
b
u
t
h
a
v
e
a
d
is
ti
n
ct
m
ax
i
m
u
m
.
T
h
is
m
a
x
i
m
u
m
v
o
lu
m
e
o
cc
u
r
s
b
et
w
ee
n
5
0
m
m
a
n
d
7
0
m
m
(
ca
lcu
latio
n
s
tep
s
ar
e
1
0
m
m
;
th
e
lin
e
s
i
n
Fig
u
r
e
4
ar
e
o
n
l
y
f
o
r
o
r
ien
tatio
n
)
.
Si
n
ce
a
n
in
cr
ea
s
i
n
g
s
tr
e
s
s
ed
v
o
lu
m
e
ca
u
s
es
an
i
n
cr
ea
s
i
n
g
b
r
ea
k
d
o
w
n
p
r
o
b
ab
ilit
y
t
h
ese
ca
lcu
latio
n
r
es
u
lt
s
s
h
o
w
a
co
n
tr
ib
u
tio
n
f
o
r
th
e
ex
p
lan
atio
n
o
f
t
h
e
w
it
h
s
ta
n
d
v
o
ltag
e
cu
r
v
e
o
f
Fi
g
u
r
e
1
b
et
w
ee
n
2
0
m
m
a
n
d
7
0
m
m
.
I
t
s
h
o
u
ld
b
e
n
o
tic
ed
th
at
a
d
iag
r
a
m
w
it
h
V8
2
d
ep
en
d
in
g
o
n
g
ap
le
n
g
t
h
ca
n
n
o
t
b
e
d
ir
ec
tl
y
tr
ea
ted
as
b
r
ea
k
d
o
wn
p
r
o
b
ab
ilit
y
c
u
r
v
e
b
ec
au
s
e
e.
g
.
th
e
m
a
x
i
m
u
m
f
ie
ld
v
alu
e
ca
n
b
e
d
if
f
er
e
n
t f
o
r
2
p
o
in
ts
w
it
h
th
e
s
a
m
e
v
o
lu
m
e
v
alu
es.
Fig
u
r
e
4
.
Ma
x
i
m
u
m
f
iel
d
E
m
a
x
(
lef
t)
o
r
h
i
g
h
s
tr
ess
ed
v
o
lu
m
e
V8
2
(
r
ig
h
t)
d
ep
en
d
in
g
o
n
g
a
p
len
g
t
h
f
o
r
s
p
h
er
e
to
p
lan
e
an
d
r
o
d
to
p
lan
e
s
etu
p
s
.
P
r
ed
ef
in
ed
v
o
ltag
e
i
s
1
0
0
k
V.
T
h
e
r
o
d
s
h
av
e
a
5
0
m
m
d
ia
m
eter
r
o
u
n
d
i
n
g
(
at
least
1
8
0
°)
ter
m
i
n
atio
n
b
u
t d
if
f
er
en
t r
ad
ii
(
r
r
o
d
in
p
lo
t le
g
en
d
)
o
f
th
e
c
y
li
n
d
r
ical
f
i
x
atio
n
r
o
d
T
h
e
s
p
ec
ial
b
eh
av
io
r
o
f
th
e
r
o
u
n
d
ed
h
al
f
s
p
h
er
e
s
ca
n
b
e
ex
p
lain
ed
b
y
co
m
p
ar
i
s
o
n
o
f
f
i
eld
p
lo
ts
.
A
v
is
u
aliza
t
io
n
f
o
r
th
e
m
o
d
el
w
i
th
5
0
m
m
d
ia
m
eter
s
p
h
er
e
ter
m
i
n
atio
n
a
n
d
r
o
d
d
iam
eter
o
f
4
5
m
m
is
s
h
o
w
n
i
n
Fig
u
r
e
5
f
o
r
3
d
if
f
er
en
t
g
ap
len
g
t
h
s
.
T
h
e
p
late
is
n
o
t
s
h
o
w
n
in
th
e
f
ield
p
lo
ts
;
it
is
lo
ca
te
d
in
all
p
lo
ts
b
elo
w
th
e
s
p
h
er
e
b
u
t
also
b
elo
w
t
h
e
b
o
tto
m
li
m
i
tatio
n
o
f
th
e
p
ict
u
r
e.
T
h
e
a
m
o
u
n
t
o
f
s
p
ac
e
in
th
e
liq
u
id
n
itro
g
e
n
v
o
lu
m
e
V8
2
ar
o
u
n
d
th
e
b
o
tto
m
ter
m
i
n
atio
n
w
h
er
e
E
>
0
.
8
2
*
E
m
a
x
is
n
o
n
w
h
ite.
I
t
ca
n
b
e
s
ee
n
t
h
at
e
v
e
n
f
o
r
th
e
zo
o
m
ed
f
ield
p
lo
ts
m
o
s
t
o
f
t
h
e
liq
u
id
n
itro
g
en
s
p
ac
e
i
s
w
h
ite
w
h
ich
m
ea
n
s
t
h
at
it
d
o
e
s
n
o
t
b
elo
n
g
to
th
e
h
ig
h
f
ield
r
eg
io
n
.
T
h
e
m
o
s
t
“
t
h
ick
”
co
lo
r
ar
ea
ca
n
b
e
f
o
u
n
d
f
o
r
th
e
1
0
m
m
g
ap
w
it
h
a
t
h
i
ck
n
e
s
s
o
f
3
.
0
0
m
m
(
at
r
=
0
)
.
Fo
r
th
e
5
0
m
m
g
ap
len
g
th
th
e
m
a
x
i
m
u
m
t
h
ic
k
n
e
s
s
o
f
V8
2
is
2
.
6
5
m
m
a
n
d
f
o
r
th
e
1
0
0
m
m
g
ap
len
g
th
th
e
m
a
x
i
m
u
m
th
ic
k
n
es
s
o
f
V8
2
is
2
.
6
3
m
m
at
r
=
0
,
ea
ch
.
T
h
e
lo
n
g
er
th
e
g
ap
le
n
g
t
h
is
th
e
lar
g
er
is
th
e
an
g
le
ar
o
u
n
d
th
e
s
p
h
er
ical
ele
ctr
o
d
e
w
h
ich
is
co
v
er
ed
w
it
h
V8
2
b
u
t
ev
e
n
f
o
r
t
h
e
1
0
0
m
m
g
ap
len
g
t
h
a
n
a
n
g
le
o
f
9
0
°
co
u
n
ted
f
r
o
m
th
e
b
o
tto
m
p
o
in
t
i
s
n
o
t
r
ea
ch
ed
.
T
h
is
ex
p
lain
s
w
h
y
t
h
e
c
u
r
v
e
o
f
th
e
h
i
g
h
f
ield
v
o
lu
m
e
V8
2
f
o
r
th
is
m
o
d
el
(
Fi
g
u
r
e
4
,
b
lu
e
co
lo
r
)
is
s
tr
ictl
y
m
o
n
o
to
n
icall
y
i
n
cr
ea
s
i
n
g
.
