Internati
o
nal Journal
of App
lied Power E
n
gineering
(IJAPE)
Vol
.
3
,
No
. 1, Ap
ri
l
2
0
1
4
,
pp
.
9~
14
I
S
SN
: 225
2-8
7
9
2
9
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJAPE
Load
Fl
ow Anal
ysis for Process-
Tank Loading P
o
wer
Gen
e
ration Networ
ks Interconnection
Ra
dita
Ari
n
d
y
a
Saty
agama Univ
ersity
Jak
a
rta, In
donesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Aug 14, 2013
R
e
vi
sed Dec 7,
2
0
1
3
Accepte
d Ja
n
4, 2014
Establishment of
inter
c
onnection links between Process-Tan
k
Loadin
g
ele
c
tri
cal
ne
tworks
bring s
o
m
e
advant
ages
as
t
h
ere
are
exc
e
s
s
cap
aci
t
y
a
t
Process which can be utilized in
princi
ple to feed
Tank Load
ing.
Some result
of power s
y
s
t
em stud
y
will
be as
an inpu
t for oper
a
tion
a
l purposes.
Concerning Motor Starting Stud
ies and
Load Flow Studies and taking in
to
accoun
t th
at th
e transform
e
r
i
s
off load
tap
changing
, th
e b
e
st tapp
ing
position for Iso
l
ation
Transfor
mer is at -5%
(primar
y
side)
.
Th
e bes
t
techn
i
cal power
generation con
f
igurati
on is proposed with configuration 2
(two) Process -TEG and 1 (on
e
) Tank
Load
in
g-TEG running
with 2 (two)
inter
c
onnection
,
provided
with
appropria
te load
shedding s
y
stem. Bare in
m
i
nd that durin
g s
m
ooth powe
r
trans
f
er from
each P
r
oces
s
-
TEG which
requires 3 (thr
ee) Process-TEG running in
parallel,
there
is an is
sue on kA
capa
c
it
y
of Proc
ess switchgear
.
Existing s
e
tting
of prote
c
tion
re
l
a
y shal
l b
e
reviewed
accord
ing to
the result
of protection
co
ordination
stud
y
.
Keyword:
Loa
d
fl
ow anal
ysis
Network interco
nnection
Power gener
a
tio
n
Tank loading
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R
a
di
t
a
Ari
ndy
a
,
Satyagam
a University Ja
karta,
In
d
onesi
a.
Em
a
il: rad
itate
ch
@yah
oo
.com
1.
INTRODUCTION
The two electrical networks
at Proces
s -Ta
nk
Loa
d
ing are not inte
rconnected.
As Ta
nk
Loa
d
ing-
TEG power
ge
neration is less efficient and s
m
aller capacity
th
an
Pro
cess o
n
e
, it is
m
o
re ex
po
sed
to
trip
and
syste
m
in
stab
ility p
r
ob
lem
.
Th
erefore, electrical in
te
rcon
n
e
ctio
n
b
e
tween
Process -Tan
k Lo
ad
ing
to
in
crease
electrical n
e
two
r
k
stab
ility an
d
reliab
ility in
tan
k
l
o
ad
i
n
g an
d to
av
o
i
d
loss of pro
d
u
c
tion
wh
en
1
(on
e
) tank
lo
ad
ing-TEG i
s
un
av
ailab
l
e.
Th
e i
d
ea
o
f
i
n
terconn
ectio
n pro
cess-Tank
Lo
ad
i
n
g h
a
s b
e
en
p
u
tting
o
n
the tab
l
e
since Phase
#
1, but due t
o
Ta
nk L
o
adi
n
g s
w
itchgea
r
ratin
g, i
n
stead of
direct conn
ection
b
y
cab
le, isolatio
n
tran
sform
e
r shall b
e
in
serted
as fau
lt curren
t
li
m
i
ter.
Hen
c
e, th
e excess cap
acity at Pro
cess can b
e
u
tili
zed
in p
r
i
n
cip
l
e to
feed
Tan
k
Lo
ad
ing
.
Th
is
so
lu
tion
will im
p
r
o
v
e
t
h
e
p
r
o
cess
reliab
ility o
f
Tan
k
Lo
ad
ing
.
