I
nte
rna
t
io
na
l J
o
urna
l o
f
Appl
ied P
o
w
er
E
ng
ineering
(
I
J
AP
E
)
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
201
5
,
p
p
.
77
~
83
I
SS
N:
2252
-
8792
77
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
APE
Underw
a
ter
Ta
rg
et
Tra
c
k
ing
Using
Unscen
ted
K
a
l
ma
n F
ilter
M.
Na
lin
i Sa
ntho
s
h
*
,
S.
K
o
t
esw
a
ra
Ra
o
**
,
R.
P
.
Da
s
*
*
*
*
D
e
p
a
rt
m
e
n
t
o
f
ECE
,
Vig
n
a
n
'
s
In
stit
u
te
o
f
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
,
V
isa
k
h
a
p
a
tn
a
m
,
A
.
P
.
,
In
d
ia
*
*
De
p
a
rt
m
e
n
t
o
f
ECE
,
K.L
Un
iv
e
rsit
y
,
A
.
P
.
,
In
d
ia
***
He
a
d
o
f
th
e
De
p
a
rt
m
e
n
t
(HO
D) o
f
ECE
,
V
ig
n
a
n
’
s I
n
stit
u
te
o
f
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
,
a
n
d
V
isa
k
h
a
p
a
tn
a
m
,
In
d
ia.
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Mei
7
,
2
0
1
5
R
ev
i
s
ed
Ju
n
1
9
,
2
0
1
5
A
cc
ep
ted
J
u
l
2
1
,
2
0
1
5
Un
li
k
e
c
o
n
v
e
n
ti
o
n
a
l
a
c
ti
v
e
so
n
a
r,
th
a
t
tran
sm
it
s
th
e
so
u
n
d
si
g
n
a
ls
a
n
d
re
v
e
a
li
n
g
th
e
ir
p
re
se
n
c
e
a
n
d
p
o
siti
o
n
to
e
n
e
m
y
f
o
rc
e
s.
T
h
e
p
ro
b
a
b
le
a
d
v
a
n
tag
e
o
f
p
a
ss
iv
e
so
n
a
r
is
th
a
t
it
d
e
tec
ts
th
e
sig
n
a
ls
e
m
it
ted
b
y
th
e
targ
e
t,
lea
d
s
to
im
p
ro
v
e
lo
c
a
li
z
a
ti
o
n
,
targ
e
t
trac
k
in
g
,
a
n
d
c
a
teg
o
riza
ti
o
n
.
T
h
e
c
h
a
ll
e
n
g
in
g
a
sp
e
c
t
is
to
e
stim
a
te
th
e
tru
e
b
e
a
rin
g
a
n
d
f
re
q
u
e
n
c
y
m
e
a
su
re
m
e
n
ts
f
ro
m
th
e
n
o
isy
m
e
a
su
re
m
e
n
ts
o
f
th
e
tar
g
e
t.
He
re
in
th
is
p
a
p
e
r,
it
is
re
c
o
m
m
e
n
d
e
d
f
o
r
th
e
Un
sc
e
n
ted
Ka
lm
a
n
F
il
ter
(UK
F
)
t
o
trac
k
th
e
targ
e
t
b
y
u
sin
g
th
e
se
n
o
is
y
m
e
a
su
re
m
e
n
ts.
T
h
e
Targ
e
t
M
o
ti
o
n
A
n
a
l
y
s
is
(T
M
A
),
w
h
ich
is
th
e
w
a
y
to
f
in
d
th
e
t
a
rg
e
t’s
traje
c
to
r
y
b
y
u
sin
g
f
re
q
u
e
n
c
y
a
n
d
b
e
a
rin
g
m
e
a
su
re
m
e
n
ts,
is
e
x
p
lo
re
d
.
T
h
is
m
e
th
o
d
p
r
o
v
id
e
s
a
tac
ti
c
a
l
a
d
v
a
n
tag
e
o
v
e
r
th
e
c
las
sic
a
l
b
e
a
rin
g
o
n
ly
trac
k
in
g
targ
e
t
m
o
ti
o
n
a
n
a
ly
sis.