0
2
4
6
8
10
12
0
20
40
60
80
100
R
o
d t
o p
l
an
e
r
e
s
ult
s
-
m
od
els
7
4
u
p
to
7
8
Em
ax
s
p
he
re t
o
pl
an
e
Em
ax
r
ro
d 10
mm
Em
ax
r
ro
d 10
mm ver2
Em
ax
r
ro
d 10
mm ver3
Em
ax
r
ro
d 22
.5
mm
Em
ax
r
ro
d 25
mm
E
max
k
V
/
mm
d
mm
0
500
0
100
00
150
00
200
00
0
20
40
60
80
100
R
o
d t
o p
l
an
e
re
s
ult
s
-
m
od
e
l
s
7
4 up
to 78
V
E
>
0
.
82*Em
ax
mm
3
d
mm
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
A
P
E
I
SS
N:
2252
-
8792
E
lectro
s
ta
tic
field
ca
lcu
la
tio
n
s
fo
r
liq
u
id
n
itr
o
g
en
g
a
p
s
a
s
s
u
min
g
a
d
ec
is
ive
field
fa
cto
r
(
S
tefa
n
F
in
k
)
69
Fig
u
r
e
5
.
P
lo
ts
o
f
elec
tr
ic
f
ield
ar
o
u
n
d
s
p
h
er
e
ter
m
i
n
atio
n
(
m
etal
s
p
h
er
e
r
ep
r
esen
ted
b
y
in
n
er
cir
cle
p
ar
t; o
u
ter
lin
es a
r
e
o
n
l
y
f
o
r
s
u
b
d
o
m
ai
n
s
o
f
liq
u
id
n
i
tr
o
g
en
s
p
ac
e)
w
it
h
d
if
f
er
e
n
t g
ap
le
n
g
th
s
o
f
1
0
m
m
(
lef
t
)
,
5
0
m
m
(
m
id
d
le)
,
an
d
1
0
0
m
m
(
r
ig
h
t)
t
o
th
e
p
lan
e
.
T
h
e
s
p
h
er
e
ter
m
i
n
atio
n
d
ia
m
eter
is
5
0
m
m
,
t
h
e
r
o
d
d
iam
eter
is
45
m
m
.
Hi
g
h
f
ield
s
p
ac
e
w
it
h
E
>
0
.
8
2
*
E
m
a
x
i
s
co
lo
r
ed
; w
h
ite
ar
ea
s
h
a
v
e
f
ield
v
al
u
es
n
o
t h
ig
h
er
t
h
an
0
.
8
2
*
E
m
a
x
.
Selecte
d
h
i
g
h
v
o
ltag
e
v
a
lu
e
i
s
1
0
0
k
V
f
o
r
th
e
f
i
eld
p
lo
ts
,
ea
ch
Fig
u
r
e
6
s
h
o
w
s
th
e
V8
2
v
o
l
u
m
e
f
o
r
3
d
if
f
er
e
n
t
g
eo
m
etr
i
es
w
it
h
a
2
0
m
m
d
ia
m
eter
f
i
x
atio
n
r
o
d
,
ea
ch
,
a
n
d
a
g
ap
le
n
g
t
h
o
f
1
0
0
m
m
,
ea
c
h
.
T
h
e
2
0
m
m
d
ia
m
et
er
r
o
d
w
it
h
f
u
ll
s
p
h
er
e
p
lo
t
(
F
ig
u
r
e
6
le
f
t,
F
ig
u
r
e
4
b
lack
cu
r
v
e)
ex
ce
ed
s
ap
p
ar
en
tl
y
t
h
e
9
0
°
an
g
le
w
h
ic
h
e
x
p
lain
s
t
h
e
lar
g
er
V8
2
v
o
lu
m
e
co
m
p
ar
ed
to
th
e
s
p
h
er
e
ter
m
i
n
atio
n
w
it
h
th
e
4
5
m
m
d
ia
m
eter
r
o
d
(
co
m
p
ar
e
Fi
g
u
r
e
5
r
ig
h
t)
.
A
ll
f
u
ll
s
p
h
er
e
r
o
d
s
h
av
e
s
h
o
w
n
th
e
m
ax
i
m
u
m
f
ield
s
tr
e
s
s
alo
n
g
th
e
p
o
in
t
at
r
=
0
w
h
ich
h
a
s
th
e
s
h
o
r
test
d
is
ta
n
ce
to
th
e
p
late.
T
h
e
r
o
u
n
d
ed
h
al
f
s
p
h
er
e
ter
m
i
n
atio
n
s
s
h
o
w
a
s
ec
o
n
d
h
ig
h
f
i
eld
r
eg
io
n
ar
is
i
n
g
i
n
ca
s
e
o
f
lo
n
g
er
d
is
tan
ce
s
at
th
e
9
0
°
lo
ca
tio
n
.
T
h
is
ex
p
lain
s
th
e
ex
ce
ed
in
g
o
f
t
h
e
V8
2
h
alf
s
p
h
er
e
v
alu
e
s
ab
o
v
e
th
e
V8
2
s
p
h
er
e
v
al
u
es
f
o
r
m
i
d
d
le
r
an
g
e
d
i
s
ta
n
ce
s
in
Fi
g
u
r
e
5
.
Fo
r
lo
n
g
er
d
is
ta
n
ce
s
t
h
e
m
a
x
i
m
u
m
elec
tr
ic
f
ield
o
f
t
h
e
h
al
f
s
p
h
er
e
ter
m
i
n
atio
n
s
i
n
cr
ea
s
es
to
m
ax
i
m
u
m
v
al
u
es
ar
o
u
n
d
t
h
i
s
9
0
°
lo
c
atio
n
w
h
ic
h
ar
e
e
v
en
h
ig
h
er
th
a
n
th
e
v
a
lu
e
s
o
f
th
e
ar
tif
icial
p
u
r
e
s
p
h
er
e
m
o
d
el
at
r
=
0
.
T
h
is
lead
s
to
a
r
e
d
u
ctio
n
o
f
th
e
s
p
ac
e
w
h
er
e
th
e
f
iel
d
is
h
ig
h
er
th
a
n
8
2
%
o
f
E
m
a
x
ar
o
u
n
d
th
e
r
=
0
(
i.e
.
0
°)
m
ax
i
m
u
m
an
d
h
en
ce
t
h
e
V
8
2
v
o
lu
m
e
s
f
o
r
th
e
lo
n
g
g
ap
len
g
th
s
o
f
b
o
th
h
a
lf
s
p
h
er
e
m
o
d
els
ar
e
lo
w
er
t
h
an
th
e
V8
2
m
o
d
el
o
f
th
e
f
u
l
l
s
p
h
er
e
m
o
d
el
w
it
h
th
e
s
a
m
e
f
i
x
atio
n
r
o
d
d
ia
m
eter
.