After Pro
cess-Tank
Load
ing
i
n
terconn
ection
com
p
l
e
t
i
on, de
com
m
i
ssi
oni
ng
t
w
o Ta
n
k
L
o
a
d
i
n
g TE
Gs i
s
f
o
resee
n
.
Pu
r
p
o
s
e of t
h
i
s
d
o
c
u
m
e
nt
are el
ect
ri
cal
po
we
r sy
st
em
st
udi
es
rega
r
d
i
n
g est
a
bl
i
s
h
m
ent
and sy
st
em
behavi
or
o
f
El
ect
ri
cal
In
t
e
rco
nnect
i
o
n
Sy
st
em
bet
w
ee
n P
o
wer
Pl
ant
t
h
r
o
u
g
h
i
s
ol
at
i
on t
r
ans
f
orm
e
r. T
h
e st
u
d
i
e
s are
com
p
r
i
sed as
f
o
l
l
o
wi
ng
L
o
ad
Fl
o
w
St
udy
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-87
92
IJA
P
E Vol
.
3
,
No
. 1, A
p
ri
l
20
14
:
9 – 14
10
B
a
sed
on
p
r
o
g
ress
m
eet
i
ng f
o
r
El
ect
ri
cal
Po
we
r Sy
st
e
m
St
udy
, case
s
an
d sce
n
a
r
i
o
s
ha
d
been
defi
ned
,
as
des
c
ri
be
d i
n
t
h
e
f
o
l
l
o
wi
n
g
cl
a
u
se
s.
2.
LOAD FLOW
T
h
e
r
e a
r
e te
n
ca
s
e
s
fo
r Lo
a
d
F
l
ow Study, s
u
mmarize as below:
LF Case:
Generator
Interconnec
t
ion
Event
Tank
Loading
Well
Line A
Line B
1
1
2
ON
ON
L
o
ading on + CSU On
2
1
2
ON
OFF
L
o
ading on + CSU On
3
1
3
ON
OFF
L
o
ading on + CSU On
4
1
3
ON
ON
L
o
ading on + CSU On
5
0
3
ON
OFF
L
o
ading on + CSU On
6
0
3
ON
ON
L
o
ading on + CSU On
7
2
2
ON
ON
L
o
ading on + CSU On
8
2
2
OFF
ON
L
o
ading on + CSU On
9
?
?
ON
ON
L
o
ading only
,
and
m
i
ni
m
u
m
gener
a
tion
10
3
0
ON
OFF
Star
t-
up Pr
ocess
TE
G,
with power
fr
o
m
Tank L
o
ading
Specific Limitati
on
and Ass
u
mpti
on
for e
a
ch
Study
L
oad
Fl
ow
St
udy
:
Gene
rat
i
o
n at
Pro
cess i
s
si
m
u
l
a
t
e
d as i
s
oc
hr
o
n
o
u
s (
s
wi
n
g
o
p
e
r
at
i
on m
ode
) a
nd
ge
ne
rat
i
on at
Ta
n
k
Loa
d
ing sim
u
lated as
5%
droop (voltage c
o
ntrol op
eration m
ode)
with
based l
o
ad set a
t
1.8M
W each
(v
ol
t
a
ge c
o
nt
r
o
l
ope
rat
i
o
n m
ode)
Al
l
Tra
n
sf
o
r
m
e
r i
s
e
n
er
gi
zed
fr
om
HV si
de
Tapp
ing
(
o
f
f
-
l
o
a
d tap ch
ang
e
r
)
of
in
ter
c
onnectio
n
tr
an
sf
ormer
ar
e
on
p
r
i
m
ar
y sid
e
(
o
r
PRO
C
ESS side)
as pe
r m
a
nufac
t
u
ri
n
g
dra
w
i
n
g
Fo
r Case#
1
0
,
lo
ad at Pr
o
cess
d
u
r
i
ng
b
l
ack star
t assu
m
e
at a
b
ou
t
4
00kW
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
APE
I
S
SN
:
225
2-8
7
9
2
Lo
ad
Fl
ow
An
al
ysi
s
f
o
r
Pr
oc
ess-T
ank
L
o
a
d
i
n
g
P
o
w
e
r
Gen
e
rat
i
o
n N
e
t
w
or
ks (
R
a
d
i
t
a
Ari
n
dya)
11
3.
