Internati
o
nal Journal
of App
lied Power E
n
gineering
(IJAPE)
V
o
l.
3, N
o
. 1
,
A
p
r
il
201
4, p
p
.
67
~74
I
S
SN
: 225
2-8
7
9
2
67
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJAPE
Harmon
ic Volt
age Di
stort
i
ons
in Power Systems due to Non
Linear L
oads
Aryan
K
a
ushi
k,
Jyothi Var
a
nasi
Departem
ent
of Ele
c
tri
cal
, El
ectr
onics
and
Communication
Engineering, ITM Univ
ersity
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 12, 2014
Rev
i
sed
Mar
21
, 20
14
Accepte
d Apr 1, 2014
Harmonics are f
ound to have deleter
i
ous
effects on power s
y
stem equipments
including
tr
ans
f
orm
e
rs
, cap
aci
to
r banks
, ro
tat
i
ng
m
achines
,
s
w
it
chgears
and
protective r
e
lays. Transformers, moto
rs and switchgears may
experience
increased losses and excessive heatin
g
.
Shunt filters ar
e
effective in
minimizing voltage distortions
. This pa
per describes the voltag
e
distortions
generated b
y
no
n linear loads. The harm
onic specifications such
as harmonic
factor
, ch
aracteristic harmonic a
nd non-ch
aracteristic h
a
r
m
onic are
considered while explaining
th
e pape
r
.
‘MiPo
w
er’ software is used to
compute the harmonic dist
ortio
ns
in a s
a
m
p
le power s
y
s
t
em
. Accurat
e
harmonic models are es
tablished for a non linear lo
ad. To
reduce th
e
harmonic voltages impressed
upon speci
fic
parts of the sample power
s
y
stem
, passive
filte
rs are inst
all
e
d at
two buses. W
ith the im
ple
m
entation
o
f
a passive filter
at th
e bus with
non
linear
load
, the h
a
rmonics
are gr
eatly
reduced
. F
o
r th
e
s
p
ecifi
ed power
s
y
s
t
em
,
at
all
t
h
e bus
es
the
tot
a
l harm
onic
distortion
has been ev
alu
a
ted
.
Keyword:
‘M
iPo
w
er
’ s
o
ft
ware
IEEE
5-Bus
power system
To
tal Harm
o
n
i
c Distortio
ns
Gra
p
hical Use
r
Interface
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ary
a
n K
a
us
hi
k
,
Depa
rtem
ent of Electrical, El
ectroni
cs an
d
C
o
m
m
uni
cat
i
o
n E
n
gi
neeri
n
g,
I
T
M
Un
iv
e
r
s
i
ty
,
Sect
or
- 23
A,
G
u
r
g
a
o
n
,
Hary
a
n
a, I
ndi
a.
Em
a
il: er.aryan
k
a
u
s
h
i
k@g
m
ail.co
m
1.
INTRODUCTION
The e
n
sui
ng i
n
crease o
f
harm
oni
c
penet
r
at
i
o
n i
n
t
o
p
o
we
r s
y
st
em
s has bee
n
t
h
e
hi
t
t
opi
c
of
researc
h
for
th
e research
es d
ealin
g
with
th
e h
a
rm
o
n
i
c
sou
r
ces,
h
a
rmo
n
i
c p
o
wer
fl
ow
techn
i
qu
es, d
e
sign
ing
o
f
filters
t
o
reduce
harm
onics, causes
and effects
of ha
rm
onic inte
rferences a
n
d ha
rm
onic
m
easurement techniques. T
h
is
researc
h
pape
r
uses a s
u
i
t
a
b
l
e way
of st
u
d
y
i
ng a
n
d ana
l
y
z
i
ng t
h
e IE
EE 5
-
B
u
s
po
wer sy
st
em
usi
ng t
h
e
‘MiPower’
so
ftware. Th
e voltag
e
d
i
stortion
,
wh
ich
d
e
fi
n
e
s th
e
relation
s
h
i
p
b
e
tween th
e to
tal h
a
rm
o
n
i
c
v
o
ltag
e
and
t
h
e to
tal fu
nd
amen
tal vo
ltag
e
,
an
d th
e curre
nt
di
st
o
r
t
i
o
n
,
wh
i
c
h de
fi
nes
t
h
e
rel
a
t
i
ons
hi
p
b
e
t
w
e
e
n
th
e to
tal h
a
rmo
n
i
c cu
rren
t an
d
the fund
amen
tal cu
rren
t,
are th
e b
a
sic co
n
s
i
d
eration
s
wh
ile d
ealing
with
th
e
harm
oni
c
di
st
o
r
t
i
ons
i
n
t
h
e
p
o
we
r sy
st
em
. Tot
a
l
I
n
fl
uenc
e Fact
o
r
(T
IF
)
,
Tot
a
l
Dem
a
nd
Di
st
ort
i
o
ns
(
T
DD
)
and T
o
t
a
l
Har
m
oni
c Di
st
ort
i
ons
(TH
D
)
ar
e t
h
e harm
oni
c speci
fi
cat
i
o
n
s
whi
c
h
di
scu
ss t
h
e pr
opa
ga
t
i
on of
harm
oni
cs t
o
d
i
ffere
nt
part
s
o
f
t
h
e
sy
st
em
.