I
t
s
h
o
u
ld
b
e
r
em
e
m
b
er
ed
t
h
at
V8
2
d
iag
r
a
m
s
ar
e
n
o
b
r
ea
k
d
o
w
n
cu
r
v
es.
I
t
ca
n
n
o
t
b
e
d
ir
ec
tl
y
co
n
cl
u
d
ed
t
h
at
a
n
a
d
d
itio
n
al
h
i
g
h
f
ield
r
e
g
io
n
ca
u
s
es b
r
ea
k
d
o
w
n
p
r
o
b
ab
ilit
y
r
ed
u
ctio
n
f
o
r
t
h
e
lo
n
g
g
ap
len
g
th
s
.
B
u
t
it
ca
n
ex
p
lai
n
f
o
r
Fig
u
r
e
1
an
in
cr
ea
s
e
o
f
th
e
b
r
ea
k
d
o
w
n
p
r
o
b
ab
ilit
y
w
h
i
ch
w
a
s
n
o
t
g
i
v
e
n
in
[
6
]
o
r
[
7
]
f
o
r
th
e
g
ap
len
g
th
s
a
b
o
v
e
2
0
m
m
u
p
to
th
e
m
ax
i
m
u
m
h
i
g
h
f
ield
v
o
lu
m
e
r
eg
io
n
i
n
Fig
u
r
e
4
.
T
h
e
f
o
llo
w
in
g
co
n
s
id
er
atio
n
s
d
escr
ib
e
ca
lcu
latio
n
s
f
o
r
n
o
t
y
et
r
ec
o
r
d
ed
s
etu
p
s
.
I
t
ca
n
b
e
ex
p
ec
ted
th
at
t
h
e
d
ia
m
eter
o
f
th
e
cr
y
o
g
en
ic
te
s
t
v
e
s
s
e
l
(
cr
y
o
s
tat)
a
n
d
its
m
ater
ial
h
as
a
n
i
m
p
ac
t
o
n
t
h
e
s
tr
e
s
s
ed
v
o
lu
m
e
V8
2
in
ca
s
e
o
f
lar
g
e
g
ap
s
(
e.
g
.
b
y
cr
ea
tin
g
th
e
s
ec
o
n
d
h
ig
h
f
ield
r
eg
io
n
f
o
r
th
e
r
o
u
n
d
ed
h
alf
s
p
h
er
e
g
ap
s
o
f
Fig
u
r
e
6
m
id
d
le
an
d
r
ig
h
t)
.
Fig
u
r
e
7
s
h
o
w
s
t
h
e
r
es
u
lt
s
f
o
r
f
ield
ca
lcu
latio
n
s
w
i
th
d
i
f
f
e
r
en
t
m
eta
l
cr
y
o
s
ta
t
d
ia
m
eter
an
d
in
o
n
e
ca
s
e
w
it
h
o
u
t
a
cr
y
o
s
tat.
T
h
e
“n
o
cr
y
o
s
t
at”
ca
s
e
s
i
m
u
lates
t
h
e
ab
s
en
ce
o
f
m
etal
a
n
d
h
i
g
h
p
er
m
i
tti
v
it
y
m
ater
ial
i
n
t
h
e
n
e
ar
en
v
ir
o
n
m
e
n
t
w
h
ich
r
ep
r
ese
n
ts
e.
g
.
th
e
s
itu
a
tio
n
o
f
a
n
e
x
tr
u
d
ed
p
o
ly
p
r
o
p
y
len
e
b
o
x
as
s
i
m
p
le
cr
y
o
s
tat
o
n
a
w
o
o
d
en
s
u
p
p
o
r
t
an
d
a
s
m
all
w
ir
e
ea
r
th
co
n
n
ec
tio
n
(
w
h
at
i
s
n
o
t
d
esira
b
le
f
r
o
m
s
ev
er
al
p
o
in
t
s
o
f
v
ie
w
b
u
t so
m
eti
m
e
s
f
a
s
t p
r
ac
tice)
.
Fig
u
r
e
6
.
Field
P
lo
ts
E
>
0
.
8
2
*
E
m
a
x
w
it
h
cr
o
s
s
s
ec
t
io
n
o
f
m
o
d
el
w
i
th
5
0
m
m
d
ia
m
e
ter
s
p
h
er
e
(
lef
t)
o
r
r
o
u
n
d
ed
h
alf
s
p
h
er
e
(
m
id
d
le,
r
ig
h
t)
ter
m
i
n
atio
n
a
n
d
r
o
d
d
iam
eter
o
f
2
0
m
m
.
Vo
lu
m
e
V8
2
is
7
5
3
3
m
m
3
(
lef
t)
,
5
8
0
8
m
m
3
(
m
id
d
le)
,
an
d
5
8
0
8
m
m
3
(
r
ig
h
t
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
7
,
No
.
1
,
A
p
r
il
2
0
1
8
:
65
–
72
70
An
i
n
cr
ea
s
i
n
g
m
etal
cr
y
o
s
tat
d
ia
m
eter
ca
n
h
a
v
e
lo
w
er
v
o
lu
m
e
V8
2
f
o
r
lo
n
g
g
ap
s
a
n
d
s
o
m
e
r
o
d
v
er
s
io
n
s
.
C
alc
u
latio
n
s
f
o
r
a
p
l
asti
c
cr
y
o
s
tat
a
n
d
t
w
o
r
o
d
s
etu
p
s
d
eliv
er
ed
lo
w
er
v
o
lu
m
e
s
V
8
2
u
p
to
a
f
ac
to
r
o
f
ab
o
u
t
2
co
m
p
ar
ed
to
a
m
etal
cr
y
o
s
tat.
I
n
ca
s
e
o
f
th
e
p
last
ic
cr
y
o
s
tat
t
h
e
m
a
x
i
m
u
m
f
ield
s
tr
en
g
th
is
r
ed
u
ce
d
co
m
p
ar
ed
to
a
m
eta
l c
r
y
o
s
tat.
On
e
ca
n
ex
p
ec
t
f
o
r
lar
g
e
g
ap
ex
p
er
i
m
e
n
ts
in
p
las
tic
cr
y
o
s
ta
ts
h
i
g
h
er
b
r
ea
k
d
o
wn
v
o
ltag
e
s
co
m
p
ar
ed
to
m
etal
cr
y
o
s
tat
s
.
On
th
e
o
th
er
h
a
n
d
r
esu
lts
o
b
tain
ed
b
y
test
s
u
s
in
g
p
last
ic
cr
y
o
s
tat
s
m
a
y
b
e
v
er
y
s
e
n
s
iti
v
e
o
n
h
o
w
th
e
g
r
o
u
n
d
i
n
g
co
n
n
ec
t
io
n
o
f
t
h
e
p
late
is
r
o
u
ted
an
d
h
o
w
th
e
cr
y
o
s
tat
is
i
n
s
talled
w
it
h
r
esp
ec
t
o
f
o
t
h
er
g
r
o
u
n
d
s
,
e.
g
.
if
t
h
e
cr
y
o
s
tat
i
s
p
u
t
o
n
a
w
o
o
d
en
d
esk
o
r
a
g
r
o
u
n
d
ed
s
teel
p
late
o
r
n
ea
r
a
m
etallic
w
a
ll,
etc.