LOA
D
AND
POWER BA
LA
NC
E
For
Pr
ocess
,
th
e final Po
we
r Balance fig
u
re
is base
d
o
n
t
h
e
l
a
t
e
st
obser
vat
i
on t
r
ou
g
h
DC
S m
oni
t
o
r at
Main
Con
t
ro
l Ro
o
m
, u
n
d
e
r t
h
e m
a
in
Op
eratio
n
a
l Office, fo
r
Tank
Lo
ad
i
n
g,
will u
s
ed ex
istin
g do
cu
m
e
n
t
atio
n
.
From
doc
um
ent
,
ge
nerat
i
o
n
and l
o
ad c
ons
um
pt
i
on of Ta
nk L
o
a
d
i
n
g an
d Pr
ocess a
r
e sum
m
ari
zed i
n
t
a
bl
e
bel
o
w:
Area Installed
Generat
o
r
Nor
m
al
Operation
Load
T
a
nk L
o
ading
6.
6 M
W
(
3x2.
2 MW
C
E
NTAUR
T
E
Gs)
2x
4.
7 M
W
Pr
ocess
27
M
W
(
3x9
M
W
M
A
RS T
E
G
s
)
2x
10
M
W
Tank
Lo
ad
ing lo
ad
of 4
.
7
M
W
is in
clu
d
in
g
ta
nk
er
load
ing
op
er
ation an
d
co
m
p
r
e
sso
r
r
unn
ing
.
Pro
cess l
o
ad
o
f
10
M
W
(
3
t
r
ai
ns
of
gas
t
u
r
b
i
n
e c
o
m
p
ress
or
, est
i
m
at
ed tot
a
l
1.
5
M
W).
Po
wer
co
ns
um
pt
i
o
n
o
f
Pr
ocess ex
cludes fu
tur
e
w
a
ter in
j
ecti
o
n pu
m
p
s), a
n
d sm
oke
less Nitro fla
r
e
(1M
W).
The P
r
oce
ss ge
nerat
i
o
n
has ca
paci
t
y
of
18 M
W
(
2
TE
Gs i
n
ope
rat
i
o
n).
Wi
t
h
t
o
t
a
l
Pr
ocess
l
o
ad
of
1
0
M
W
, at least
8
M
W
o
f
sp
are g
e
n
e
ration
cap
acity will be av
ailab
l
e at
PPA.
Hen
c
e, t
h
e ex
cess capacity at
Process i
n
principle can be
uti
lized to
feed T
a
nk L
o
adi
n
g.
Obser
v
a
t
i
o
n
o
n
L
o
ad
an
d P
o
w
er B
a
l
a
nce
at
Proce
s
s
The
o
b
ser
v
at
i
o
n
on
Pr
oces
s L
o
ad
an
d
Ge
ner
a
t
i
on:
Tabl
e
1:
Pr
oce
ss -
Loa
d
a
n
d
Po
wer B
a
l
a
nce
– c
u
rre
nt
o
p
e
r
at
i
o
n
Th
ere is a small d
i
screp
a
n
c
y b
e
t
w
een
to
tal lo
ad
and to
tal g
e
n
e
rat
i
o
n
,
as th
e ob
serv
ation
is
seq
u
ent
i
a
l
l
y
no
t
e
d fr
om
t
h
e fi
gu
re
di
spl
a
y
e
d
on t
h
e scree
n
of t
h
e DC
S
,
d
u
e
t
o
l
o
ad
fl
uct
u
at
i
on an
d acc
u
r
at
i
o
n
of the m
easure
m
ent syste
m
.
From
t
h
e hi
st
ori
cal
gra
p
h r
e
po
rt
fo
r a
m
ont
h peri
o
d
o
n
p
o
we
r ge
ner
a
t
i
on, s
h
o
w
e
d
t
h
at
3 (t
hree
)
gene
rators we
re runni
ng
with avera
g
e powe
r ge
neratio
n on each
gene
rat
o
r is a
bout 2.6-2.7M
W
(or about
30
%
of i
t
s
rat
e
d
po
we
r).
It
m
eans al
s
o
t
h
at
f
o
r
PP
A,
o
n
l
y
1
(
one
)
no
rm
al
ope
rat
i
n
g c
o
n
d
i
t
i
on i
s
occu
rre
d.
