I
nte
rna
t
io
na
l J
o
urna
l o
f
Appl
ied P
o
w
er
E
ng
ineering
(
I
J
AP
E
)
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
201
5
,
p
p
.
7
0
~
76
I
SS
N:
2252
-
8792
70
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
APE
Inv
estig
a
tion o
f
D
ependen
t
Ri
k
i
ta
ke Sys
te
m
to Initia
tion Point
*
Yo
us
o
f
G
ho
lip
o
ur,
*
*
A
m
in
Ra
m
ez
a
ni
,
*
*
*
M
a
h
m
o
o
d M
o
la
*
De
p
a
rtm
e
n
t
o
f
El
e
c
tri
c
a
l
En
g
.
,
M
e
h
riz
Bra
n
c
h
.
Isla
m
ic
A
z
a
d
Un
i
v
e
rsit
y
.
M
e
h
riz.Iran
.
*
*
De
p
a
rtm
e
n
t
o
f
El
e
c
tri
c
a
l
En
g
.
,
F
a
c
u
lt
y
o
f
En
g
.
,
T
a
rb
iat
M
o
d
a
rre
s Un
iv
e
rsit
y
.
T
e
h
ra
n
,
Ira
n
*
*
*
De
p
a
rtm
e
n
t
o
f
El
e
c
tri
c
a
l
En
g
.
,
Un
iv
e
rsity
o
f
A
.
A
.
Bo
ro
u
jer
d
i,
Bo
ro
u
jerd
,
Ira
n
.
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
M
ei
2
,
2
0
1
5
R
ev
i
s
ed
J
un
1
0
,
2
0
1
5
A
cc
ep
ted
J
u
l
2
3
,
2
0
1
5
In
th
is
p
a
p
e
r
w
e
in
v
e
stig
a
t
e
d
e
p
e
n
d
in
g
o
f
th
e
Rik
it
a
k
e
s
y
ste
m
t
o
in
it
iati
o
n
p
o
i
n
t,
a
n
d
m
o
n
it
o
r
c
h
a
n
g
in
g
b
e
h
a
v
io
r
o
f
th
is
s
y
ste
m
.
We
w
i
ll
h
a
v
e
4
in
it
iati
o
n
p
o
in
ts
i
n
Ca
rtes
ian
sy
ste
m
.
W
e
a
t
4
p
o
siti
o
n
s,
w
il
l
m
o
n
it
o
r
b
e
h
a
v
io
r
o
f
th
is
s
y
ste
m
,
w
h
il
e
h
o
ld
i
n
g
c
o
n
sta
n
t
o
t
h
e
r
v
a
lu
e
s,
a
n
d
a
f
ter
p
e
r
p
o
siti
o
n
,
w
il
l
d
ra
w
o
p
e
ra
ti
o
n
o
f
s
y
ste
m
o
n
a
x
e
s
o
f
x
,
y
,
z
a
n
d
3
-
D
p
lo
t
.
W
e
w
a
n
t
to
k
n
o
w
,
w
h
a
t
is
th
e
e
ff
e
c
t
o
f
in
it
iatio
n
p
o
in
t
o
n
Rik
it
a
k
e
s
y
ste
m
?
Nu
m
e
ric
a
l
sim
u
latio
n
s
to
il
l
u
stra
te
th
e
e
f
fe
c
t
o
f
in
it
iatio
n
p
o
in
t
a
re
p
re
se
n
ted
,
a
n
d
a
t
th
e
e
n
d
c
o
n
c
lu
sio
n
s an
d
c
o
m
p
a
rin
g
t
h
e
sta
tes
to
g
e
th
e
r
a
re
o
b
tai
n
e
d
.
K
ey
w
o
r
d
:
C
h
ao
s
Dep
en
d
en
t
.
I
n
itiatio
n
p
o
in
t
R
ik
itak
e
s
y
s
te
m
Sin
u
s
o
id
Stab
ilit
y
Co
p
y
rig
h
t
©
2
0
1
5
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Yo
u
s
o
f
G
h
o
lip
o
u
r
,
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
E
n
g
i
n
e
er
in
g
,
Isla
m
ic
A
z
a
d
Un
iv
e
rsit
y
,
M
e
h
riz Bran
c
h
,
M
e
h
riz.Iran
.
E
m
ail
:
y
.
g
h
o
lip
o
u
r
@
y
a
h
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
A
t
th
e
f
ir
s
t,
I
w
a
n
t
to
e
x
p
lai
n
,
t
h
e
p
h
y
s
ic
s
r
u
les
b
e
h
in
d
o
f
R
ik
itak
e
s
y
s
te
m
f
o
r
m
o
r
e
a
n
d
b
etter
u
n
d
er
s
ta
n
d
in
g
b
eh
a
v
io
r
o
f
R
i
k
ita
k
e
s
y
s
te
m
.
T
h
e
R
i
k
ita
k
e
s
y
s
te
m
is
a
m
ath
e
m
atica
l
m
o
d
e
l
th
at
o
b
tain
ed
f
r
o
m
a
s
i
m
p
le
m
ec
h
an
ica
l
s
y
s
te
m
th
at
it
u
s
ed
b
y
R
i
k
ita
k
e
(
Den
is
d
e
C
ar
v
al
h
o
B
r
ag
a
et
al.