There a
r
e two
criteria whic
h are use
d
to evaluate
h
a
rm
o
n
i
c d
i
sto
r
tion
s
,
first is th
e li
mit
a
tio
n
in
th
e
h
a
rm
o
n
i
c curren
t
th
at a u
s
er can
tran
sm
it in
t
o
th
e u
tility sy
ste
m
an
d
secon
d
is th
e qu
ality o
f
th
e vo
ltage th
at
th
e u
tility
m
u
st furn
ish
the user [1
].A sim
p
l
e
r ap
pro
a
ch
is
tak
e
n
i
n
to
acco
u
n
t
for
d
e
sign
ing
th
e filters. There
are
vari
ous
h
a
rm
oni
c p
o
we
r
fl
o
w
pr
og
ram
s
w
h
i
c
h
ha
ve a
l
ready
been
de
vel
o
ped
i
n
t
h
i
s
pa
rt
i
c
ul
ar
fi
e
l
d o
f
r
e
sear
ch
su
ch
as H
a
r
m
f
l
o
[2
],[3
]. Th
is
p
o
wer
f
l
ow
p
r
og
r
a
m u
s
es N
e
w
t
on
Raph
so
n
iterativ
e tech
n
i
q
u
e along
with
th
e accurate
m
o
d
e
ls fo
r co
nv
ertor lo
ad
s an
d
no
n lin
ear
resistors. On
e m
o
re v
e
rsatile an
d
powerfu
l
pr
o
g
ram
is
m
a
rkete
d
by
Cy
m
e
Inte
rnatio
nal
Inc
.
of
St
. Bruno, Que
b
ec [4]. One m
o
re
effective a
p
proach is
pr
o
pose
d
t
o
c
o
m
p
ensat
e
fo
r
h
a
rm
oni
cs i
n
p
o
w
er
sy
st
em
s in
[5
].
An
alyzing
t
h
e THD
for a
p
a
rticu
l
ar
po
wer
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-87
92
IJA
P
E Vol
.
3
,
No
. 1, A
p
ri
l
20
14
:
67
–
7
4
68
syste
m
has becom
e
relatively
m
o
re
accurate, sim
p
ler and easie
r usi
n
g the ‘MiPower’ s
o
ft
ware
whic
h
p
r
ov
id
es a m
o
re in
teractiv
e
rou
tin
e
fo
r sm
al
l
el
ect
ri
cal
net
w
or
ks.
B
y
fo
cusi
ng
o
n
p
o
we
r sy
st
em
vari
at
i
ons
an
d
their effects, the standard s
p
ec
ifications a
r
e
met accordi
ngl
y.
2.
SYSTE
M
FIL
TERING
METHODS
As a m
e
t
hod, s
y
st
em
fi
lt
ers, whet
her act
i
v
e
or
passi
ve
, ha
ve t
h
e a
dva
nt
a
g
e o
f
bei
ng
ret
r
o
-fi
t
b
u
t
t
h
e
di
sad
v
a
n
t
a
ge
o
f
bei
n
g
po
ssi
bl
y
onl
y
a t
e
m
p
o
r
ary
sol
u
t
i
o
n. I
f
t
h
e p
o
w
er sy
st
em
changes
,
fo
r exam
pl
e, i
f
m
o
re
n
o
n
lin
ear l
o
ad is add
e
d
,
t
h
e
desig
n
assu
m
p
ti
o
n
s
will also ch
ang
e
.
2.
1
Passi
ve Filters
Passiv
e
filters can
b
e
d
e
sign
ed
to
redu
ce h
a
rm
o
n
i
c
v
o
ltag
e
s and
no
tch
effects at p
a
rticu
l
ar
p
o
i
n
t
s
i
n
the powe
r syste
m
. Each installation is
different and the siz
e
and placem
ent
of the filters varies accordi
ngly.
Usu
a
lly, th
e
passiv
e
filters in
clud
e d
i
fferen
t
typ
e
s of p
a
rallel p
a
th
s th
at p
r
esen
t relatively lo
w i
m
p
e
dan
ce to
t
h
e vari
ous
har
m
oni
cs. Harm
oni
c cu
rre
nt
s fl
ow i
n
t
o
t
h
i
s
re
duce
d
i
m
pedan
ce such t
h
at
t
h
e harm
oni
c vol
t
a
ge at
th
at p
o
i
n
t
is red
u
c
ed
.
In
some cases, th
ere will b
e
suffi
cien
t sou
r
ce i
m
p
e
d
a
n
ce at th
e lo
cation
at wh
ich
h
a
rm
o
n
i
cs m
u
st b
e
redu
ced th
at a sing
le filter at th
at lo
catio
n
can
ab
sorb
h
a
rm
o
n
i
cs fro
m
th
e m
u
l
tip
le
h
a
rm
o
n
i
c so
urces. Th
is po
in
t
mig
h
t
b
e
th
e
p
o
i
n
t
of co
mmo
n conn
ectio
n, bu
t in
an
y ev
en
t, th
e filter mu
st b
e
desi
g
n
e
d
s
o
as
not
t
o
be
ove
rl
oade
d
by
harm
oni
c c
u
rre
nt
s f
r
o
m
ot
her
part
s
of
t
h
e
p
o
we
r s
y
st
em
.
Th
ese filters are
m
u
ch
m
o
re difficu
lt to
u
s
e i
n
conj
un
ction
with
aux
iliary g
e
n
e
rators fo
r t
w
o
reaso
n
s
.