There
are
ot
he
r l
o
a
d
s
whi
c
h
not
ru
n
n
i
n
g cu
rre
nt
l
y
(l
i
k
e gl
y
c
ol
reb
o
i
l
e
r);
t
h
eref
o
r
e f
o
r t
h
e pu
r
pose
o
f
sim
u
l
a
t
i
on o
f
Loa
d
Fl
ow
, 1
0
M
W
fi
gu
re
wi
l
l
be us
ed
, i
n
st
ead
of
7.
8M
W
(wi
t
h s
o
m
e
fact
or a
p
pl
i
e
d f
o
r eac
h
g
l
yco
l
rebo
iler lo
ad). Hen
ce,
t
h
e fin
a
l
lo
ad
a
n
d power bala
nce
of PROCE
SS as
follow:
Calc
K
W
K
V
A
P (K
W)
Q (K
Var)
Util
(
%
)
Load
at PPA :
1K
-4550
L
P
B
oostr 800K
W
800
77
1
445
96%
1K
-4820
Refrg. Compr. Trai
n A
-
1
900K
W
1
,900
1,44
2
580
76%
1K
-4920
Refregrant Comp
. Tr
a
i
n B
- 1900K
W
1,900
1,34
3
537
71%
1K
-5020
S
t.by
refrigernt Comp - 1
900K
W
1,900
1,44
2
580
76%
TR-9250A
Loa
d 1-LV
-SB
-
100
bus A
2
,500
25
3
63
10%
TR-9260A
Loa
d 1-LV
-SB
-
101
bus A
2
,500
14
8
140
8%
TR-9250B
Loa
d 1-LV
-SB
-
100
bus B
2
,500
36
4
275
18%
TR-9260B
Loa
d 1-LV
-SB
-
101
bus B
2
,500
26
2
112
11%
6
-
HV
-SB
10
0 A
1
,24
4
417
6
-
HV
-SB
10
0 B
5
5
0
443
TOTA
L LOA
D
7,819
Generation at PPA :
1-G-925
0-C
G
as Turbi
ne Gen
e
rator C - 9MW
9
,000
1
1
,250
2,60
6
1,225
29%
1-G
-
9250-A
G
as Turbine G
enerator A
- 9MW
9
,000
1
1
,250
2,65
5
1,142
30%
1-G
-
9250-B
G
as Turbine G
enerator B
- 9MW
9
,000
1
1
,250
2,65
4
1,269
29%
TOT
A
L GENER
A
TION
7,915
SPIN
N
ING
RE
SER
VE
(
2 GTG
)
10,08
5
SPIN
N
ING
RE
SER
VE
(
3 GTG
)
19,08
5
TA
G #
D
esignat
i
on
Ra
ted
O
b
ser
vation
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-87
92
IJA
P
E Vol
.
3
,
No
. 1, A
p
ri
l
20
14
:
9 – 14
12
Tabl
e
2:
PR
O
C
ESS -
L
o
ad
a
n
d
P
o
we
r B
a
l
a
nce
- f
o
r si
m
u
lat
i
on
pu
r
pose
Load
and
Power Balance
at Tank L
o
ading
Lo
ad
and
Power Balan
ce at Tank
Lo
ad
ing will b
e
b
a
sed o
n
ex
isting
,
wh
ich
subj
ect to
d
i
fferen
t
o
p
e
ration
scenario
, wh
ich are:
Lo
ad
ing
Op
eratio
n
: 4
,
7
0
8
KW to
t
a
l lo
ad
No Lo
ad
i
n
g Op
eration
:
3
,
508
KW to
tal lo
ad
Lo
ad
ing
Op
eratio
n
an
d
CSU Co
m
p
ressor Off
: 4
,
1
6
8
KW
t
o
tal
lo
ad
No Lo
ad
i
n
g Op
eration
and
C
o
m
p
ressor
Off
: 2
,
9
6
8
KW to
t
a
l lo
ad
In g
e
n
e
ral, fo
r
th
e purpo
se
of
si
m
u
latio
n
of Lo
ad
Fl
o
w
, 4
.
7M
W
fi
g
u
re will
b
e
u
s
ed
.