,
2
0
1
0
)
to
s
tu
d
y
t
h
e
r
ev
er
s
als o
f
t
h
e
E
ar
th
’
s
m
a
g
n
e
tic
f
ield
.
T
h
is
s
y
s
te
m
m
ad
e
f
r
o
m
t
w
o
m
a
g
n
etic
d
is
k
s
(
D
1
,D
2
)
an
d
t
w
o
s
h
a
f
ts
a
n
d
t
w
o
co
ils
(L
1
,
L
2
)
s
ee
Fig
u
r
e
1
.
T
h
is
s
y
s
te
m
r
u
n
b
y
a
n
ex
ter
n
al
p
o
w
er
s
u
p
p
l
y
o
n
t
w
o
b
r
u
s
h
e
s
(
ter
m
i
n
als)
f
o
r
a
m
o
m
en
t
(
f
o
r
s
tar
t
a
f
ter
s
tar
tin
g
th
e
s
y
s
te
m
p
o
w
er
s
u
p
p
l
y
w
ill
d
is
co
n
n
ec
t)
an
d
th
e
s
y
s
te
m
w
i
ll
b
e
r
u
n
.
T
h
e
r
e
is
a
G
f
o
r
b
o
th
co
n
d
u
cti
n
g
d
is
k
s
(
D
1
,D
2
)
B
o
th
d
is
k
s
r
o
tate
in
th
e
s
a
m
e
s
e
n
s
e,
o
n
e
w
it
h
an
an
g
u
lar
v
elo
ci
t
y
o
f
ω
1
ar
o
u
n
d
th
e
ax
is
o
f
r
o
tatio
n
A
1
an
d
t
h
e
o
t
h
er
w
it
h
a
n
g
u
lar
v
elo
cit
y
ω
2
ar
o
u
n
d
t
h
e
a
x
is
o
f
r
o
tatio
n
A
2
.
An
d
t
h
er
e
is
to
o
t
w
o
I
1
an
d
I
2
th
at
t
h
e
s
e
m
ad
e
f
r
o
m
L
1
a
n
d
L
2
t
h
e
co
ils
th
e
cr
o
s
s
co
n
n
ec
t
to
D
2
a
n
d
D
1
t
h
e
cu
r
r
en
ts
i
n
co
ils
ca
u
s
e
a
m
ag
n
etic
f
ield
t
h
at
it
i
s
o
p
p
o
s
ite
t
h
e
m
a
g
n
etic
f
ield
o
f
d
is
k
s
(
D
1
,
D
2
)
T
h
e
o
p
p
o
s
itio
n
w
as
s
o
co
n
ti
n
u
ed
u
n
ti
l
th
e
cu
r
r
en
ts
i
n
t
w
o
lo
o
p
s
L
1
an
d
L
2
b
e
r
ev
er
s
e
t
h
is
r
ev
er
s
al
in
cu
r
r
en
ts
m
ea
n
s
th
a
t
th
e
m
a
g
n
et
ic
f
ield
(
e
m
f
)
o
f
ea
r
th
b
e
r
ev
er
s
al.
T
h
is
p
r
o
ce
d
u
r
e
h
ap
p
en
s
f
o
r
m
a
g
n
etic
f
ield
o
f
t
h
e
ea
r
t
h
b
u
t
w
i
th
o
u
t
co
n
tr
o
l
an
d
a
n
y
p
r
ed
ictio
n
th
is
p
r
o
ce
d
u
r
e
ca
lled
ch
ao
s
.
C
h
ao
s
I
s
v
er
y
s
e
n
s
it
iv
e
to
in
i
tiatio
n
p
o
in
t.
T
h
is
s
y
s
te
m
u
n
d
er
p
ar
ticu
lar
in
itia
l c
o
n
d
itio
n
s
th
i
s
p
r
o
ce
s
s
b
ec
o
m
e
s
ch
ao
tic.
(
Ah
m
ad
Har
b
,
Nab
il Ay
o
u
b
,
2
0
1
3
)
.
Ma
n
y
w
o
r
k
s
h
av
e
d
e
s
cr
ib
ed
th
e
d
y
n
a
m
ics
o
f
R
i
k
ita
k
e
s
y
s
te
m
.
Hi
s
to
r
icall
y
E
.
C
.
B
u
llar
d
h
a
s
d
escr
ib
ed
th
e
m
a
g
n
etic
f
ield
o
f
th
e
ea
r
th
,
a
n
d
to
o
d
escr
ib
ed
th
e
b
eh
a
v
io
r
o
f
ea
r
t
h
’
s
m
a
g
n
et
ic
f
ield
an
d
it
s
s
i
m
u
lat
io
n
s
.
He
t
h
e
n
i
n
1
9
5
5
th
e
s
i
m
ilar
b
e
h
av
io
r
b
et
w
ee
n
a
s
et
o
f
h
o
m
o
g
e
n
eo
u
s
d
y
n
a
m
o
s
a
n
d
ter
r
estrial
m
ag
n
eti
s
m
an
d
d
escr
ib
ed
th
e
s
tab
ilit
y
o
f
a
h
o
m
o
p
o
lar
d
y
n
a
m
o
(
L
i
u
Xiao
-
J
u
n
,
et.
al,
1
9
9
9
)
,
an
a
ly
ze
d
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
I
n
ve
s
tig
a
tio
n
o
f D
e
p
en
d
e
n
t R
ikita
ke
S
ystem
to
I
n
itia
tio
n
P
o
i
n
t
(
Yo
u
s
o
f G
h
o
lip
o
u
r
)
71
d
y
n
a
m
ics
o
f
t
h
e
R
i
k
ita
k
e
s
y
s
t
e
m
to
d
escr
ib
e
t
h
e
r
ev
er
s
als
o
f
t
h
e
E
ar
th
’
s
m
ag
n
etic
f
ie
ld
.