It
m
a
k
e
s th
e
o
b
se
rv
e
r
m
a
n
e
u
v
e
r
u
n
n
e
c
e
ss
a
r
y
.
K
ey
w
o
r
d
:
Kal
m
a
n
f
ilter
T
ar
g
et
Mo
tio
n
A
n
a
l
y
s
is
T
ar
g
et
Mo
tio
n
P
ar
am
eter
s
Co
p
y
rig
h
t
©
2
0
1
5
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
M.
Nalin
i Sa
n
t
h
o
s
h
,
Dep
ar
t
m
en
t o
f
E
C
E
,
Vig
n
an
's I
n
s
tit
u
te
o
f
I
n
f
o
r
m
a
tio
n
T
ec
h
n
o
lo
g
y
,
Vis
ak
h
ap
at
n
a
m
,
A
.
P
.
,
I
n
d
ia.
E
m
ail:
n
ali
n
is
a
n
t
h
o
s
h
2
1
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
is
p
r
o
j
e
ct
co
n
ce
r
n
s
w
i
th
a
n
u
n
d
er
w
ater
T
ar
g
et
Mo
tio
n
An
al
y
s
i
s
(
T
MA
)
i
n
th
e
p
ass
i
v
e
m
o
d
e.
Her
e
th
e
tar
g
et
i
s
a
s
s
u
m
ed
to
b
e
m
o
v
in
g
w
it
h
a
u
n
i
f
o
r
m
v
elo
cit
y
.
T
h
e
s
o
u
n
d
s
i
g
n
al
s
f
r
o
m
th
e
ta
r
g
et
ar
e
o
b
tain
ed
at
th
e
o
w
n
s
h
ip
’
s
s
en
s
o
r
.
T
h
ese
s
o
u
n
d
s
i
g
n
als
ar
e
p
r
o
ce
s
s
ed
b
y
t
h
e
o
w
n
s
h
ip
i
n
o
r
d
er
to
f
i
n
d
o
u
t
th
e
T
ar
g
et
Mo
tio
n
P
ar
am
eter
s
(
T
MP
)
w
h
ich
ar
e
b
ea
r
in
g
,
r
an
g
e,
s
p
ee
d
an
d
co
u
r
s
e
o
f
t
h
e
tar
g
et.
P
ass
iv
e
tar
g
et
tr
ac
k
i
n
g
(
P
T
T
)
is
a
w
a
y
to
f
in
d
th
e
p
ath
o
f
th
e
tar
g
et
ex
cl
u
s
iv
el
y
f
r
o
m
m
ea
s
u
r
e
m
en
t
s
(
s
ig
n
als)
o
r
ig
i
n
ati
n
g
f
r
o
m
th
e
tar
g
et.
An
y
b
o
d
y
u
n
d
er
th
e
w
ater
w
ill
g
en
er
ate
ac
o
u
s
tic
t
u
r
b
u
le
n
ce
o
r
s
ig
n
al
f
r
o
m
s
el
f
g
e
n
er
ated
n
o
is
e
o
r
w
h
ile
in
m
o
t
io
n
.
T
h
ese
n
o
is
e
s
ig
n
al
s
f
r
o
m
th
e
tar
g
et
ar
e
o
b
s
er
v
ed
b
y
th
e
o
w
n
s
h
ip
’
s
s
o
lar
s
e
n
s
o
r
.
T
h
e
in
f
o
r
m
atio
n
t
h
at
i
s
ac
q
u
ir
ed
at
th
e
o
w
n
s
h
ip
s
e
n
s
o
r
i
s
t
h
e
n
o
is
y
b
ea
r
in
g
s
an
d
f
r
eq
u
en
c
y
m
ea
s
u
r
e
m
e
n
t
s
o
f
t
h
e
tar
g
et.