Load and
Power Balance
after
Int
erc
onnection Proc
es
s-Ta
nk Loa
d
ing
Fr
o
m
th
e
r
e
sult o
f
Lo
ad
Flo
w
Stud
y, th
e br
ief
Lo
ad
an
d Po
w
e
r
Bal
a
n
ce af
ter
i
n
ter
c
onn
ecti
on
Pro
cess-
Tan
k
Loa
d
i
n
g ca
n
b
e
sh
ow
n
o
n
t
a
b
l
e bel
o
w:
Calc
K
W
K
V
A
P (K
W)
Q (K
Var)
Util
(
%
)
Load
at PPA :
1K
-4550
L
P
B
oostr 800K
W
800
77
1
445
96%
1K
-4820
Refrg. Compr. Trai
n A
-
1
900K
W
1
,900
1,44
2
580
76%
1K
-4920
Refregrant Comp
. Tr
a
i
n B
- 1900K
W
1,900
1,34
3
537
71%
1K
-5020
S
t.by
refrigernt Comp - 1
900K
W
1,900
1,44
2
580
76%
TR-9250A
Loa
d 1-LV
-SB
-
101
bus A
2
,500
25
3
63
10%
TR-9250B
Loa
d 1-LV
-SB
-
101
bus B
2
,500
36
4
275
18%
TR-9260A
Loa
d 1-LV
-SB
-
100
bus A
2
,500
14
8
140
8%
TR-9260B
Loa
d 1-LV
-SB
-
100
bus B
2
,500
26
2
112
11%
6-HV-S
B
-
100 A
1
,24
4
417
6-HV-S
B
-
100 B
5
5
0
443
TOTA
L LOA
D
7,819
Additional Load to be considered at PPA :
1-H-520G
Glycol Reboi
ler 1-H-520G
1,000
73
0
73%
1-H-540G
Glycol Reboi
ler 1-H-540G
1,000
73
0
73%
6-H-970G
Glycol Reboi
ler 6-H-970G
1,000
73
0
73%
TOTA
L LOA
D
(
incl. GLYCOL REBOIL
ER
)
10,00
9
Generation at PPA :
1-G-925
0-C
G
as Turbi
ne Gen
e
rator C - 9MW
9
,000
1
1
,250
2,60
6
1,225
29%
1-G
-
9250-A
G
as Turbine G
enerator A
- 9MW
9
,000
1
1
,250
2,65
5
1,142
30%
1-G
-
9250-B
G
as Turbine G
enerator B
- 9MW
9
,000
1
1
,250
2,65
4
1,269
29%
TOT
A
L GENER
A
TION
7,915
SPIN
N
ING
RE
SER
VE
(
2 GTG
)
7,99
1
SPIN
N
ING
RE
SER
VE
(
3 GTG
)
16,99
1
TA
G #
D
esignat
i
on
Ra
ted
O
b
ser
vation
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
APE
I
S
SN
:
225
2-8
7
9
2
Lo
ad
Fl
ow
An
al
ysi
s
f
o
r
Pr
oc
ess-T
ank
L
o
a
d
i
n
g
P
o
w
e
r
Gen
e
rat
i
o
n N
e
t
w
or
ks (
R
a
d
i
t
a
Ari
n
dya)
13
Table
3: L
o
ad
and Powe
r Bal
a
nce a
f
ter
I
n
terco
n
n
ection
PPA
-
T
AN
K LOAD
IN
G
4.
LOAD FLOW STUDIES
There
w
e
re
fe
w st
udi
es
re
ga
rdi
n
g
L
o
ad
Fl
ow
o
n
Pr
oces
s -Ta
n
k L
o
a
d
i
n
g
i
n
t
e
rc
o
nnec
t
i
on
bef
o
re
project exec
ution
,
Th
is Load
Flow Stud
y resu
lt will co
nfir
m
th
e ab
ov
e stud
ies, subj
ect to so
me
reco
mm
en
d
a
tio
n
s
. Th
e resu
lt o
f
Lo
ad
Flow will b
e
u
s
ed
as referen
ce
for o
p
e
ratio
nal p
u
rpo
s
e su
ch
as settin
g
o
f
Tap po
sition fo
r
t
h
e
I
n
ter
c
on
n
ection
Tr
an
sf
or
m
e
r
.