T
h
e
y
co
n
cl
u
d
ed
th
at
th
e
ch
ao
tic
b
e
h
av
io
r
o
f
th
e
s
y
s
te
m
ca
n
b
e
u
s
ed
f
o
r
s
i
m
u
lati
o
n
th
e
g
eo
m
a
g
n
etic
f
ield
r
ev
e
r
s
al.
.
T
h
e
R
ik
ita
k
e
ch
ao
tic
attr
ac
to
r
w
a
s
s
t
u
d
ied
b
y
s
ev
er
al
au
t
h
o
r
s
(
T
.
Mc
Mille
n
,
1
9
9
9
)
an
d
(
Mo
h
a
m
m
ad
J
av
id
i,e
t a
l.,
2
0
1
3
)
h
as
s
tu
d
ied
th
e
s
h
ap
e
an
d
d
y
n
a
m
ics
o
f
t
h
e
R
i
k
ita
k
e
attr
ac
t
o
r
.
(
J
.
L
lib
r
e
.
et
al.
,
2
0
0
9
)
u
s
ed
th
e
P
o
in
ca
r
e
co
m
p
ac
ti
f
icat
io
n
to
s
t
u
d
y
th
e
d
y
n
a
m
ics
o
f
t
h
e
R
ik
i
tak
e
s
y
s
te
m
a
t
in
f
i
n
it
y
.
C
h
ie
n
-
C
h
i
h
C
h
e
n
et
al.
h
a
v
e
s
tu
d
ied
t
h
e
s
to
ch
a
s
tic
r
eso
n
an
ce
in
t
h
e
p
er
io
d
icall
y
f
o
r
ce
d
R
ik
itak
e
d
y
n
a
m
o
.
(
C
h
ien
-
C
h
i
h
C
h
e
n
et
al.
,
2
0
0
7
)
I
n
th
e
p
a
s
t
y
ea
r
s
,
m
a
n
y
s
cie
n
ti
s
ts
ar
e
w
o
r
k
i
n
g
o
n
co
n
tr
o
l
th
e
ch
ao
tic
b
eh
a
v
io
r
s
.
Har
b
an
d
H
ar
b
h
av
e
d
esi
g
n
ed
a
n
o
n
li
n
e
ar
co
n
tr
o
ller
to
co
n
tr
o
l
th
e
ch
ao
tic
b
eh
a
v
io
r
in
th
e
p
h
ase
-
lo
ck
ed
lo
o
p
b
y
m
ea
n
s
o
f
n
o
n
li
n
ea
r
co
n
tr
o
l
(
Har
b
an
d
Har
b
,
2
0
0
7
)
.
A
h
m
a
d
Har
b
h
av
e
d
esig
n
ed
a
co
n
tr
o
ller
to
co
n
tr
o
l th
e
u
n
s
tab
le
c
h
a
o
tic
o
s
cillatio
n
s
b
y
m
ea
n
s
o
f
b
ac
k
s
tep
p
in
g
m
e
t
h
o
d
(
Ah
m
ad
Har
b
,
B
ass
a
m
Har
b
,
2
0
0
4
)
.
T
h
e
m
o
d
er
n
n
o
n
lin
ea
r
t
h
eo
r
y
f
o
r
b
if
u
r
ca
tio
n
h
as
b
ee
n
d
is
cu
s
s
e
d
an
d
ch
ao
s
th
eo
r
y
w
as
u
s
ed
to
in
v
es
tig
a
ted
d
y
n
a
m
ics
o
f
th
e
R
i
k
ita
k
e
s
y
s
te
m
an
d
an
eq
u
atio
n
w
a
s
f
o
u
n
d
th
at
w
as
th
e
s
a
m
e
a
s
t
h
e
m
at
h
e
m
atica
l
m
o
d
el
o
f
t
h
e
L
o
r
en
z
s
y
s
te
m
(
Ah
m
ad
Har
b
,
Nab
il
Ay
o
u
b
,
2
0
1
3
)
T
h
e
s
y
n
ch
r
o
n
izatio
n
f
o
r
c
h
ao
tic
o
f
R
ik
itak
e
s
y
s
te
m
w
a
s
s
t
u
d
ied
b
y
s
e
v
er
al
au
th
o
r
s
.
(
Mo
h
a
m
ad
A
li
k
h
a
n
,
2
0
1
2
)
a
n
d
(
C
ar
lo
s
A
g
u
ilar
-
I
b
añ
ez
,
2
0
1
0
)
an
d
(
U.
E
.