Firstly, the ge
nerat
o
rs ca
nnot norm
a
lly support
m
o
re
than about 20%
leading
KVAR because a
r
mature
reactio
n m
a
y c
a
u
s
e
ov
er-ex
c
it
atio
n
an
d
v
o
ltag
e
regu
lato
r instab
ility. Secon
d
l
y,
frequ
ency v
a
riation
s
exp
ected
with
an
aux
iliary g
e
n
e
rat
o
r are m
u
ch
greater th
an
those of th
e
u
tility; th
eref
ore, th
e filter
d
e
sig
n
is
co
m
p
licated
. Passiv
e
filters are wid
e
ly
u
s
ed
i
n
co
nju
n
c
tion
with
u
tility-typ
e static VAR co
m
p
en
sato
rs an
d ac
electric
arc furnaces with
m
e
gawatt ratin
gs
[6]. In this ty
pe
of a
pplica
tion, t
h
e m
a
jor
source
of
harm
onic
d
i
stu
r
b
a
n
ce is
well kn
own
,
and
th
e pro
b
a
b
ility o
f
system
ch
an
g
e
s affecting th
e
filter p
e
rform
a
n
ce is sm
a
l
l.
2.
2
Add
-
On
Ac
tiv
e
Filters
In
th
is m
e
th
o
d
, an
add
itio
n
a
l
p
o
we
r electronic convert
o
r is
use
d
to
supp
ly th
e po
wer source lin
e with
th
e h
a
rm
o
n
i
c cu
rren
ts
req
u
i
red
b
y
th
e
n
o
n
lin
ear lo
ad
.
In essen
c
e, th
e filter is a po
wer am
p
lifier and
m
u
st
have a
d
e
quat
e
ban
d
w
i
d
t
h
t
o
c
o
m
p
ensat
e
fo
r
t
h
e ha
rm
oni
c cur
r
ent
s
req
u
i
r
e
d
by
t
h
e el
ect
r
oni
c e
qui
pm
ent
,
at
least u
p
to
th
e
2
5
th
harm
oni
c.
Tech
ni
cal
l
y
, t
h
i
s
m
e
t
hod i
s
u
n
d
o
u
b
t
e
dl
y
very
effect
i
v
e. T
h
e
m
a
i
n
draw
bac
k
l
i
e
s
in
its co
st,
wh
ich
,
with
d
e
v
e
l
o
p
m
en
t, is expected
to
b
e
com
p
arab
le to
an in
v
e
rter
o
f
similar ratin
g
.
In con
t
rast
with
typ
i
cal mo
tor driv
e i
n
v
e
rters,
wh
ich
o
p
erate fro
m
a st
ab
le d
c
link
v
o
ltag
e
, th
e active filter is exp
o
sed
t
o
v
o
ltag
e
st
resses cau
sed
b
y
no
rm
al an
d
fau
l
t co
nd
itio
n
s
in th
e p
o
wer syste
m
. Th
is p
u
t
s ad
d
ition
a
l d
e
man
d
s
up
o
n
t
h
e
sem
i
con
d
u
ct
o
r
s
w
i
t
c
hi
n
g
devi
ces
,
hy
b
r
i
d
a
rra
n
g
e
m
e
nt
s of
act
i
v
e a
n
d
pas
s
i
v
e
com
pone
nt
s a
r
e al
so
feasib
le
[7
]. Th
e su
pp
ly vo
ltag
e
im
b
a
lan
ce fro
m
th
e lo
ad term
in
al v
o
ltag
e
is elimin
ated
b
y
a series-activ
e
filter wh
ich
also
forces an
ex
i
s
tin
g
shu
n
t
-p
assiv
e
filter
to abso
rb
all th
e curren
t
h
a
rm
o
n
i
cs p
r
od
u
c
ed
b
y
a no
n
lin
ear lo
ad
[8
].
3.
‘MiP
o
w
er’ S
O
FTWA
RE
M
i
Powe
r i
s
t
h
e st
at
e-of
-t
he
-a
rt
wi
n
d
o
ws
ba
sed
po
we
r sy
stem
s softwa
re.
It is hig
h
ly
int
e
ractive a
n
d
user
fri
e
ndl
y
soft
ware
fo
r
al
l
anal
y
s
i
s
, pl
an
ni
n
g
,
desi
gn a
n
d si
m
u
lat
i
on o
f
a
n
y
gi
ve
n p
o
w
er
sy
st
em
irresp
ectiv
e o
f
th
e g
e
ograph
i
cal an
d
env
i
ro
nmen
tal co
n
s
tr
ain
t
s. It is wid
e
ly u
s
ed
b
y
po
wer u
tilities, aca
d
e
m
i
c
& researc
h
inst
itutes for m
o
re
than a deca
de. It is ar
m
e
d
w
ith
ro
bu
st pow
er syste
m
en
g
i
n
e
in
th
e b
a
ck
end and
a lucid top-notch
W
i
ndows
Gra
p
hical
User Interface (GUI) in the fr
ont end.
Appro
ach, techni
que &
m
e
t
hod
ol
o
g
y
em
pl
oy
ed are fi
el
d pr
ov
en &
t
i
m
e
t
e
st
ed. Thi
s
con
f
orm
s
to st
anda
r
d
A
N
S
I, IE
EE, IEC
and
othe
r worl
d-wide accepte
d sta
nda
rds.
All
power system
data is centrally main
tained with an i
n
dustry s
t
anda
rd
relatio
n
a
l d
a
tab
a
se.
It h
e
lp
s i
n
d
ealing
with a wid
e
rang
e
o
f
p
o
wer system p
r
ob
lem
s
.