Summ
a
ry of
Load
Flow
Studies
Tabl
e 4:
S
u
m
m
a
ry
of Loa
d
Fl
ow
St
u
d
i
e
s
Simulation
Calc
TLA
PCK
Prod
uced
[MW
]
(stu
dy
)
S
p
inning
Reserv
e
PPA
(study
)
TL
A
(stud
y
)
1
1
2
20.2
14.8
1
2
5
.388
TLA
Loading
On +
CSU O
n
10.07
6
4
.73
6
2
1
2
20.2
14.8
1
8
5
.382
TLA
Loading
On +
CSU O
n
10.07
7
4
.74
1
3
1
3
29.2
14.8
1
4
14.386
TLA
Loading
On +
CSU O
n
10.07
2
4
.74
2
4
1
3
29.2
14.8
1
1
14.389
TLA
Loading
On +
CSU O
n
10.07
3
4
.73
8
5
0
3
2
7
14.9
0
4
12.096
TLA
Loading
On +
CSU O
n
10.07
6
4
.82
8
6
0
3
2
7
14.8
4
1
12.159
TLA
Loading
On +
CSU O
n
10.07
7
4
.76
4
7
2
2
22.4
14.7
7
4
7
.626
TLA
Loading
On +
CSU O
n
10.07
6
4
.69
8
8
2
2
22.4
14.7
7
0
7
.630
TLA
Loading
On +
CSU O
n
10.07
6
4
.69
4
9
0
2
1
8
14.0
3
2
3
.968
Loadin
g
only (CSU off,
incl. its Util
ities)
10.07
6
3
.95
6
10
3
0
6.6
5
.1
12
1.488
PPA
Blac
k
S
t
art w/
about
400kW l
oad and
power from
TLA
0.408
4.70
4
No
LOAD [MW]
Ev
ent
Gen
e
rator
TOTAL
Gen
[MW]
TLA
PC
K Line
A
L
ine
B
PPA
(s
tu
d
y
)
TL
A
(st
u
dy
)
HV S
B
(P
P
A
)
HVS 1
1
(T
LA)
11
2
O
N
O
N
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
76
4.
736
9
9
.9
5%
1
0
0
.
00
%
-
2.
5% Ta
p o
n
TX 2-
1
/
2
21
2
O
N
O
F
F
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
77
4.
741
9
9
.9
5%
98
.58
%
-
2
.
5
% Ta
p o
n
TX 2-
1
31
3
O
N
O
F
F
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
72
4.
742
9
9
.9
7%
98
.60
%
-
2
.
5
% Ta
p o
n
TX 2-
1
41
3
O
N
O
N
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
73
4.
738
9
9
.9
7%
1
0
0
.
00
%
-
2.
5% Ta
p o
n
TX 2-
1
/
2
50
3
O
N
O
F
F
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
76
4.
828
9
9
.9
6%
99
.01
%
-
5
%
Ta
p on TX
2
-
1
60
3
O
N
O
N
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
77
4.
764
9
9
.9
6%
99
.48
%
-
2
.
5
% Ta
p o
n
TX 2-
1
/
2
72
2
O
N
O
N
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
76
4.
698
9
9
.9
6%
99
.12
%
0
%
T
ap
on
TX 2
-
1/2
82
2
O
F
F
O
N
T
L
A
Lo
ad
in
g O
n
+
CSU
On
1
0
.0
76
4.
694
9
9
.9
6%
98
.26
%
0
%
T
ap
on
TX 2
-
1/2
90
2
O
N
O
N
L
oad
in
g
on
ly (
C
SU o
ff,
in
cl
. it
s Uti
lit
ie
s)
1
0
.0
76
3.
956
9
9
.9
5%
1
0
0
.
00
%
-
2.
5% Ta
p o
n
TX 2-
1
/
2
10
3
0
ON
OFF
PPA Blac
k
Sta
r
t w
/
a
bou
t
400
k
W
lo
ad
a
nd
po
wer
fr
om
TL
A
0
.
4
0
8
4
.
704
9
9
.4
7%
1
0
0
.
00
%
0
% T
ap
on
TX 2
-
1
No
V lev
e
l
(
%
)
L
O
AD [MW]
Eve
n
t
I
n
terc
onn
Li
ne
s
Re
m
a
rk
for
Tr
ans
f
ormer
Tapping
Position
Gene
ra
to
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-87
92
IJA
P
E Vol
.
3
,
No
. 1, A
p
ri
l
20
14
:
9 – 14
14
5.