Vin
ce
n
t,
2
0
1
1
)
,
(
Yo
u
s
o
f
G
h
o
lip
o
u
r
an
d
Ma
h
m
o
o
d
m
o
u
la,
2
0
1
4
)
I
n
v
e
s
tig
a
ted
s
tab
ilit
y
o
f
R
i
k
it
ak
e
s
y
s
te
m
w
it
h
c
h
a
n
g
i
n
g
t
h
e
r
esis
ta
n
ce
w
ir
e
s
o
f
s
y
s
te
m
.
I
n
t
h
is
p
ap
er
w
e
s
u
p
p
o
s
e
t
h
at
th
e
all
s
it
u
atio
n
s
an
d
v
al
u
es
ar
e
co
n
s
tan
t,
an
d
w
e
c
h
a
n
g
e
in
i
tiatio
n
p
o
in
t E
(
x
0
,y
0
,z
0
)
,
an
d
co
m
p
ar
e
s
tates o
f
s
y
s
te
m
in
d
i
f
f
er
e
n
t p
o
in
ts
.
2.
M
O
DE
L
I
N
G
AN
D
ANA
L
Y
SI
S
Fig
u
r
e
1
.
T
h
e
R
ik
ita
k
e
d
y
n
a
m
o
is
co
m
p
o
s
ed
o
f
t
w
o
d
is
k
d
y
n
a
m
o
s
co
u
p
led
to
o
n
e
an
o
th
er
.
T
h
e
m
at
h
e
m
atica
l
m
o
d
el
o
f
s
y
s
te
m
i
s
as
f
o
llo
w
s
:
y
x
z
x
a
z
uy
y
zy
ux
x
1
'
'
'
(
1
)
W
h
er
e
(
x
,
y
,
z)
R
3
ar
e
th
e
s
tate
v
ar
iab
le
s
an
d
a,
u
>
0
p
ar
am
eter
s
ar
e
p
o
s
itiv
e.
No
te
th
at
t
h
e
m
at
h
e
m
a
tical
m
o
d
el
o
f
R
ik
i
ta
k
e
s
y
s
te
m
i
s
a
q
u
ad
r
atic
s
y
s
te
m
i
n
R
3
.
T
h
e
c
h
o
ice
v
al
u
e
o
f
t
h
e
p
ar
a
m
eter
s
a
a
n
d
u
r
ef
lect
s
a
p
h
y
s
ical
m
ea
n
in
g
i
n
th
e
R
i
k
ita
k
e
m
o
d
el.
I
t
is
w
ell
k
n
o
w
n
t
h
at
s
y
s
te
m
(
1
)
h
as
t
w
o
eq
u
il
ib
r
iu
m
p
o
in
t
s
E
+
=
(
x
0
,
y
0
,
z
0
)
;
E
-
=
(
−
x
0
,−y
0
,
z
0
)
I
n
o
r
d
er
t
o
s
tu
d
y
t
h
e
s
tab
ilit
y
o
f
E
±
,
it is
o
n
l
y
s
u
f
f
icien
t to
s
tu
d
y
th
e
s
tab
ilit
y
o
f
t
h
e
eq
u
ilib
r
iu
m
p
o
in
t E
+
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
2
0
1
5
:
70
–
76
72
u
u
a
a
Z
u
a
a
u
Y
u
u
a
a
X
2
2
4
2
2
4
2
2
2
2
4
2
(
2
)
W
h
er
e:
GL
CM
u
GM
LC
R
a
2
1
(
3
)
3.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
A
T
4
P
O
I
NT
S
I
n
th
i
s
s
ec
tio
n
w
e
w
ill
in
v
es
tig
ate
d
ep
en
d
en
t
R
i
k
ita
k
e
s
y
s
te
m
to
i
n
itia
tio
n
p
o
in
t.
W
h
i
le
all
th
e
s
itu
a
tio
n
s
a
n
d
v
al
u
es
ar
e
co
n
s
tan
t
a
n
d
s
u
p
p
o
s
e
ch
ao
s
s
it
u
a
tio
n
f
o
r
R
i
k
ita
k
e
s
y
s
te
m
(
Yo
u
s
o
f
Gh
o
lip
o
u
r
an
d
Ma
h
o
o
d
Mo
u
la,
2
0
1
4
)
.
W
h
en
a=
3
an
d
u
=1
.
2
,
ch
an
g
e
i
n
i
tia
tio
n
p
o
in
t
E
(
x
0
,y
0
,z
0
)
an
d
o
b
s
er
v
e
a
m
o
u
n
t
o
f
d
ep
en
d
en
t a
n
d
ch
a
n
g
e
o
f
R
i
k
it
ak
e
s
y
s
te
m
.
W
e
co
n
s
id
er
4
p
o
s
itio
n
s
:
1
-
E
+
(x
0
,y
0
,z
0
)
=(
1
,
1
,
1
)
2
-
E
+
(x
0
,y
0
,z
0
)
=(
0
.
5
,
0
.
5
,
0
.
5
)
3
-
E
+
(x
0
,y
0
,z
0
)
=(
3
,
2
,
1
)
4
-
E
-
(x
0
,y
0
,z
0
)
=(
-
1,
-
2,
-
3)
No
w
d
i
s
p
la
y
th
e
n
u
m
er
ical
s
o
lu
tio
n
o
f
R
i
k
ita
k
e
s
y
s
te
m
.