T
h
u
s
,
t
h
e
r
ad
iated
s
p
ec
tr
u
m
c
o
m
p
r
i
s
es
o
f
co
n
tin
u
e
s
s
p
ec
tr
u
m
o
f
n
o
is
e
w
it
h
p
ea
k
s
(
to
n
a
ls
)
at
ce
r
tain
f
r
eq
u
en
c
ies
w
h
ic
h
ca
n
b
e
u
s
e
d
f
o
r
f
u
r
t
h
er
class
i
f
icatio
n
.
W
h
en
t
h
e
h
ar
m
o
n
ic
co
m
p
o
n
e
n
ts
ar
e
em
i
tted
b
y
th
e
s
o
u
r
ce
,
t
h
ese
h
ar
m
o
n
ic
co
m
p
o
n
en
t
s
w
il
l
e
x
p
er
ien
ce
a
Do
p
p
ler
s
h
i
f
t
s
at
th
e
o
w
n
s
h
ip
.
D
u
e
to
th
e
s
e
f
r
eq
u
e
n
c
y
m
ea
s
u
r
e
m
e
n
t
s
th
e
ac
c
u
r
ac
y
o
f
th
e
esti
m
ated
tar
g
et
m
o
tio
n
p
ar
a
m
eter
s
w
ill
i
n
cr
ea
s
es.
T
h
e
u
s
e
o
f
b
o
th
b
ea
r
in
g
an
g
le
s
a
n
d
Do
p
p
ler
s
h
i
f
ts
to
an
al
y
ze
a
m
o
v
i
n
g
tar
g
et
is
ter
m
ed
as Do
p
p
ler
B
ea
r
in
g
T
r
ac
k
in
g
(
DB
T
)
.
DB
T
h
as
an
ad
v
a
n
ta
g
e
o
v
er
B
OT
,
i.e
.
,
DB
T
d
o
es
n
o
t
i
n
v
o
l
v
e
o
w
n
s
h
ip
’
s
m
a
n
eu
v
er
i
n
g
to
o
b
tain
tar
g
et
m
o
tio
n
p
ar
am
eter
s
[
1
]
.
T
MA
f
o
r
DB
T
,
s
o
f
ar
ca
r
r
ied
o
u
t
b
y
t
w
o
g
r
o
u
p
s
-
r
ec
u
r
s
i
v
e
in
s
tr
u
m
en
ta
l
v
ar
iab
les
m
et
h
o
d
[
1
]
an
d
b
atch
p
r
o
ce
s
s
in
g
m
et
h
o
d
s
s
u
ch
as
ML
E
[
2
]
.
T
h
e
w
o
r
k
ca
r
r
ied
o
u
t
in
[
2
]
is
n
o
t
s
u
it
ab
le
f
o
r
r
ea
l
tim
e
ap
p
licatio
n
s
as
s
o
l
u
tio
n
is
es
tab
lis
h
ed
b
y
u
s
i
n
g
s
ea
r
ch
tec
h
n
iq
u
e
.
So
th
e
b
atc
h
p
r
o
ce
s
s
in
g
lik
e
M
a
x
i
m
u
m
L
i
k
eli
h
o
od
E
s
ti
m
ato
r
ca
n
n
o
t
b
e
im
p
le
m
e
n
ted
in
th
e
r
ea
l
s
c
en
ar
io
.
I
n
p
r
ac
tice,
it
is
r
eq
u
ir
ed
to
esti
m
ate
ea
ch
s
a
m
p
le
o
n
ev
er
y
ar
r
iv
al
o
f
r
ec
en
t
m
ea
s
u
r
e
m
e
n
t.
T
h
e
r
ec
u
r
s
iv
e
i
n
s
tr
u
m
en
ta
l
v
ar
iab
le
m
et
h
o
d
[
1
]
is
b
ased
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
2
0
1
5
:
77
–
83
78
p
s
eu
d
o
li
n
ea
r
f
o
r
m
atio
n
.