High
ly in
tu
itiv
e GUI
m
a
kes t
h
e l
e
a
r
ni
ng
cu
r
v
e s
m
oot
h t
o
a
g
r
eat
ext
e
nt
.
W
i
t
h
t
h
e
use
of
‘M
i
P
o
w
er
’ s
o
f
t
ware,
p
o
w
er
sy
st
em
engi
neers
can
becom
e
produc
tive with m
i
nim
u
m
effort
a
n
d tim
e and re
sults are em
phatically visible.
Fi
gu
re
1.
Si
n
g
l
e
l
i
n
e di
a
g
ram
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
APE
I
S
SN
:
225
2-8
7
9
2
Har
m
oni
c
Vol
t
age
Di
st
ort
i
o
n
s
i
n
P
o
w
e
r
Syst
ems
du
e t
o
N
o
n Li
nea
r
L
o
ads
(
A
rya
n
K
a
us
hi
k)
69
The single line
diagram
describes the
very
basic c
once
p
t of a powe
r system
, which can
be analyze
d
usi
n
g t
h
e ‘M
i
P
owe
r
’
so
ft
wa
re
. Fi
g
u
r
e
1
represen
ts th
e sing
l
e
lin
e d
i
ag
ram
.
4.
FILTER DE
SIGN
Th
e
filters are u
s
ed
to red
u
c
e th
e
h
a
rm
o
n
i
c vo
ltag
e
an
d
cu
rren
t co
m
p
on
en
ts i
n
th
e po
wer system
.
Th
is research
p
a
p
e
r m
a
k
e
s use o
f
p
a
ssiv
e
filters wh
ile com
p
u
tin
g
THD
for a no
n
lin
ear lo
ad
t
o
b
e
si
m
u
la
ted
.
B
y
pr
ovi
di
n
g
a
l
o
w
i
m
pedanc
e pat
h
f
o
r
t
h
e
i
n
ject
e
d
harm
oni
c cu
rre
nt
s at
t
h
e p
o
i
n
t
o
f
i
n
j
ect
i
on, t
h
e
har
m
oni
c
cu
rren
t and
voltag
e
co
m
p
on
en
ts
can
b
e
p
r
ev
en
ted
fro
m
en
tering
t
h
e n
e
t
w
ork. Gen
e
ral
l
y,
tu
n
e
d
filters
are
d
e
sign
ed
for the lo
wer
h
a
rm
o
n
i
cs an
d d
a
m
p
ed
filters ar
e desig
n
e
d
for t
h
e h
i
gh
er
h
a
rm
o
n
ics. Th
e pro
c
ed
ure
of
d
e
sign
ing
th
ese filters is g
i
ven
b
e
l
o
w witho
u
t
an
y d
e
g
r
adatio
n
in
p
e
rfo
rman
ce. Th
e con
v
e
n
tion
a
l d
e
sig
n
of
tu
n
e
d
filters at a h
a
rm
o
n
i
c g
e
n
e
rating
lo
ad b
u
s
inv
o
l
v
e
s
th
e co
m
p
u
t
atio
n
o
f
the ad
m
i
t
t
an
ce lo
cu
s for th
e
network as seen by the load
bus
[9].
T
h
is rather tedious s
t
ep is avoi
de
d
by taking int
o
account the ne
twork
ad
m
i
ttan
ce fo
r th
e tu
n
i
ng
freq
u
e
n
c
y on
ly. Th
e tun
e
d
filte
rs con
s
ist o
f
a series R-L-C
circu
it as sh
own
i
n
Fig
u
re 2
(a).
Th
e
im
p
e
d
a
n
c
e o
f
th
is filter
is cap
acitiv
e
at low freq
u
e
n
c
ies
an
d ind
u
c
ti
v
e
at h
i
gh
freq
u
e
n
c
ies.
(a)
(b
)
Fig
u
re 2
.
(a)
Tu
n
e
d
filter, (b
) Secon
d
ord
e
r da
m
p
ed
filter
In
ad
d
ition
to
t
h
e tun
e
d
filters for lo
wer h
a
rm
o
n
i
cs
, a filter wh
ich
atten
u
a
t
e
s all th
e h
i
g
h
e
r h
a
rm
o
n
i
cs
called
th
e d
a
mp
ed
filter is o
f
ten
e
m
p
l
o
y
ed
.
Th
ere are sev
e
ral typ
e
s o
f
d
a
m
p
ed
filters, b
u
t
th
e secon
d
o
r
d
e
r
d
a
m
p
ed
filter i
s
m
o
st wid
e
ly u
s
ed
,
wh
ich
is
sh
own
in Fi
g
u
re 2
(b
).
5.
CA
SE ST
UDI
ES
The bel
o
w
des
c
ri
be
d case st
u
d
i
e
s ex
pl
o
r
e t
h
e det
a
i
l
s
of t
h
e
po
wer sy
st
em
use
d
i
n
t
h
i
s
res
earch
pape
r
an
d on
t
h
at basis, v
a
r
i
ou
s
op
eratin
g
co
nd
itions ar
e
b
e
ing
consid
er
ed
f
o
r
th
e
sam
e
p
o
w
er sy
ste
m
.
5.
1.
Sys
t
em Descri
ption
Fi
gu
re 3.