F
o
r
all
p
o
s
itio
n
s
t
h
e
s
itu
at
io
n
s
an
d
v
al
u
e
s
ar
e
co
n
s
tan
t,
a
n
d
s
et
u
=1
.
2
,
a=
3
an
d
s
tep
s
h
=0
.
0
1
.
W
e
p
l
o
t
th
e
s
y
s
te
m
b
eh
a
v
io
r
f
o
r
f
o
u
r
p
o
s
itio
n
s
ar
o
u
n
d
X,
Y,
Z
ax
e
s
an
d
3
-
D
p
lo
t.
1.
E
+
(x
0
,y
0
,z
0
)
=(
1
,
1
,
1
)
Fig
u
r
e
2
.
R
ik
ita
k
e
S
y
s
te
m
B
e
h
av
io
r
f
o
r
E
=
(
1
, 1
,
1
)
0
5
10
15
20
25
30
35
40
45
50
-5
0
5
X
0
5
10
15
20
25
30
35
40
45
50
-2
0
2
4
Y
0
5
10
15
20
25
30
35
40
45
50
0
2
4
6
Z
T
i
m
e
(
s)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
I
n
ve
s
tig
a
tio
n
o
f D
e
p
en
d
e
n
t R
ikita
ke
S
ystem
to
I
n
itia
tio
n
P
o
i
n
t
(
Yo
u
s
o
f G
h
o
lip
o
u
r
)
73
Fig
u
r
e
3
.
T
h
e
L
i
m
it
C
y
c
le.
Am
o
u
n
t o
f
S
tab
ilit
y
S
y
s
te
m
W
h
en
E
=
(
1
,
1
,
1
)
2.
E
+
(x
0
,y
0
,z
0
)
=(
0
.
5
,
0
.
5
,
0
.
5
)
Fig
u
r
e
4
.
R
ik
ita
k
e
S
y
s
te
m
B
e
h
av
io
r
f
o
r
E
=
(
0
.
5
,
0
.
5
,
0
.
5
)
Fig
u
r
e
5
.
T
h
e
L
i
m
it
C
y
c
le
Am
o
u
n
t o
f
Stab
ilit
y
S
y
s
te
m
W
h
e
n
E
=
(
0
.
5
,
0
.
5
,
0
.
5
)
-4
-3
-2
-1
0
1
2
3
4
5
1
1
.
5
2
2
.
5
3
3
.
5
4
4
.
5
5
5
.
5
6
-2
-
1
.
5
-1
-
0
.
5
0
0
.
5
1
1
.
5
2
2
.
5
3
Z
L
i
mi
t
C
ycl
e
X
Y
0
5
10
15
20
25
30
35
40
45
50
-5
0
5
X
0
5
10
15
20
25
30
35
40
45
50
-4
-2
0
2
4
Y
0
5
10
15
20
25
30
35
40
45
50
0
2
4
6
Z
T
i
m
e
(
s)
-
2
.
5
-2
-
1
.
5
-1
-
0
.
5
0
0
.
5
1
1
.
5
2
2
.
5
0
.
5
1
1
.
5
2
2
.
5
3
3
.
5
4
4
.
5
5
5
.
5
-5
-4
-3
-2
-1
0
1
2
3
4
Z
L
i
mi
t
C
ycl
e
X
Y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
2
0
1
5
:
70
–
76
74
3.
E
+
(x
0
,y
0
,z
0
)
=(
3
,
2
,
1
)
Fig
u
r
e
6
.
R
ik
ita
k
e
S
y
s
te
m
B
e
h
av
io
r
f
o
r
E
=
(
3
,
2
,
1
)
Fig
u
r
e
7
.
T
h
e
L
i
m
it
C
y
c
le
Am
o
u
n
t o
f
Stab
ilit
y
S
y
s
te
m
W
h
e
n
E
=
(
3
,
2
,
1
)
4.
E
-
(x
0
,y
0
,z
0
)
=(
-
1,
-
2,
-
3)
0
5
10
15
20
25
30
35
40
45
50
-5
0
5
X
0
5
10
15
20
25
30
35
40
45
50
-4
-2
0
2
4
Y
0
5
10
15
20
25
30
35
40
45
50
0
2
4
6
8
Z
T
i
m
e
(
s)
0
1
2
3
4
5
6
7
-3
-2
-1
0
1
2
3
-5
-4
-3
-2
-1
0
1
2
3
4
Z
L
i
mi
t
C
ycl
e
X
Y
0
5
10
15
20
25
30
35
40
45
50
-
1
0
-5
0
5
X
0
5
10
15
20
25
30
35
40
45
50
-4
-2
0
2
Y
0
5
10
15
20
25
30
35
40
45
50
-5
0
5
10
Z
T
i
m
e
(
s)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
I
n
ve
s
tig
a
tio
n
o
f D
e
p
en
d
e
n
t R
ikita
ke
S
ystem
to
I
n
itia
tio
n
P
o
i
n
t
(
Yo
u
s
o
f G
h
o
lip
o
u
r
)
75
Fig
u
r
e
8
.
R
ik
ita
k
e
S
y
s
te
m
B
e
h
av
io
r
f
o
r
E
= (
-
1,
-
2,
-
3)
Fig
u
r
e
9
.