I
n
th
eir
w
o
r
k
,
t
h
e
s
tr
o
n
g
b
ias
g
e
n
e
r
ated
b
y
p
s
e
u
d
o
lin
ea
r
f
o
r
m
ati
o
n
is
m
i
n
i
m
is
ed
b
y
u
s
i
n
g
th
e
e
s
ti
m
ated
b
ea
r
in
g
i
n
th
e
p
lace
o
f
m
ea
s
u
r
ed
b
ea
r
in
g
.
T
h
e
esti
m
atio
n
ac
cu
r
ac
y
o
f
th
e
i
n
s
tr
u
m
en
ta
l
v
ar
iab
le
tech
n
iq
u
e
ca
n
attai
n
th
e
C
r
a
m
er
-
R
ao
lo
w
er
b
o
u
n
d
f
o
r
Gau
s
s
ian
n
o
is
e
at
m
o
d
er
ate
n
o
is
e
lev
e
ls
.
R
ec
en
t
l
y
“
co
n
s
tr
ai
n
ed
lea
s
t
s
q
u
ar
es
m
i
n
i
m
izatio
n
”
w
it
h
s
eq
u
en
t
ial
p
r
o
ce
s
s
i
n
g
[
3
]
is
p
r
o
p
o
s
ed
.
T
h
is
is
p
r
o
v
e
n
to
b
e
as
y
m
p
to
tica
ll
y
u
n
b
iased
.
I
f
th
e
m
ea
s
u
r
e
m
e
n
ts
ar
e
li
n
e
ar
th
en
th
e
e
s
ti
m
atio
n
o
f
p
ar
a
m
eter
s
ca
n
b
e
d
o
n
e
b
y
K
al
m
a
n
f
ilter
.
B
u
t
in
r
ea
l
w
o
r
ld
,
n
o
li
n
ea
r
s
y
s
te
m
s
w
i
l
l
ex
is
t
s
.
T
h
o
u
g
h
t
t
h
e
E
x
ten
d
ed
K
al
m
a
n
f
ilter
is
u
s
ed
f
o
r
n
o
n
li
n
ea
r
ap
p
licatio
n
in
co
n
tr
ast
o
n
l
y
ac
h
iev
e
s
f
ir
s
t
o
r
d
er
ac
cu
r
ac
y
.
So
,
E
KF
is
n
o
t
u
s
ed
f
o
r
h
ig
h
n
o
n
li
n
ea
r
it
y
s
y
s
te
m
s
[
4
]
.
So
,
h
er
e
in
th
is
p
ap
er
th
e
Un
s
ce
n
ted
Kal
m
a
n
F
ilter
is
u
s
ed
to
tr
ac
k
th
e
tar
g
et
b
y
es
ti
m
ati
n
g
th
e
T
MP
f
r
o
m
th
e
n
o
is
y
b
ea
r
i
n
g
an
d
f
r
eq
u
e
n
c
y
m
ea
s
u
r
e
m
e
n
ts
an
d
th
is
alg
o
r
it
h
m
is
n
a
m
ed
a
s
Do
p
p
ler
B
ea
r
in
g
Un
s
ce
n
ted
K
al
m
an
F
ilter
(
DB
UKF)
.
T
h
u
s
,
n
o
b
ias
w
il
l b
e
p
r
o
d
u
ce
d
.
Her
e
,
ass
u
m
i
n
g
t
h
at
t
h
e
m
ea
s
u
r
e
m
en
t
s
ar
e
av
ailab
le
f
r
o
m
th
e
to
w
ed
ar
r
a
y
o
f
t
h
e
o
w
n
s
h
ip
.
T
h
e
s
o
n
ar
h
y
d
r
o
p
h
o
n
e
s
m
a
y
b
e
to
w
ed
b
eh
i
n
d
th
e
o
w
n
s
h
ip
i
n
o
r
d
er
to
r
ed
u
ce
th
e
ef
f
ec
t
o
f
n
o
i
s
e
g
en
er
ated
b
y
t
h
e
o
w
n
s
h
ip
its
el
f
.