Ge
ne
ral
i
zed
l
a
y
o
u
t
of
IEE
E
5-B
u
s po
we
r
sy
st
em
wi
t
h
7
l
i
n
es
Fi
gu
re 3
di
spl
a
y
s
t
h
e gene
ral
i
zed l
a
y
out
o
f
t
h
e IEE
E
5
-
B
u
s
po
wer sy
st
em
wi
t
h
7 l
i
n
es.
C
onsi
d
eri
n
g
th
is p
a
rticu
l
ar l
a
yo
u
t
,
h
e
lps in
d
e
sign
ing
t
h
e s
a
m
e
po
wer
sy
s
t
em
in ‘M
iPo
w
er’
so
ftwa
re.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-87
92
IJA
P
E Vol
.
3
,
No
. 1, A
p
ri
l
20
14
:
67
–
7
4
70
Figu
re
4.
IEE
E
5
-
Bus
p
o
w
e
r s
y
stem
with 7lines i
n
‘M
iP
o
w
er’
so
ftwa
re
Figure 4 de
scribes the IEEE
5-B
u
s powe
r s
y
ste
m
with 7 lines whic
h m
a
kes use of the
‘MiPower’
soft
ware
. The
sy
st
em
i
s
bei
ng a
n
al
y
zed
un
de
r di
f
f
ere
n
t
ope
rat
i
ng c
o
nsi
d
e
r
at
i
o
n
s
.
The t
o
t
a
l
ha
r
m
oni
c
distortion is
be
ing a
n
alyzed
by the syst
em
w
ithout t
h
e filter in use,
with a
single
filter in
use a
n
d with the us
e
o
f
t
w
o
filters at two
d
i
fferent b
u
s
es. Th
e THD are c
o
n
s
i
d
ered
for th
e abo
v
e
t
h
ree cases wh
en
a
no
n-lin
ear
l
o
ad i
s
si
m
u
l
a
ted at
b
u
s
5. Ta
bl
e 1
desc
ri
bes
t
h
e t
r
an
sm
i
ssion l
i
n
e
dat
a
w
h
i
l
e
Tabl
e 2
de
scri
bes t
h
e b
u
s
dat
a
o
f
the IE
EE
5-B
u
s powe
r syste
m
.
Tabl
e 1. Im
ped
a
nce
a
n
d
Li
ne
C
h
ar
gi
n
g
Bus code
p-
q
Im
pedance
Z
L
i
ne char
ging
1-
2 0.
02+j0.
0
6
0.
0+j0.
030
1-
3 0.
08+j0.
2
4
0.
0+j0.
025
2-
3 0.
06+j0.
1
8
0.
0+j0.
020
2-
4 0.
06+j0.
1
8
0.
0+j0.
020
2-
5 0.
04+j0.
1
2
0.
0+j0.
015
3-
4 0.
01+j0.
0
3
0.
0+j0.
010
4-
5 0.
08+j0.
2
4
0.
0+j0.
025
Tabl
e 2. Sche
d
u
l
e
d ge
nerat
i
o
n
a
n
d
l
o
a
d
Bus
code
Assu
m
e
d bus
voltage
Gener
a
tion L
o
ad
MW
MVAR
MW
MVAR
1 1.
06+j0.
0
Slack
0
0
2 1.
00+j0.
0
40
30
20
10
3 1.
00+j0.
0
0
0
45
15
4 1.
00+j0.
0
0
0
40
5
5 1.
00+j0.
0
0
0
60
10
5.
2.
Sys
t
em
w
i
th
o
u
t an
y filter
The IEE
E
5-B
u
s powe
r system
has been studied an
d analy
zed to know the THD,
whe
n
a non linear
l
o
ad i
s
si
m
u
l
a
ted at
bus
5
.
Fi
gu
re
5 s
h
ows
t
h
e e
x
act
h
a
r
m
o
n
i
c
d
i
stor
tio
ns ob
tain
ed
w
i
t
h
ou
t co
nsid
er
i
n
g any
filter in
t
h
e
IEEE
5
-
B
u
s
po
wer system
. Fo
r
a th
ree
p
h
a
se syste
m
, TVHDF-A is t
h
e To
tal Harm
o
n
i
c
Di
sto
r
tion
Fact
or fo
r pha
se
A whi
l
e
T
V
H
D
F
-
B
an
d TVH
D
F
-
C
i
ndicate it f
o
r
phase B an
d
C, respectively. T
V
HDF-
AVG s
h
ows the ave
r
age
T
o
tal Harm
onic
Dist
ortion Fact
or
for all the t
h
ree
phases.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
APE
I
S
SN
:
225
2-8
7
9
2
Har
m
oni
c
Vol
t
age
Di
st
ort
i
o
n
s
i
n
P
o
w
e
r
Syst
ems
du
e t
o
N
o
n Li
nea
r
L
o
ads
(
A
rya
n
K
a
us
hi
k)
71
Fig
u
re
5
.
To
tal
Harm
o
n
i
c Disto
r
tion
s
(THD) ob
tain
ed wit
h
o
u
t
con
s
id
ering
an
y filter
5.
3.
Sy
stem with a sing
le
filter
Th
e IEEE 5-Bu
s po
wer system h
a
s b
een
stu
d
i
ed
an
d
an
al
yzed
with
a filter at b
u
s
5
to redu
ce the
THD
,
w
h
e
n
a no
n l
i
n
ear l
o
a
d
i
s
sim
u
l
a
t
e
d at t
h
i
s
bus.