C
O
N
C
L
U
S
ION
A
N
D
R
E
COMM
ENDATION
Fr
o
m
th
e tab
l
e#
4 abov
e,
pr
elim
ininary concl
u
sion a
r
e as
follows:
Pro
cess-
Tan
k
Loa
d
i
n
g i
n
t
e
rc
on
nect
i
o
n t
h
r
o
ug
h i
s
ol
at
i
n
g
t
r
ans
f
orm
e
r sh
o
w
n
bet
t
e
r
pe
rf
orm
a
nce o
f
o
v
e
ral
l
syste
m
, su
ch
as: b
e
tter v
o
ltage reg
u
l
ation
,
mo
re flex
ib
ility i
n
term o
f
n
u
m
b
e
rs
o
f
g
e
n
e
rat
i
o
n
ru
n
esp
eciall
y
on
Ta
nk
Loa
d
i
n
g
si
de
Ope
r
at
i
o
n of M
K
-
6
6
1
0
C
S
U
(st
eady
st
at
e) doe
s not
r
e
qu
ire all 3
(
t
h
r
ee)
Tank
Lo
ad
i
n
g
-
TEG
ru
nn
ing
Opt
i
m
al
t
a
ppi
n
g
of
Is
ol
at
i
o
n
Tran
sf
orm
e
r i
s
at
+2.
5
%
Tap
(o
n
pri
m
ary
si
de)
M
a
xi
m
u
m
vol
t
a
ge
dr
o
p
occu
r
r
ed
i
n
case
#
5,
t
h
eref
o
r
e a
d
j
u
s
t
m
e
nt
on t
a
p
p
i
n
g
t
o
+
5
%
Ta
p i
s
req
u
i
r
e
d
,
but
su
bj
ect to
Off
Lo
ad
Tap Ch
an
g
e
r, tap
p
i
n
g
p
o
s
ition
m
u
st b
e
d
eci
d
e
d
at +2
.5
% Tap
or +5
% (on
pri
m
ary
side)
M
i
nim
u
m
generat
i
on c
o
n
f
i
g
urat
i
o
n (
w
i
t
h
Tan
k
Loa
d
i
n
g
on L
o
a
d
i
n
g o
n
l
y
ope
rat
i
o
n
)
achi
e
ve by
r
u
nni
n
g
onl
y
2 (t
wo
)
TEG at
Pr
oce
ss wi
t
h
spi
nni
ng
reser
v
e 3
.
9
68M
W, s
o
m
o
re ec
on
om
i
c
ope
rat
i
on ca
n be
achieve
d
Tech
ni
cal
l
y
, t
h
e best
ge
ne
rat
i
on c
o
nfi
g
u
r
at
i
on i
s
2
(t
w
o
)
P
P
A-
TEG
an
d
1
(o
ne)
Tan
k
L
o
adi
n
g
-
TE
G.
,
wi
t
h
ei
t
h
er 2 or 1
i
n
t
e
rco
nnect
i
o
n
l
i
nk
Th
e m
o
st reliab
l
e g
e
n
e
ratio
n con
f
i
g
uratio
n is 2
(t
w
o
)
PP
A-T
E
G a
n
d
2
(tw
o
)
Tan
k
L
o
adi
n
g
-
TE
G,
with
ei
t
h
er 2 or 1
i
n
t
e
rco
nnect
i
o
n
l
i
nk
D
u
r
i
ng
Pro
cess star
t up
u
s
i
n
g
p
o
w
e
r
fro
m
Ta
n
k
Lo
ad
i
n
g, all 3
(
t
hr
ee) Tank Lo
ad
ing
-
TEG
sh
all ru
n
REFERE
NC
ES
[1]
W
illiam
D.
Stev
enson, Jr.
Analisis Sistem Tenaga
Listrik
, Penerb
it Erlangga, 1993
.
[2]
P.
Van Harten
(
S
etiawan)
.
Insta
l
asi Listrik
Arus Kuat J
ilid
1,2
,
3
,
Penerbit Bina Cipta, 1992.
[3]
A.
N.
Afandi.
EDSA : So
ftware Aplikasi Tenaga L
i
strik
, Penerbit
Graha Ilmu 201
0.
Evaluation Warning : The document was created with Spire.PDF for Python.