I
n
th
is
t
h
e
Do
p
p
ler
s
h
i
f
t
i
n
t
h
e
f
r
eq
u
en
c
y
m
ea
s
u
r
e
m
en
t
is
d
escr
ib
ed
in
ter
m
s
o
f
t
h
e
s
p
ee
d
o
f
th
e
p
r
o
p
ag
atio
n
o
f
s
o
u
n
d
in
w
a
te
r
an
d
in
o
w
n
s
h
ip
,
tar
g
et
s
p
ee
d
co
m
p
o
n
e
n
ts
.
T
h
e
ze
r
o
m
ea
n
Gau
s
s
ian
n
o
is
e
i
s
ass
u
m
ed
to
b
e
p
r
ese
n
t
i
n
t
h
e
m
ea
s
u
r
e
m
e
n
t
s
a
n
d
th
e
n
o
is
e
i
n
t
h
e
b
ea
r
in
g
m
ea
s
u
r
e
m
e
n
t
is
n
o
t
co
r
r
elate
d
w
ith
th
at
o
f
f
r
eq
u
e
n
c
y
m
ea
s
u
r
e
m
e
n
t.
I
t
is
also
as
s
u
m
ed
th
a
t
th
e
m
ea
s
u
r
e
m
e
n
t
s
ar
e
co
n
ti
n
u
o
u
s
l
y
av
ai
lab
le
at
ev
er
y
s
ec
o
n
d
.
Her
e
t
h
e
s
u
m
o
f
th
e
to
n
als
is
tak
e
n
a
s
a
s
tate
v
ar
iab
le
in
th
e
s
ta
te
v
ec
to
r
.
T
h
e
co
n
ce
p
t
o
f
co
n
s
ta
n
t
s
tate
v
ec
to
r
f
o
r
m
u
latio
n
[
1
]
,
th
at
t
h
e
d
i
m
en
s
io
n
o
f
s
tate
v
ec
to
r
d
o
es
n
o
t
i
n
cr
ea
s
e
with
th
e
n
u
m
b
er
o
f
f
r
eq
u
en
c
y
to
n
a
ls
is
f
o
llo
w
ed
.
2.
M
AT
H
E
M
AT
I
CAL M
O
DE
L
I
N
G
2
.
1
.
M
o
t
io
n o
f
T
he
O
w
ns
hip
(O)
T
h
e
o
w
n
s
h
ip
m
o
tio
n
is
ca
r
r
ied
o
u
t
as
s
h
o
w
n
i
n
t
h
e
f
i
g
.
1
.
Ass
u
m
in
g
t
h
at
t
h
e
o
w
n
s
h
ip
(
o
b
s
er
v
er
)
i
s
m
o
v
i
n
g
w
i
th
a
v
elo
cit
y
v
o
,
t
h
e
d
is
ta
n
ce
o
f
t
h
e
o
w
n
s
h
ip
f
r
o
m
x
-
co
o
r
d
in
ate
is
0
x
,
th
e
d
is
ta
n
ce
o
f
t
h
e
o
w
n
s
h
ip
f
r
o
m
y
-
co
o
r
d
in
ate
is
0
y
an
d
OC
R
is
th
e
a
n
g
le
m
ad
e
b
y
t
h
e
o
w
n
s
h
ip
w
.
r
.
t tr
u
e
n
o
r
t
h
.
Fig
u
r
e
1
.
O
w
n
S
h
ip
’
s
Mo
tio
n
in
T
h
e
C
o
o
r
d
in
ate
Ax
i
s
0
0
)
s
i
n
(
v
o
c
r
x
(
1
)
0
0
)
c
o
s
(
v
o
c
r
y
(
2
)
Af
ter
ev
er
y
s
ec
o
n
d
,
th
e
ch
a
n
g
e
in
X
an
d
Y
co
m
p
o
n
en
t
o
f
t
h
e
o
w
n
s
h
ip
ar
e
ad
d
ed
to
th
e
p
r
ev
io
u
s
X
an
d
Y
co
m
p
o
n
en
t
s
o
f
t
h
e
o
w
n
s
h
ip
p
o
s
itio
n
.