Fi
g
u
r
e
6 sh
ows t
h
e exact
harm
oni
c di
st
ort
i
o
ns o
b
t
a
i
n
e
d
co
nsid
eri
n
g a sin
g
l
e
filter in
t
h
e
IEEE 5-Bu
s po
wer sy
stem
. Th
e sam
e
termin
o
l
o
g
y
h
a
s
b
een fo
llowed
for th
e
three
phase sys
t
e
m
as in subse
c
tion
5.2.
Fig
u
re
6
.
To
tal
Harm
o
n
i
c Disto
r
tion
s
(THD) ob
tain
ed b
y
con
s
id
ering
a
sing
le filter
5.
4.
Sys
t
em with two filters
The
IEEE 5-B
u
s power syste
m
has
be
e
n
studied
and a
n
a
l
yzed with filters at bus
3 a
nd
bus
5 to
red
u
ce t
h
e TH
D, w
h
e
n
a no
n
l
i
n
ear l
o
ad i
s
sim
u
l
a
t
e
d at
bus 5. Fi
gu
re 7
sho
w
s t
h
e e
x
ac
t
harm
oni
c di
st
ort
i
o
ns
o
b
t
ain
e
d
with
th
e con
s
i
d
erati
o
n of t
w
o filters in th
e IEEE 5-Bu
s power
syste
m
. Th
e same ter
m
in
o
l
o
gy h
a
s
been followed
for the
three
phase
system
as in s
u
bsection 5.2.
Fig
u
re
7
.
To
tal
Harm
o
n
i
c Disto
r
tion
s
(THD) ob
tain
ed b
y
con
s
id
ering
two
filters
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-87
92
IJA
P
E Vol
.
3
,
No
. 1, A
p
ri
l
20
14
:
67
–
7
4
72
5.
5.
N
o
n linea
r loads and
Ha
rmonics
In AC
power
distribution sy
ste
m
s, harm
onics occ
u
r whe
n
the
norm
al e
l
ectric curre
n
t
wave
form
is
di
st
ort
e
d
by
n
on l
i
near l
o
ads
.
A l
i
n
ea
r l
o
a
d
i
s
one
w
h
ere
vol
t
a
ge
(a si
ne
wav
e
) i
s
a
ppl
i
e
d acr
oss
a co
nst
a
nt
resi
st
ance res
u
l
t
i
ng i
n
cur
r
en
t
(anot
her si
ne
wave
), as sh
o
w
n i
n
Fi
gu
re 8. N
o
n l
i
n
ear l
o
ad
s occ
u
r w
h
en t
h
e
resistance is not a consta
nt and c
h
anges
during each si
ne
wave
of the a
p
plied voltage
wave
form
, resulting in
a series
o
f
po
si
tiv
e and
n
e
gativ
e
p
u
l
ses, illu
strated
in Figure 9
.
Fi
gu
re
8.
Li
nea
r
l
o
a
d
si
ne
wav
e
Fi
gu
re
9.
N
o
n l
i
near c
u
r
r
e
n
t
l
o
ad
pul
ses
So
urces
o
f
n
o
n
l
i
n
ear
l
o
a
d
s a
r
e com
put
er
eq
ui
pm
ent
s
wi
t
h
swi
t
c
he
d-m
ode
p
o
we
r
su
p
p
l
i
e
s,
vari
a
b
l
e
spee
d m
o
t
o
rs and
dri
v
es,
p
hot
oco
p
i
e
rs
, l
a
ser
pri
n
t
e
rs,
fax m
achi
n
es
, bat
t
e
r
y
charge
rs,
UP
Ss, fl
uo
resce
n
t
l
i
ght
bal
l
a
st
s, an
d
m
e
di
cal
di
agn
o
st
i
c
eq
ui
pm
ent
.
Hi
st
ori
cally, single
phas
e non li
n
ear l
o
ads we
re c
o
mmon in
o
f
f
i
ce bu
ild
ings and
thr
ee phase no
n
lin
ear lo
ad
s
w
e
r
e
gen
e
r
a
lly fo
und in
f
actor
ies an
d
i
n
du
str
i
al
plan
ts.
Ho
we
ver
,
dat
a
cent
e
rs a
r
e i
n
cr
easi
ngl
y
m
ovi
n
g
t
o
t
h
ree
phas
e
p
o
we
r
di
st
ri
b
u
t
i
o
n
.
5.
6.
Applications rela
ted to c
o
nverters
Above discuss
e
d powe
r system
encom
p
asses its e
ssence to the harm
oni
cs
occurring for non linear
lo
ad
s, b
u
t
th
ere ex
ists sev
e
ral
p
o
wer systems wh
ich
co
nsid
er the applications
related
to the conve
rters
.
In the
i
n
d
u
st
ri
al
envi
ro
nm
ent
,
El
ectro
ni
c po
we
r con
v
e
r
t
e
rs ha
ve
becom
e
one of t
h
e m
a
jor s
o
u
r
ces o
f
ha
r
m
oni
cs
[10]. Som
e
of t
h
e
widely preferre
d c
o
nve
r
ters are a
s
follows:
1)
Six-Pulse C
o
nve
r
ter wit
h
Capacito
r-Input Filter which takes int
o
account
total sourc
e
r
eactance, ca
pacitor-
in
pu
t filter and VFD i
n
v
e
rter l
o
ad.
2) Six-Pulse C
o
nve
r
ter
with
Inductor-Input
Filter which ta
kes i
n
to acc
ount to
tal source
reactance
, i
n
ductor-
in
pu
t filter and VFD i
n
v
e
rter l
o
ad.