T
h
e
L
i
m
it
C
y
c
le
Am
o
u
n
t
o
f
Stab
ilit
y
S
y
s
te
m
W
h
e
n
E
= (
-
1,
-
2,
-
3)
I
n
th
e
n
u
m
er
ical
s
i
m
u
latio
n
s
w
e
s
ee
t
h
at
t
h
e
i
n
itial
p
o
in
t
h
a
s
ef
f
ec
t
o
n
b
eh
a
v
io
r
o
f
s
y
s
te
m
,
th
e
ef
f
ec
t
o
f
in
it
ial
p
o
in
t o
n
t
h
is
s
y
s
te
m
i
s
to
o
d
ee
p
,
an
d
all
b
eh
av
io
r
o
f
th
e
s
y
s
te
m
ch
a
n
g
ed
w
h
e
n
in
it
ial
p
o
in
t c
h
a
n
g
ed
.
4.
CO
NCLU
SI
O
N
I
n
th
i
s
p
ap
er
w
e,
I
n
v
es
tig
ated
o
f
d
ep
en
d
en
t
R
i
k
ita
k
e
s
y
s
te
m
to
in
itiatio
n
p
o
in
t.
Firstl
y
,
d
is
c
u
s
s
ed
th
e
p
h
y
s
ics
r
u
les
b
eh
i
n
d
R
ik
ita
k
e
s
y
s
te
m
a
n
d
,
last
w
o
r
k
s
ab
o
u
t
t
h
is
s
y
s
te
m
,
af
ter
t
h
at
p
r
esen
ted
t
h
e
R
i
k
ita
k
e
m
o
d
el
a
n
d
at
th
e
b
eh
a
v
io
r
o
f
s
y
s
te
m
at
f
o
u
r
p
o
s
itio
n
s
,
in
v
e
s
tig
a
ted
a
m
o
u
n
t
o
f
d
ep
en
d
en
t
s
y
s
te
m
to
i
n
itiatio
n
p
o
in
t,
an
d
p
lo
tted
ax
es
x
,
y
,
z
an
d
3
-
D
p
lo
t,
w
h
ile
a
ll
th
e
s
itu
a
tio
n
s
a
n
d
v
a
lu
e
s
w
as
co
n
s
ta
n
t
a
n
d
s
u
p
p
o
s
e
ch
ao
s
s
itu
a
tio
n
f
o
r
R
ik
i
tak
e
s
y
s
te
m
an
d
a=
3
,
u
=1
.
2
.
W
e
co
n
clu
d
ed
f
r
o
m
n
u
m
er
ical
s
i
m
u
latio
n
s
t
h
at,
t
h
e
R
ik
itak
e
s
y
s
te
m
i
s
s
h
ar
p
l
y
d
e
p
en
d
en
t
to
in
itiatio
n
p
o
in
t.
B
y
n
o
te
th
at,
th
e
s
t
u
d
ies
s
h
o
w
ed
th
at
th
is
s
y
s
te
m
h
a
s
in
tr
i
n
s
ic
c
h
ao
tic
b
eh
a
v
io
r
,
ch
a
n
g
e
in
in
i
tiatio
n
p
o
in
t,
w
il
l c
h
an
g
e
b
eh
av
io
r
o
f
s
y
s
te
m
.
B
ec
a
u
s
e
o
f
t
h
is
I
n
tr
i
n
s
i
c
p
r
o
p
er
ties
w
e
s
h
o
u
ld
ad
j
u
s
t a
&
u
(
E
q
u
atio
n
3
)
o
f
th
i
s
s
y
s
te
m
ca
r
ef
u
ll
y
f
o
r
h
a
v
e
a
s
y
s
te
m
w
it
h
f
i
x
b
eh
av
io
r
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
W
e
ac
k
n
o
w
led
g
e
o
u
r
f
r
ie
n
d
,
Me
h
d
i
f
a
te
m
i
an
d
t
h
e
Ass
o
ci
ate
E
d
ito
r
an
d
an
o
n
y
m
o
u
s
r
e
v
ie
w
er
s
f
o
r
th
e
ir
v
al
u
ab
le
co
m
m
e
n
ts
a
n
d
s
u
g
g
es
tio
n
s
th
at
h
av
e
h
elp
ed
u
s
to
im
p
r
o
v
i
n
g
o
u
r
p
ap
er
.
RE
F
E
R
E
NC
E
S
[1
]
A
h
m
a
d
Ha
rb
,
Ba
ss
a
m
Ha
rb
,
2
0
0
4
.
Ch
a
o
s
c
o
n
tr
o
l
o
f
th
ird
-
o
r
d
e
r
p
h
a
se
-
lo
c
k
e
d
lo
o
p
s
u
sin
g
b
a
c
k
ste
p
p
i
n
g
n
o
n
li
n
e
a
r
c
o
n
tro
ll
e
r.
Ch
a
o
s,
S
o
li
to
n
s &
F
ra
c
tals
,
2
0
(
4
).
[2
]
A
h
m
a
d
Ha
rb
,
Na
b
il
Ay
o
u
b
,
2
0
1
3
.
No
n
li
n
e
a
r
Co
n
tr
o
l
o
f
Ch
a
o
ti
c
R
ik
it
a
k
e
Tw
o
-
Disk
D
y
n
a
m
o
,
In
tern
a
ti
o
n
a
l
Jo
u
r
n
a
l
o
f
No
n
li
n
e
a
r
S
c
ien
c
e
,
Vo
l.