T
h
e
cu
r
v
es
w
ith
t
h
e
r
o
u
n
d
ed
h
al
f
s
p
h
er
e
m
o
d
el
in
Fi
g
u
r
e
7
(
r
ig
h
t
d
iag
r
a
m
)
s
h
o
w
V8
2
m
ax
i
m
a
f
o
r
m
ed
iu
m
g
ap
len
g
t
h
s
a
n
d
a
r
ev
er
s
al
o
f
t
h
e
lar
g
er
d
ia
m
e
ter
ef
f
ec
t,
e.
g
.
f
o
r
4
0
m
m
g
ap
le
n
g
t
h
th
e
s
m
alles
t
m
e
tal
cr
y
o
s
tat
d
eliv
er
s
h
i
g
h
est
V8
2
v
alu
e
co
m
p
ar
ed
to
o
th
er
d
iam
eter
s
an
d
f
o
r
8
0
m
m
it
d
eliv
er
s
th
e
lo
w
e
s
t
v
al
u
e
co
m
p
ar
ed
to
th
e
f
ield
v
al
u
es
f
o
r
o
th
er
d
iam
eter
m
o
d
els
w
i
th
th
e
s
a
m
e
g
ap
le
n
g
t
h
,
r
esp
ec
ti
v
el
y
.
Fig
u
r
e
7
.
C
alcu
lated
v
o
lu
m
e
V8
2
d
ep
en
d
in
g
o
n
g
ap
le
n
g
t
h
f
o
r
r
o
d
to
p
lan
e
s
etu
p
w
it
h
d
if
f
er
en
t c
r
y
o
s
tat
r
ad
ii
(
in
m
)
o
r
in
o
n
e
ca
s
e
w
i
th
o
u
t
m
etal
cr
y
o
s
tat
w
all
s
(
“n
o
cr
y
o
s
tat”,
r
ed
cu
r
v
e
)
.
T
h
e
lef
t
p
ictu
r
e
s
h
o
w
s
a
p
lo
t
w
it
h
a
f
u
l
l sp
h
er
e
ter
m
in
at
io
n
an
d
a
th
ic
k
(
d
ia
m
eter
4
5
m
m
)
f
i
x
atio
n
r
o
d
; th
e
r
ig
h
t p
ict
u
r
e
s
h
o
w
s
a
r
o
u
n
d
ed
h
al
f
s
p
h
er
e
ter
m
in
at
io
n
w
it
h
a
th
i
n
n
er
r
o
d
(
d
iam
eter
2
0
m
m
)
Dec
is
i
v
e
f
ield
f
ac
to
r
s
b
et
w
ee
n
0
.
8
1
an
d
0
.
9
3
ar
e
r
e
p
o
r
ted
in
[
8
]
.
T
w
o
d
if
f
er
en
t
g
eo
m
e
tr
ies
w
er
e
ex
a
m
in
ed
co
n
ce
r
n
i
n
g
t
h
e
v
ar
iatio
n
o
f
t
h
e
f
ield
f
ac
to
r
f
o
r
a
cr
y
o
s
tat
w
it
h
a
s
tai
n
le
s
s
s
teel
d
i
a
m
eter
o
f
644
m
m
.
I
n
cr
ea
s
i
n
g
d
ec
is
iv
e
f
ield
f
ac
to
r
ca
u
s
es
d
ec
r
ea
s
i
n
g
v
o
l
u
m
es
V
.
T
h
e
v
o
l
u
m
e
m
a
x
i
m
u
m
f
o
r
t
h
e
h
al
f
s
p
h
er
e
ter
m
i
n
atio
n
m
o
d
el
ap
p
ea
r
s
in
m
ed
iu
m
g
ap
le
n
g
t
h
s
ar
o
u
n
d
6
0
m
m
.
Fo
r
th
i
s
m
o
d
el
th
e
v
o
lu
m
e
o
f
a
1
0
0
m
m
g
ap
len
g
t
h
an
d
=
0
.
9
3
w
a
s
o
n
l
y
6
9
m
m
3
co
r
r
esp
o
n
d
in
g
to
ab
o
u
t 1
w
ater
d
r
o
p
v
o
lu
m
e
(
5
0
m
m
3
).
An
o
th
er
is
s
u
e
is
t
h
e
o
cc
u
r
r
en
ce
o
f
a
“
j
u
m
p
”
o
n
h
ig
h
f
ield
v
o
lu
m
es
f
o
r
a
p
lan
e
to
p
lan
e
elec
tr
o
d
e
s
etu
p
w
it
h
ed
g
es
a
n
d
g
ap
le
n
g
th
b
et
w
ee
n
1
0
m
m
a
n
d
2
0
m
m
a
n
d
lo
w
d
ec
i
s
i
v
e
f
ield
f
a
cto
r
o
f
0
.
8
1
.
Su
c
h
a
“
j
u
m
p
”
ca
n
alr
ea
d
y
b
e
ca
lcu
la
ted
f
o
r
s
h
o
r
t
g
ap
s
a
n
d
s
li
g
h
tl
y
h
i
g
h
er
d
ec
is
iv
e
f
ield
f
ac
to
r
.
T
h
is
d
o
es
n
o
t
m
ea
n
th
at
o
n
l
y
s
l
ig
h
t c
h
a
n
g
e
s
o
f
g
ap
len
g
t
h
ca
n
h
av
e
s
tr
o
n
g
i
m
p
ac
t
o
n
h
ig
h
f
ie
ld
v
o
l
u
m
e
b
u
t
also
a
s
li
g
h
t c
h
a
n
g
e
o
f
te
m
p
er
atu
r
e
o
r
p
r
ess
u
r
e
ca
n
h
a
v
e
s
tr
o
n
g
i
m
p
ac
t o
n
t
h
e
ca
lc
u
l
ated
h
ig
h
f
ield
v
o
l
u
m
e.
A
s
e
x
a
m
p
le
Fi
g
.
8
s
h
o
w
s
a
f
ast
h
i
g
h
f
ield
v
o
l
u
m
e
i
n
cr
ea
s
e
f
o
r
a
d
ec
is
i
v
e
f
ie
ld
f
ac
to
r
ch
an
g
e
(
ca
u
s
ed
e.
g
.
b
y
p
r
ess
u
r
e
d
ec
r
ea
s
e)
f
r
o
m
0
.
8
4
to
0
.
8
3
.