5.
6.
1.
Six-pulse c
o
nverter with
c
a
pacitor-input fi
lter
Fig
u
re 10
d
i
splays th
e lin
e cu
rren
t for a typ
i
cal si
x
-
p
u
l
se co
nv
erter wit
h
cap
acitor-i
n
p
u
t
filter. Th
is
type of filtering, in conjuncti
on
with
ac line reactance, ha
s been used
up
to 150 horse powe
r rating but finds
g
r
eater app
licatio
n
in th
e l
o
wer
h
o
rse
po
wer rating
s
.
Fig
u
re
10
.
Six
-
p
u
l
se conv
erter with
cap
acitor-inp
u
t
filter
Line
ar lo
ad
Non line
a
r
load
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
APE
I
S
SN
:
225
2-8
7
9
2
Har
m
oni
c
Vol
t
age
Di
st
ort
i
o
n
s
i
n
P
o
w
e
r
Syst
ems
du
e t
o
N
o
n Li
nea
r
L
o
ads
(
A
rya
n
K
a
us
hi
k)
73
5.
6.
2.
Six-pulse c
o
nverter with inductor- input fi
lter
Fig
u
re
11
d
i
sp
l
a
ys th
e lin
e curren
t
for a typ
i
cal
six
-
p
u
l
se con
v
e
rter
with
i
n
d
u
c
t
o
r-inp
u
t
filter.
Fig
u
re
11
.
Six
-
p
u
l
se conv
erter with
i
n
du
ctor-in
p
u
t
filter
6.
CO
NCL
USI
O
N
The
ob
ser
v
at
i
o
ns a
n
d
co
ncl
u
s
i
ons
de
ri
ve
d f
r
o
m
t
h
e resul
t
s
obt
ai
ne
d t
h
r
o
u
g
h
si
m
u
l
a
t
i
on st
udi
es a
r
e
listed
b
e
low:
6.
1.
Harm
oni
c
an
a
l
ysi
s
For the
IEEE
5-B
u
s powe
r s
y
ste
m
is considere
d
in
this paper, this harm
oni
c analysis
program
is
fo
u
nd t
o
be e
x
t
r
em
ely
fast
. T
h
e ef
fect
i
v
e
us
e of
t
h
e s
o
ft
wa
re i
s
bei
n
g m
a
de
whi
c
h
dra
w
s seve
ral
co
ncl
u
si
o
n
s
rel
a
t
e
d t
o
t
h
e
h
a
rm
oni
c di
st
o
r
t
i
ons
i
n
t
h
e
part
i
c
ul
ar
po
wer
s
y
st
em
operat
i
n
g
un
de
r
di
ffe
re
nt
co
n
d
i
t
i
ons
.
6.
2.
Case
studies u
s
ing filter
desi
gn
Thi
s
sect
i
o
n
d
e
scri
bes t
h
e c
o
ncl
u
si
ons
d
r
aw
n f
r
o
m
the IE
EE 5-Bus
power system
to be conside
r
ed
in
v
a
riou
s
simu
lated
co
nd
ition
s
.
6.
2.
1.
Sys
t
em
w
i
th
o
u
t an
y filter
In
th
e first case stu
d
y
, wh
ere
th
e syste
m
is c
o
n
s
i
d
ered
witho
u
t
m
a
k
i
n
g
u
s
e o
f
an
y filter, th
e THD
for
th
e vo
ltag
e
s are sh
own
at all th
e bu
ses. The d
i
sto
r
tion
is
o
b
serv
ed
as m
a
x
i
m
u
m at b
u
s
5
as th
e non
lin
ear lo
ad
has
bee
n
si
m
u
lat
e
d at
t
h
at
b
u
s
.
T
h
e m
a
xim
u
m
val
u
e ob
ser
v
ed c
o
m
e
s as 23
.8
3
(Di
s
t
o
rt
i
o
n
%).
6.
2.
2.
Sy
stem with a sing
le
filter
In
th
e secon
d
case stu
d
y
,
where th
e syste
m
is co
n
s
id
ered
with
a sin
g
l
e filter at b
u
s
5
,
th
e THD
for
t
h
e vol
t
a
ges ar
e sho
w
n at
al
l
t
h
e bu
ses. T
h
e
di
st
ort
i
o
ns
get
reduced to a reasonable
exte
nt com
p
aratively to
th
e system
co
n
s
id
ered
with
out an
y f
ilter. The d
i
stortio
n
is
o
b
s
erv
e
d as max
i
m
u
m
at b
u
s
5
as t
h
e
n
o
n
l
i
n
ear
l
o
ad
has
bee
n
s
i
m
u
l
a
t
e
d at
t
h
a
t
bu
s. T
h
e m
a
xim
u
m
val
u
e c
o
m
e
s out
t
o
be
2
.
4
8
(Di
s
t
o
rt
i
o
n
%).
6.
2.
3.
Sys
t
em with two filters
Wh
ile carrying ou
t th
e t
h
ird
case stud
y,
wh
ere th
e sy
stem
i
s
con
s
id
ered
with
two filters
at b
u
s
3
an
d
bus
5
,
t
h
e
TH
D f
o
r
t
h
e
vol
t
a
ges a
r
e sh
o
w
n
at
al
l
t
h
e buse
s
. The
di
st
o
r
t
i
o
ns f
u
rt
he
r get
r
e
duce
d
c
o
m
p
ar
at
i
v
ely
to
th
e system
c
o
n
s
i
d
ered
with a sin
g
l
e
filter.