1
5
,
No
.
1
,
p
p
.
4
5
-
5
0
.
[3
]
Ca
rlo
s
A
g
u
il
a
r
-
Ib
a
ñ
e
z
,
Ra
f
a
e
l
M
a
rt
in
e
z
-
G
u
e
rra
,
Rica
rd
o
Ag
u
il
a
r
-
L
ó
p
e
z
,
Ju
a
n
L
.
M
a
ta
-
M
a
c
h
u
c
a
,
2
0
1
0
.
S
y
n
c
h
ro
n
iza
ti
o
n
a
n
d
p
a
ra
m
e
ter es
ti
m
a
ti
o
n
s o
f
a
n
u
n
c
e
rtain
R
ik
it
a
k
e
sy
ste
m
,
P
h
y
sic
s L
e
tt
e
rs
A
3
7
4
,
3
6
2
5
–
3
6
2
8
.
[4
]
C.
-
C.
Ch
e
n
,
C.
-
Y.
T
se
n
g
,
2
0
0
7
.
A
stu
d
y
o
f
sto
c
h
a
stic
re
so
n
a
n
c
e
in
th
e
p
e
rio
d
ica
ll
y
f
o
rc
e
d
Rik
it
a
k
e
d
y
n
a
m
o
.
Terr.
A
t
m
o
s.Oc
e
a
n
.
S
c
i
.
,
1
8
(
4
):6
7
1
-
6
8
0
.
[5
]
De
n
is
d
e
Ca
rv
a
lh
o
Bra
g
a
,
F
a
b
i
o
S
c
a
lco
Dia
s
a
n
d
L
u
is
F
e
rn
a
n
d
o
M
e
ll
o
.
2
0
1
0
.
on
th
e
sta
b
il
it
y
o
f
th
e
e
q
u
il
i
b
ria
o
f
th
e
Rik
it
a
k
e
s
y
ste
m
.
P
h
y
sic
s
L
e
tt
e
rs
,
3
7
4
:
4
3
1
6
-
4
3
2
0
.
[6
]
G
h
o
li
p
o
u
r,
Yo
u
so
f
,
a
n
d
M
a
h
m
o
o
d
M
o
la.
"
In
v
e
stig
a
ti
o
n
sta
b
il
it
y
o
f
Rik
it
a
k
e
s
y
ste
m
."
Jo
u
rn
a
l
o
f
Co
n
tr
o
l
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
lo
g
y
4
,
n
o
.
1
(2
0
1
4
).
[7
]
G
h
o
li
p
o
u
r,
Yo
u
s
o
f
,
Am
in
Ra
m
e
z
a
n
i,
a
n
d
M
a
h
m
o
o
d
M
o
la.
"
Ill
u
stra
te
th
e
Bu
tt
e
rf
l
y
E
ff
e
c
t
o
n
th
e
Ch
a
o
s
Rik
it
a
k
e
s
y
ste
m
."
Bu
ll
e
ti
n
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
a
n
d
In
f
o
rm
a
ti
c
s
3
,
n
o
.
4
(2
0
1
4
):
2
7
3
-
2
7
6
.
[8
]
M
e
h
riz,
Ira
n
,
a
n
d
Ira
n
Da
riu
n
.
"
Ill
u
stra
te t
h
e
e
f
fe
c
t
o
f
v
a
lu
e
o
f
P
,
I,
D i
n
a
P
ID c
o
n
tr
o
ll
e
r
f
o
r
a
f
o
u
r
T
a
n
k
p
ro
c
e
ss
.
[9
]
G
h
o
li
p
o
u
r,
Y.,
M
o
la,
M
.
S
tab
il
iza
ti
o
n
Of
Ch
a
o
s
Rik
it
a
k
e
S
y
ste
m
B
y
U
se
O
f
F
u
z
z
y
Co
n
tro
ll
e
r
.
S
c
ie
n
c
e
In
tern
a
ti
o
n
a
l
-
L
a
h
o
re
2
7
(1
)
,
1
1
5
-
1
1
9
.
(
2
0
1
5
).
[1
0
]
G
h
o
li
p
o
u
r,
Y.,
C
h
a
v
o
o
sh
i
Za
d
e
,
M
.
;
“
Re
p
lac
e
m
e
n
t
Un
sta
b
le
T
r
a
n
sm
is
sio
n
Zero
s
F
o
r
A
No
n
M
in
im
u
m
P
h
a
se
Qu
a
d
ru
p
le
-
T
a
n
k
P
ro
c
e
ss
”
.
S
c
ien
c
e
In
tern
a
ti
o
n
a
l
-
L
a
h
o
re
2
7
(2
)
1
0
9
7
-
1
1
0
0
,
2
0
1
5
(2
0
1
5
).
[1
1
]
G
h
o
li
p
o
u
r,
Yo
u
s
o
f
,
Es
m
a
il
M
irab
d
o
ll
a
h
i
S
h
a
m
s,
a
n
d
Ira
n
M
e
h
riz.
"
In
tro
d
u
c
ti
o
n
n
e
w
c
o
m
b
in
a
ti
o
n
o
f
z
e
ro
-
o
rd
e
r
h
o
l
d
a
n
d
f
irst
-
o
rd
e
r
h
o
l
d
".