I
t
is
n
o
t
e
x
p
er
i
m
en
tall
y
e
x
a
m
i
n
ed
u
p
to
n
o
w
i
f
s
u
c
h
r
e
m
ar
k
ab
le
ch
a
n
g
e
o
f
th
e
h
i
g
h
f
ield
v
o
lu
m
e
d
is
tr
ib
u
tio
n
f
r
o
m
t
h
e
u
n
i
f
o
r
m
r
eg
io
n
to
t
h
e
ed
g
e
s
p
ac
e
is
m
o
d
ell
in
g
r
ea
li
t
y
,
i.e
.
i
f
a
s
u
d
d
en
r
ed
u
ctio
n
o
f
b
r
ea
k
d
o
w
n
v
o
ltag
e
o
cc
u
r
s
b
y
a
r
elate
d
p
r
ess
u
r
e
lo
s
s
.
0
200
0
400
0
600
0
800
0
0
20
40
60
80
100
R
o
d
to p
l
a
ne
m
o
d
el
s
79 a
nd
81 -
c
ry
o
s
tats
-
rr
od
=
22.5
m
m
V8
2 bo
tt
om t
e
rmin
a
tion
no
cr
y
o
st
a
t
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.197
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.247
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.322
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.421
V
E
>
0
.
82*Em
ax
mm
3
d
mm
0
200
0
400
0
600
0
800
0
0
20
40
60
80
100
R
o
d
to p
l
a
ne
m
o
d
el
s
80 a
nd
82 -
c
ry
o
s
tats
-
rr
od
=
10 mm
V
2
V8
2 bo
tt
om t
e
rmin
a
tion
no
cr
y
o
st
a
t
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.197
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.247
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.322
V8
2 bo
tt
om t
e
rmin
a
tion
rcr
y
o
st
a
t=
0
.421
V
E
>
0
.
82*Em
ax
mm
3
d
mm
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
A
P
E
I
SS
N:
2252
-
8792
E
lectro
s
ta
tic
field
ca
lcu
la
tio
n
s
fo
r
liq
u
id
n
itr
o
g
en
g
a
p
s
a
s
s
u
min
g
a
d
ec
is
ive
field
fa
cto
r
(
S
tefa
n
F
in
k
)
71
Fig
u
r
e
8
.
Field
p
lo
ts
f
o
r
a
g
r
o
u
n
d
d
is
k
(
b
o
tto
m
,
d
ia
m
eter
: 3
0
0
m
m
)
to
h
i
g
h
v
o
ltag
e
“sta
m
p
”
(
d
is
k
w
i
th
s
u
s
p
en
s
io
n
r
o
d
,
d
is
k
d
ia
m
eter
:
2
0
0
m
m
,
ed
g
e
s
o
f
d
is
k
r
o
u
n
d
ed
)
an
d
a
g
ap
len
g
t
h
o
f
8
m
m
.
L
e
f
t
p
lo
t sh
o
w
s
h
ig
h
f
ield
v
o
l
u
m
e
f
o
r
a
d
ec
is
i
v
e
f
ie
ld
f
ac
to
r
o
f
0
.
8
4
an
d
r
ig
h
t f
i
g
u
r
e
f
o
r
a
d
ec
is
iv
e
f
ie
ld
f
ac
to
r
o
f
0
.
8
3
.
W
h
ite
ar
ea
s
s
h
o
w
r
eg
io
n
s
w
it
h
f
ield
l
o
w
er
th
a
n
d
ec
is
i
v
e
f
ield
f
ac
to
r
m
u
l
tip
lied
w
it
h
E
m
a
x
, E
ac
h
.
Field
v
al
u
es a
r
e
r
elate
d
to
a
s
elec
ted
h
ig
h
v
o
lta
g
e
o
f
1
0
0
k
V.
Mo
s
t o
f
th
e
l
in
e
s
w
ith
in
t
h
e
p
lo
ts
ar
e
n
ec
es
s
ar
y
f
o
r
m
e
s
h
in
g
o
f
th
e
liq
u
id
n
itro
g
e
n
s
p
ac
e
in
o
r
d
er
to
in
cr
ea
s
e
ac
cu
r
ac
y
o
f
t
h
e
m
o
d
el
4.
CO
NCLU
SI
O
N
A
cc
o
r
d
in
g
to
[
8
]
th
e
h
i
g
h
f
ie
l
d
v
o
lu
m
e
d
eter
m
i
n
es
t
h
e
b
r
ea
k
d
o
w
n
v
a
lu
e
f
o
r
a
liq
u
id
n
itro
g
en
s
et
u
p
.
T
h
is
h
i
g
h
f
ield
v
o
l
u
m
e
ca
n
b
e
d
eter
m
in
ed
b
y
co
n
s
id
er
in
g
o
n
l
y
t
h
e
v
o
lu
m
e
w
h
er
e
t
h
e
elec
tr
ic
f
ield
s
tr
en
g
t
h
i
s
h
ig
h
er
t
h
an
t
h
e
h
ig
h
es
t
elec
tr
ic
f
ield
s
tr
e
n
g
t
h
v
alu
e
m
u
ltip
lie
d
w
it
h
t
h
e
d
ec
is
i
v
e
elec
tr
i
c
f
ield
f
ac
to
r
.
T
h
e
d
ec
is
iv
e
f
ield
f
ac
to
r
is
d
ep
en
d
in
g
o
n
te
m
p
er
atu
r
e
a
n
d
p
r
ess
u
r
e
an
d
is
ab
o
u
t
0
.
8
2
f
o
r
a
p
r
ess
u
r
e
o
f
0
.
1
0
5
M
P
a
(
ab
s
o
lu
te)
an
d
a
te
m
p
er
atu
r
e
o
f
7
7
.
8
K.
T
h
e
co
m
p
u
tatio
n
o
f
th
e
h
i
g
h
f
ield
v
o
l
u
m
e
ca
lcu
lated
b
y
v
o
lu
m
e
in
te
g
r
atio
n
w
it
h
i
n
th
e
FEM
p
r
o
g
r
a
m
C
o
m
s
o
l
s
h
o
w
s
f
o
r
s
ev
er
al
elec
tr
o
d
e
s
etu
p
s
s
p
ec
ial
d
ep
en
d
en
ce
o
n
g
ap
len
g
th
,
e.
g
.
m
a
x
i
m
a
i
n
s
tead
o
f
s
tr
ict
l
y
m
o
n
o
to
n
o
u
s
i
n
cr
ea
s
in
g
o
f
t
h
e
v
o
lu
m
e.
A
m
o
d
el
w
i
th
a
s
i
m
p
l
e
th
eo
r
etica
l
s
p
h
er
e
elec
tr
o
d
e
is
n
o
t
s
u
f
f
icie
n
t
to
es
t
i
m
a
te
t
h
e
r
elev
a
n
t
h
i
g
h
f
ield
v
o
lu
m
e
f
o
r
s
p
h
er
e
to
p
la
n
e
s
etu
p
s
w
it
h
a
g
ap
len
g
t
h
lo
n
g
er
th
a
n
2
0
m
m
.