Th
e
d
i
st
o
r
tion
is o
b
s
erv
e
d
as
max
i
m
u
m
at b
u
s
5
as th
e
no
n lin
ear
l
o
ad
has
bee
n
s
i
m
u
l
a
t
e
d at
t
h
a
t
bu
s. T
h
e m
a
xim
u
m
val
u
e c
o
m
e
s out
t
o
be
1
.
7
(Di
s
t
o
rt
i
o
n
%).
6.
3.
Advancement
in the
model
The a
ppl
i
cat
i
o
ns o
f
t
h
i
s
part
i
c
ul
ar m
odel
can be
ex
tend
ed
to
th
e power syste
m
s with
mu
ch
larg
er
n
u
m
b
e
r
of
buses. Th
e vo
ltag
e
d
i
stor
tio
ns can
b
e
ef
f
i
ci
ently and simply analy
zed using the ‘MiPower’
so
ft
ware. Th
e
sam
e
cases can
b
e
o
b
s
erv
e
d
co
nsid
eri
n
g
t
h
e syste
m
e
ith
er witho
u
t
an
y filter o
r
with
a fin
ite
n
u
m
b
e
r o
f
filters.
REFERE
NC
ES
[1]
C.K. Duffey
an
d R.P. Str
a
tford
.
"Upda
te of Harmonic Standard
IEEE-519",
I
E
EE Recommend
ed Practices an
d
Re
quire
me
nts for Harmonic
Contro
l in
El
ectr
i
cal
Power
S
y
s
t
ems
,
Paper No. PCIC-88-7. Pp. 1618-1
624, 1989
.
[2]
G.
T.
H
e
y
d
t, W.M.
Grady
and D
.
Xi
a. "Harmonic Power Flow S
t
udies",
Theoretical Basis,
EPRI
EL-3300,
project
1764-7, E
l
ectric
Power R
e
search
Institut
e
, Palo
Alto, CA, Vol. 1
,
1983.
[3]
G.
T.
Hey
d
t,
W.
M.
Grady
and D.
Xi
a. "Harmonic Power Flow St
udies",
Users'
Guide, EPRI EL-3
300-CCM, project
1764-7, E
l
ectric
Power R
e
search
Institut
e
, Palo
Alto, CA, Vol. 2
,
1983.
[4]
C
y
hharmog.
Harmonic Analysis
by Cy
me International
Inc.,
1485
Roberval, Suite
204, St. Bruno,
Quebec, Can
a
da.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-87
92
IJA
P
E Vol
.
3
,
No
. 1, A
p
ri
l
20
14
:
67
–
7
4
74
[5]
Fang Zheng Peng, Hirofumi Akagi and
Akira
Nabae. "A
New Approach to
Harmonic Compensation in Pow
e
r
S
y
stems- A Co
mbined S
y
stem of Shunt
Passive and Series Active Filters",
IEEE Transact
i
ons on Industry
Applica
tions
, Vol/Issue: 26(6)
, 19
90.
[6]
L. G
y
ug
yi
and
R.A. Otto
. "Sta
t
i
c VAR Com
p
e
n
sati
on of
El
ect
ric Arc
F
u
rnac
e
s
," pres
ent
e
d a
t
the
VIE
mee
tin
g
,
Lieg
e, Belg
ium,
1976.
[7]
D. Divan, B. Banerjee, D
.
Pi
lleg
i, R
.
Zavadil
an
d D. Atwood. "
D
esign of
an active
series/passi
v
e
par
a
llel h
a
rmonic
filte
r for ASD loads at a waste-
water tr
eatm
e
nt
plant",
Proceedings of Second I
n
ter
national Co
nference on Po
wer
Quality
, sponsored b
y
El
ectr
i
c Power Research
I
n
stitute, At
lant
a, Septem
ber
28-3
0
, 1992
.
[8]
Hideaki Fujita
and Hirofumi Akagi. "The Unified Quality
Conditioner: The Integ
r
ation
of Ser
i
es-
and Shunt-Activ
e
Filters",
I
E
EE T
r
ansactions on Power Electronics
, Vol/Issue: 13(2
)
, 1998
.
[9]
E.W
.
Kim
b
ark
.
Dire
c
t
Curre
nt Transmission
, Vol.1, John Wiley
and S
ons, Inc. New York, 1971.
[10]
Dam
i
an A. Gon
zal
ez and John C. Mccal
l. "Design of F
ilters to Reduce Harm
onic Distortion in
Industrial Powe
r
S
y
ste
m
s",
IEEE Transactions
on I
ndustry Applica
tions
, Vol/Issue:
IA-23(3), 1987.
BIOGRAP
HI
ES
OF AUTH
ORS
Ar
y
a
n Kaushik
is with the
Department of
Electr
i
c
a
l and
Electron
i
cs
E
ngineer
ing, ITM
Univers
i
t
y
,
Gurg
aon, H
a
r
y
ana
,
I
n
dia (
E
-m
ail:
er
.a
r
y
ank
a
us
hik@g
m
ail.com
)
J
y
othi Var
a
nasi is with the Department of
Electrical
and Electronics Engineer
ing, ITM
Univers
i
t
y
,
Gurg
aon, H
a
r
y
ana
,
I
n
dia (
E
-m
ail:
j
y
o
t
ivaran
as
i@itm
in
dia.
edu)
Evaluation Warning : The document was created with Spire.PDF for Python.