-4
-2
0
2
4
6
8
-4
-3
-2
-1
0
1
2
-6
-5
-4
-3
-2
-1
0
1
2
3
4
Z
L
i
mi
t
C
ycl
e
X
Y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
2
0
1
5
:
70
–
76
76
[1
2
]
G
h
o
li
p
o
u
r,
Yo
u
s
o
f
,
Es
m
a
il
M
irab
d
o
ll
a
h
i
S
h
a
m
s,
a
n
d
Ira
n
M
e
h
ri
z
.
"
In
tro
d
u
c
ti
o
n
n
e
w
c
o
m
b
in
a
ti
o
n
o
f
z
e
ro
-
o
rd
e
r
h
o
l
d
a
n
d
f
irst
-
o
rd
e
r
h
o
l
d
.
”
I
n
tern
a
ti
o
n
a
l
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
Jo
u
rn
a
l
(
I
EE
J
);
Vo
l.
5
(
2
0
1
4
)
No
.
2
,
p
p
.
1
2
6
9
-
1
2
7
2
.
[1
3
]
G
h
o
li
p
o
u
r,
Y.
Zare
,
A
.
,
Ch
a
v
o
o
sh
i
Zad
e
,
M
.
“
Ill
u
stra
te
th
e
e
ff
e
c
t
o
f
v
a
lu
e
o
f
P
,
I,
D
in
a
P
ID
c
o
n
t
ro
ll
e
r
f
o
r
a
f
o
u
r
T
a
n
k
p
ro
c
e
ss
”
;
In
tern
a
ti
o
n
a
l
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
Jo
u
rn
a
l
(I
EE
J)
;
Vo
l
.
5
(
2
0
1
4
)
N
o
.
5
,
p
p
.
1
4
2
0
-
1
4
2
4
.
[1
4
]
J.
L
li
b
re
,
M
.
M
e
ss
ias
,
2
0
0
9
.
G
lo
b
a
l
d
y
n
a
m
ics
o
f
th
e
Rik
it
a
k
e
s
y
st
e
m
.
P
h
y
sic
a
D,
2
3
8
:2
4
1
-
2
5
2
.
[1
5
]
L
iu
X
iao
-
j
u
n
,
L
i
Xia
n
-
f
e
n
g
,
Ch
a
n
g
Yin
g
-
x
ian
g
,
Zh
a
n
g
Jia
n
-
g
a
n
g
,
2
0
0
8
.
C
h
a
o
s
a
n
d
Ch
a
o
s
S
y
n
c
h
ro
n
ism
o
f
t
h
e
Ri
k
it
a
k
e
T
w
o
-
Disk
Dy
n
a
mo
.
F
o
u
rt
h
I
n
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Na
tu
ra
l
C
o
m
p
u
tatio
n
,
IEE
E
c
o
m
p
u
ter
S
o
c
iety
,
DO
I1
0
.
1
1
0
9
/ICNC.
2
0
0
8
.
7
0
6
:6
1
3
-
6
1
7
.
[1
6
]
M
o
h
a
m
m
a
d
Ja
v
id
i,
Ne
m
a
t
N
y
a
m
o
ra
d
,
2
0
1
3
.
Nu
m
e
rica
l
Ch
a
o
ti
c
B
e
h
a
v
io
r
o
f
th
e
F
ra
c
ti
o
n
a
l
Rik
it
a
k
e
S
y
ste
m
,
W
o
rld
Jo
u
rn
a
l
o
f
M
o
d
e
ll
in
g
a
n
d
S
im
u
lat
io
n
,
Vo
l.
9
,
No
.
2
,
p
p
.
1
2
0
-
1
2
9
.
[1
7
]
M
o
h
a
m
m
a
d
A
li
Kh
a
n
,
Diff
e
re
n
t
,
2
0
1
2
.
S
y
n
c
h
ro
n
iza
ti
o
n
S
c
h
e
m
e
s
f
o
r
c
h
a
o
ti
c
Rik
it
a
k
e
S
y
ste
m
s,
Jo
u
rn
a
l
o
f
A
d
v
a
n
c
e
d
Co
m
p
u
ter S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
1
(3
),
1
6
7
-
1
7
5
.
[1
8
]
T
.
M
c
M
il
len
,
1
9
9
9
.
T
h
e
sh
a
p
e
a
n
d
d
y
n
a
m
i
c
s o
f
th
e
Rik
it
a
k
e
a
tt
ra
c
t
o
r
.
T
h
e
No
n
li
n
e
a
r
Jo
u
r
.
,
v
o
l.
1
:1
-
1
0
.
[1
9
]
U.E
.
V
in
c
e
n
t
,
R.
G
u
o
,
2
0
1
1
.
F
in
it
e
-
ti
m
e
s
y
n
c
h
ro
n
iza
ti
o
n
f
o
r
a
c
las
s
o
f
c
h
a
o
ti
c
a
n
d
h
y
p
e
rc
h
a
o
ti
c
sy
ste
m
s
v
i
a
a
d
a
p
ti
v
e
f
e
e
d
b
a
c
k
c
o
n
tro
ll
e
r
,
P
h
y
sic
s L
e
tt
e
r
s A
375
,
2
3
2
2
–
2
3
2
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.