I
n
ad
d
itio
n
th
e
i
n
f
lu
e
n
ce
o
f
t
h
e
m
e
tal
c
r
y
o
s
tat
d
ia
m
eter
o
r
m
ater
ial
ca
n
n
o
t b
e
n
e
g
lecte
d
f
o
r
lo
n
g
g
ap
s
et
u
p
s
.
B
ased
o
n
th
e
ca
lcu
lated
h
ig
h
f
ield
v
o
lu
m
es
i
t
is
p
o
s
s
ib
le
to
b
etter
u
n
d
er
s
tan
d
th
e
s
p
ec
ial
b
r
ea
k
d
o
w
n
o
r
w
it
h
s
tan
d
b
e
h
av
io
r
o
f
lo
n
g
g
ap
s
et
u
p
s
.
A
m
ax
i
m
u
m
o
f
t
h
e
h
i
g
h
f
ield
v
o
lu
m
e
le
t
e
x
p
ec
t
a
r
a
n
g
e
w
it
h
r
ed
u
ce
d
d
ielec
tr
ic
s
tr
en
g
t
h
.
Fi
eld
p
lo
ts
s
h
o
w
m
o
r
e
t
h
an
o
n
e
h
ig
h
f
ield
r
e
g
io
n
alo
n
g
th
e
h
i
g
h
v
o
lta
g
e
elec
tr
o
d
e
ter
m
i
n
atio
n
an
d
f
ield
p
lo
ts
s
h
o
w
i
n
ad
d
itio
n
c
h
an
g
i
n
g
m
a
x
i
m
u
m
f
ield
s
tr
en
g
t
h
lo
ca
tio
n
s
d
ep
en
d
in
g
o
n
g
ap
len
g
th
.
T
h
i
s
d
eli
v
er
s
a
h
i
n
t
f
o
r
r
eg
io
n
s
w
it
h
lar
g
er
s
ca
tter
in
g
o
r
r
ed
u
ctio
n
o
f
b
r
ea
k
d
o
w
n
v
al
u
es.
Der
i
v
ed
f
r
o
m
th
e
cr
y
o
s
tat
w
all
ca
lcu
latio
n
s
w
it
h
lo
n
g
g
ap
s
h
i
g
h
er
b
r
ea
k
d
o
w
n
s
tr
en
g
t
h
f
o
r
p
last
ic
cr
y
o
s
tats
ca
n
b
e
ex
p
ec
ted
b
u
t
w
it
h
h
i
g
h
s
e
n
s
iti
v
it
y
to
g
r
o
u
n
d
ed
o
b
j
ec
ts
n
ea
r
t
h
e
s
etu
p
.
A
h
ig
h
d
ec
i
s
iv
e
f
ield
f
ac
to
r
ca
n
ca
u
s
e
v
er
y
lo
w
v
o
lu
m
es
w
h
ic
h
ca
n
e
x
p
lai
n
h
i
g
h
b
r
ea
k
d
o
w
n
v
o
lta
g
es.
I
n
co
n
tr
ad
ict
io
n
to
[
8
]
f
o
r
s
h
o
r
t
g
ap
s
th
i
s
p
ap
er
d
o
es
n
o
t
co
n
tain
e
x
p
er
i
m
e
n
tal
b
ased
r
u
les
f
o
r
th
e
b
r
ea
k
d
o
w
n
s
tr
e
n
g
t
h
d
ep
en
d
i
n
g
o
n
h
ig
h
s
tr
ess
ed
v
o
l
u
m
e.
I
n
th
i
s
lo
n
g
g
ap
co
n
s
id
er
atio
n
s
th
er
e
is
n
o
r
elatio
n
p
r
esen
ted
b
et
w
ee
n
h
i
g
h
s
tr
ess
ed
v
o
lu
m
e
an
d
b
r
ea
k
d
o
w
n
v
o
ltag
e.
T
h
e
s
h
o
w
n
w
i
th
s
ta
n
d
d
ata
o
f
Fi
g
u
r
e
1
ar
e
n
o
t
s
u
f
f
icien
t
to
e
s
tab
lis
h
a
n
ex
p
er
i
m
e
n
tal
b
a
s
ed
r
u
le.
I
t
s
h
o
u
ld
b
e
co
n
s
id
er
ed
t
h
at
h
i
g
h
f
ield
v
o
lu
m
e
d
ata
ca
n
n
o
t
b
e
d
ir
ec
tl
y
ta
k
en
in
co
m
p
ar
i
s
o
n
w
i
th
th
e
(
m
ai
n
l
y
)
5
0
%
u
p
an
d
d
o
w
n
m
et
h
o
d
v
al
u
es
o
f
[
8
]
.
E
v
en
t
h
e
s
el
ec
tio
n
o
f
th
e
f
ac
to
r
0
.
8
2
ca
n
o
n
l
y
b
e
co
n
s
id
er
ed
as
te
n
t
ativ
e
b
ec
a
u
s
e
it
r
ela
y
s
o
n
lo
w
er
g
ap
e
x
p
er
i
m
e
n
t
r
u
les
w
it
h
e.
g
.
m
ai
n
l
y
lo
w
e
r
h
y
d
r
o
s
tatic
p
r
ess
u
r
e
(
a
v
er
y
d
etailed
d
escr
ip
tio
n
to
th
e
s
etu
p
s
is
o
f
te
n
n
o
t a
v
ailab
le)
.
Nev
er
th
e
less
an
i
n
cr
ea
s
i
n
g
d
ec
is
i
v
e
f
ield
f
ac
to
r
r
ed
u
ce
s
t
h
e
h
ig
h
f
ie
ld
v
o
l
u
m
e
b
u
t
it
d
o
es
n
o
t
ch
a
n
g
e
th
e
p
r
in
cip
le
b
eh
a
v
io
r
o
f
th
e
e
x
a
m
in
ed
s
p
h
er
e
to
p
lan
e
s
et
u
p
.
T
h
is
m
ea
n
s
th
a
t
th
e
p
r
in
c
ip
le
co
n
clu
s
io
n
s
b
ase
d
o
n
th
e
h
ig
h
f
ield
v
o
l
u
m
e
m
a
x
i
m
u
m
f
o
r
m
id
r
an
g
e
g
ap
le
n
g
t
h
s
ar
e
in
th
i
s
s
p
ec
ia
l c
ase
t
h
e
s
a
m
e.
I
n
t
h
e
f
u
t
u
r
e
it
is
p
lan
n
ed
to
p
r
o
d
u
ce
m
o
r
e
ex
p
er
i
m
en
ta
l
d
at
a
w
ith
“
Fateli
n
i
2
”
w
it
h
o
th
er
elec
tr
o
d
e
s
h
ap
es
a
s
s
p
h
er
e
(
o
r
r
o
d
)
to
p
lan
e.
T
h
e
lo
n
g
ter
m
g
o
al
w
o
u
ld
b
e
to
estab
lis
h
a
n
ex
p
er
i
m
e
n
tal
b
ased
cu
r
v
e
o
f
th
e
b
r
ea
k
d
o
w
n
o
r
w
i
th
s
tan
d
v
al
u
es
d
ep
en
d
in
g
o
n
g
ap
len
g
th
s
b
u
t
v
alid
f
o
r
lo
n
g
er
g
ap
s
th
a
n
in
[
8
]
.
I
n
ad
d
itio
n
th
e
i
n
f
lu
e
n
ce
o
f
ed
g
e
e
f
f
ec
ts
o
r
in
f
lu
e
n
ce
o
f
c
h
a
n
g
in
g
lo
ca
ti
o
n
s
o
f
f
ield
m
a
x
i
m
a
r
eg
io
n
s
s
h
o
u
ld
b
e
ex
a
m
i
n
ed
in
d
etail.
T
h
e
s
tr
o
n
g
i
n
f
lu
e
n
ce
o
f
t
h
e
e
x
p
er
i
m
e
n
tal
co
n
d
itio
n
s
o
n
th
e
h
i
g
h
f
ield
v
o
lu
m
e
v
al
u
e
r
eq
u
ir
es
d
etailed
k
n
o
w
led
g
e
o
f
t
h
e
te
s
t
s
etu
p
(
cr
y
o
s
tat
d
ia
m
eter
,
d
is
ta
n
ce
to
m
etal
r
ad
iatio
n
s
h
ield
etc.
)
f
o
r
v
al
u
es
f
r
o
m
o
th
er
r
esear
ch
es.
I
n
ad
d
itio
n
a
r
ec
a
lcu
latio
n
in
ca
s
e
o
f
d
if
f
er
en
t
test
m
e
th
o
d
s
is
n
ec
es
s
ar
y
w
h
i
ch
ca
n
ca
u
s
e
s
o
m
e
ad
d
itio
n
al
u
n
ce
r
tai
n
t
y
.
g
r
o
u
n
d
ed
p
late
h
ig
h
v
o
ltag
e
elec
tr
o
d
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
7
,
No
.
1
,
A
p
r
il
2
0
1
8
:
65
–
72
72
ACK
NO
WL
E
D
G
E
M
E
NT
S
W
e
ac
k
n
o
w
led
g
e
s
u
p
p
o
r
t
b
y
Deu
ts
c
h
e
Fo
r
s
c
h
u
n
g
s
g
e
m
ei
n
s
ch
af
t
an
d
Op
en
Acc
ess
P
u
b
li
s
h
in
g
F
u
n
d
o
f
Kar
ls
r
u
h
e
I
n
s
tit
u
te
o
f
T
ec
h
n
o
lo
g
y
.
RE
F
E
R
E
NC
E
S
[1
]
D.
S
h
a
rm
a
,
K.
B.
S
a
h
a
y
,
"
Ba
sic
c
o
n
c
e
p
ts
o
f
su
p
e
rc
o
n
d
u
c
ti
n
g
f
a
u
lt
c
u
rre
n
t
li
m
it
e
r,
"
2
0
1
6
IEE
E
1
st
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
Po
we
r E
lec
tro
n
ics
,
In
telli
g
e
n
t
C
o
n
tro
l
a
n
d
E
n
e
rg
y
S
y
ste
ms
(
ICPE
ICES
)
,
De
lh
i,
2
0
1
6
,
p
p
.
1
-
5
[2
]
M
.
S
tem
m
le,
F
.
M
e
rsc
h
e
l,
M
.
No
e
a
n
d
A
.
Ho
b
l
,
"
Amp
a
c
it
y
p
ro
jec
t
—
W
o
rl
d
wid
e
f
irst
su
p
e
rc
o
n
d
u
c
ti
n
g
c
a
b
le
a
n
d
fa
u
lt
c
u
rr
e
n
t
li
miter
in
st
a
ll
a
ti
o
n
in
a
Ge
rm
a
n
c
it
y
c
e
n
ter
,"
2
2
n
d
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
a
n
d
Ex
h
ib
it
i
o
n
o
n
El
e
c
tri
c
it
y
Distrib
u
ti
o
n
(CIRED
2
0
1
3
),
S
t
o
c
k
h
o
lm
,
2
0
1
3
,
p
p
.
1
-
4
[3
]
I.
S
a
u
e
rs,
E.
T
u
n
c
e
r,
"
S
trate
g
ic
Die
le
c
tri
c
s
R
&
D
f
o
r
H
T
S
a
n
d
o
th
e
r
OE
A
p
p
li
c
a
ti
o
n
s,
"
2
0
0
9
DO
E
Pee
r
Rev
ie
w
,
A
le
x
a
n
d
ria,
V
A
,
p
.
3
2
[4
]
M
.
O.
P
a
c
e
,
I.
S
a
u
e
rs,
D.
R.
Ja
m
e
s,
E.
T
u
n
c
e
r
a
n
d
G
.
P
o
li
z
o
s,
"
De
si
g
n
T
o
o
l
f
o
r
L
iq
u
id
-
Nitr
o
g
e
n
G
a
p
s
in
S
u
p
e
rc
o
n
d
u
c
ti
n
g
A
p
p
a
ra
tu
s,"
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Ap
p
li
e
d
S
u
p
e
r
c
o
n
d
u
c
ti
v
it
y
,
v
o
l.
2
1
,
n
o
.
3
,
p
p
.
1
4
4
1
-
1
4
4
4
,
Ju
n
e
2
0
1
1
[5
]
N.
Ha
y
a
k
a
wa
,
S
.
Nish
i
m
a
c
h
i,
H.
Ko
ji
m
a
a
n
d
H.
Ok
u
b
o
,
"
S
ize
e
ff
e
c
t
o
n
b
re
a
k
d
o
w
n
stre
n
g
th
in
su
b
-
c
o
o
le
d
li
q
u
i
d
n
it
ro
g
e
n
f
o
r
su
p
e
rc
o
n
d
u
c
ti
n
g
p
o
w
e
r
a
p
p
a
ra
tu
s,"
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Die
lec
trics
a
n
d
El
e
c
tric
a
l
In
su
la
ti
o
n
,
v
o
l
.
2
2
,
n
o
.
5
,
p
p
.
2
5
6
5
-
2
5
7
1
,
Oc
to
b
e
r
2
0
1
5
[6
]
S
.
F
i
n
k
,
W
.
-
S
.
Kim
,
M
.
No
e
,
a
n
d
V
.
Zw
e
c
k
e
r,
"
W
it
h
sta
n
d
im
p
u
lse
v
o
lt
a
g
e
o
f
li
q
u
i
d
n
it
ro
g
e
n
i
n
t
h
e
p
re
se
n
c
e
o
f
g
a
s
b
u
b
b
les
,
"
In
tern
a
ti
o
n
a
l
El
e
c
tri
c
a
l
In
su
latio
n
Co
n
f
e
re
n
c
e
(lNS
UCO
N),
Bir
m
in
g
h
a
m
,
P
ro
c
e
e
d
i
n
g
s,
p
p
.
4
6
-
5
1
,
M
a
y
2
0
1
3
[7
]
S
.
F
i
n
k
,
R.
M
u
e
ll
e
r,
M
.
N
o
e
,
V
.
Zw
e
c
k
e
r
a
n
d
H.
R.
Kim
,
"
W
it
h
sta
n
d
a
l
ter
n
a
ti
n
g
v
o
lt
a
g
e
o
f
li
q
u
id
n
it
ro
g
e
n
i
n
t
h
e
p
re
se
n
c
e
o
f
g
a
s
b
u
b
b
les
,
"
2
0
1
4
IEE
E
1
8
t
h
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Die
lec
tri
c
L
iq
u
id
s
(ICDL
)
,
Bled
,
2
0
1
4
,
p
p
.
1
-
4
[8
]
N.
Ha
y
a
k
a
w
a
,
S
.
Nish
im
a
c
h
i,
T
.
M
a
stu
o
k
a
,
H.
Ko
ji
m
a
,
M
.
Ha
n
a
i
a
n
d
H.
Ok
u
b
o
,
"
Bre
a
k
d
o
wn
c
h
a
r
a
c
ter
isti
c
s
a
n
d
size
e
ff
e
c
t
in
su
b
-
c
o
o
led
li
q
u
i
d
n
i
tro
g
e
n
,
"
2
0
1
4
IEE
E
1
8
th
I
n
tern
a
t
io
n
a
l
Co
n
f
e
re
n
c
e
o
n
Die
lec
tri
c
Li
q
u
i
d
s
(ICDL
)
,
Bled
,
2
0
1
4
,
p
p
.
1
-
4
[9
]
H.
P
rin
z
,
"
Ho
c
h
sp
a
n
n
u
n
g
sfe
ld
e
r
,
"
M
ü
n
c
h
e
n
:
R.
Ol
d
e
n
b
o
u
rg
V
e
rla
g
,
1
9
6
9
[1
0
]
O.
L
a
rib
i,
“
De
sig
n
a
n
d
o
p
ti
m
iza
ti
o
n
o
f
a
su
p
e
rc
o
n
d
u
c
ti
n
g
f
a
u
lt
c
u
rre
n
t
li
m
it
e
r
u
sin
g
n
u
m
e
ric
f
ield
c
a
lcu
latio
n
,
”
b
a
c
h
e
l
o
r
th
e
sis
,
Ka
rlr
u
h
e
I
n
stit
u
t
e
o
f
T
e
c
h
n
o
lo
g
y
(KI
T
),
In
stit
u
te
o
f
El
e
c
tri
c
En
e
rg
y
S
y
ste
m
s
a
n
d
Hig
h
-
Vo
lt
a
g
e
En
g
in
e
e
rin
g
(IE
H),
2
0
1
2
,
p
.
1
7
[1
1
]
G
.
Wan
g
,
Z.
Zh
e
n
g
,
D
.
Hu
a
n
g
,
Z.
Hu
a
n
g
,
J.
Ru
a
n
,
Y.
L
iao
,
"
S
i
m
p
li
f
ica
ti
o
n
stu
d
y
o
f
F
E
m
o
d
e
l
f
o
r
1
0
0
0
k
V
a
c
tran
sm
issio
n
li
n
e
in
su
lato
r
stri
n
g
v
o
lt
a
g
e
a
n
d
g
ra
d
in
g
rin
g
su
rf
a
c
e
e
le
c
tri
c
f
ield
d
istri
b
u
ti
o
n
c
a
lcu
latio
n
"
,
T
EL
KOM
NIKA
(
T
e
lec
o
mm
u
n
ica
ti
o
n
C
o
mp
u
t
in
g
El
e
c
tro
n
ics
a
n
d
Co
n
tr
o
l)
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
,
V
o
l.
1
2
,
No
.
2
,
F
e
b
.
2
0
1
4
,
p
p
.
1
1
8
8
~
1
1
9
5
[1
2
]
S
.
Zh
a
o
,
Y.
Zh
a
n
g
,
Z.
Ch
e
n
,
H.
Do
n
g
,
"
Ca
lcu
latio
n
o
f
e
lec
tri
c
f
i
e
ld
c
h
a
ra
c
teristics
o
f
in
su
lato
r
u
n
d
e
r
sa
n
d
sto
rm
c
o
n
d
i
ti
o
n
"
,
T
EL
KOM
NIKA
(
T
e
lec
o
mm
u
n
ica
ti
o
n
Co
mp
u
ti
n
g
El
e
c
tro
n
ics
a
n
d
C
o
n
tr
o
l)
I
n
d
o
n
e
s
ia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
,
Vo
l.
1
2
,
N
o
.
2
,
F
e
b
r
u
a
ry
2
0
1
4
,
p
p
.
1
1
6
9
~
1
1
7
6
[1
3
]
J.
Be
rrio
s,
"
T
h
e
C
h
a
rg
e
S
imu
la
ti
o
n
Pro
g
ra
m
,"
Us
e
r'
s M
a
n
u
a
l,
W
o
r
c
e
ste
r
P
o
ly
tec
h
n
ic In
stit
u
te
B
I
O
G
RAP
H
Y
O
F
AUTHO
R
S
tef
a
n
F
in
k
f
in
a
li
z
e
d
h
is
a
p
p
re
n
ti
c
e
sh
ip
f
o
r
e
lec
tri
c
a
l
p
o
w
e
r
a
p
p
a
ra
tu
s
in
1
9
8
8
a
n
d
re
c
e
iv
e
d
h
is
m
a
ste
r
d
e
g
re
e
in
e
lec
tri
c
a
l
e
n
g
i
n
e
e
rin
g
in
1
9
9
4
f
ro
m
Un
iv
e
rsit
y
o
f
Ka
rlsru
h
e
,
G
e
r
m
a
n
y
.
He
e
n
tere
d
th
e
I
n
stit
u
te
f
o
r
T
e
c
h
n
ica
l
P
h
y
sic
s
o
f
KI
T
in
1
9
9
5
a
n
d
is
p
r
e
se
n
tl
y
le
a
d
in
g
th
e
Cry
o
g
e
n
ic
Hig
h
V
o
l
tag
e
Lab
o
ra
to
ry
.
His
sp
e
c
ial
f
ield
s
o
f
in
tere
st
a
re
h
ig
h
v
o
lt
a
g
e
e
n
g
in
e
e
rin
g
o
f
c
r
y
o
g
e
n
ic
larg
e
s
y
ste
m
a
p
p
li
c
a
ti
o
n
s
li
k
e
f
u
sio
n
m
a
g
n
e
ts,
su
p
e
rc
o
n
d
u
c
ti
n
g
p
o
w
e
r
tra
n
s
m
is
sio
n
c
a
b
les
a
n
d
f
a
u
lt
c
u
rre
n
t
li
m
it
e
rs.
Evaluation Warning : The document was created with Spire.PDF for Python.