Fo
r
t
=1
s
ec
t
o
c
r
v
dx
)
s
i
n
(
0
0
(
3
)
t
o
c
r
v
dy
)
c
o
s
(
0
0
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
Un
d
erw
a
ter Ta
r
g
et
T
r
a
ck
in
g
Usi
n
g
Un
s
ce
n
ted
K
a
lma
n
F
ilter
(
M.
N
a
lin
i S
a
n
th
o
s
h
)
79
W
h
er
e,
ch
a
n
g
e
i
n
X
co
m
p
o
n
en
t
o
f
t
h
e
o
w
n
s
h
ip
in
1
s
ec
i
s
0
dx
an
d
c
h
a
n
g
e
in
y
d
ir
ec
tio
n
o
f
t
h
e
o
w
n
s
h
ip
in
1
s
ec
is
0
dy
,
0
v
is
t
h
e
v
el
o
cit
y
o
f
o
w
n
s
h
ip
,
Ocr
is
t
h
e
o
w
n
s
h
ip
co
u
r
s
e,
)
,
(
0
0
y
x
is
th
e
o
w
n
s
h
i
p
p
o
s
itio
n
.
So
,
0
0
0
0
0
0
dy
y
y
dx
x
x
2
.
2
.
I
nitia
l P
o
s
it
io
n o
f
t
he
T
a
rg
et
T
h
e
tar
g
et
(
T
)
is
ass
u
m
ed
to
b
e
m
o
v
i
n
g
w
ith
a
co
n
s
ta
n
t v
e
lo
cit
y
as
f
o
llo
w
s
F
ig
u
r
e
2
.
T
a
r
g
et’
s
P
o
s
itio
n
in
T
h
e
C
o
o
r
d
in
ate
A
x
is
w
h
er
e,
O
is
th
e
o
b
s
er
v
er
o
r
o
w
n
s
h
ip
,
T
is
th
e
tar
g
et
,
R
is
r
an
g
e
,
B
is
b
ea
r
in
g
i.e
,
an
g
le
b
et
w
ee
n
o
w
n
s
h
ip
(
O)
an
d
tar
g
et
(
T
)
.
X
t
=R
*
s
i
n
(
B
)
(
6
)
Y
t
=R
*
co
s
(
B
)
(
7
)
W
h
er
e
,
(
X
t
,Y
t
)
is
th
e
p
o
s
itio
n
o
f
t
h
e
tar
g
et
w
it
h
r
esp
ec
t to
o
w
n
s
h
ip
as o
r
ig
i
n
.
2
.
3
.
M
o
delin
g
f
o
r
Sta
t
es
:
T
h
e
s
et
o
f
m
ea
s
u
r
ed
d
ata
co
n
s
is
ts
o
f
f
r
eq
u
e
n
c
y
a
n
d
b
ea
r
in
g
m
ea
s
u
r
e
m
e
n
t
s
.
T
h
e
m
ea
s
u
r
e
m
e
n
t v
ec
to
r
i
z
is
g
i
v
en
b
y
i
F
i
B
i
z
m
m
(
8
)
T
h
e
m
ea
s
u
r
ed
b
ea
r
in
g
i
s
g
iv
e
n
as
i
γ
i
B
i
B
B
m
(
9
)
W
h
er
e
,
)
(
i
B
m
is
th
e
m
ea
s
u
r
ed
b
ea
r
i
n
g
,
r
elati
v
e
to
th
e
Y
-
a
x
is
at
th
i
in
s
tan
t
)
.
.
.
.
.
2
,
1
(
n
i
,
)
(
i
B
is
t
h
e
ac
t
u
al
b
ea
r
in
g
a
n
d
)
(
i
B
is
a
Gau
s
s
ia
n
R
a
n
d
o
m
Var
iab
le
(
GR
V)
w
it
h
ze
r
o
m
ea
n
a
n
d
v
ar
ian
ce
)
(
2
i
B
.
)
(
i
B
is
g
iv
e
n
b
y
i
R
i
R
i
B
y
x
t
a
n
(
5
)
(
1
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
2
0
1
5
:
77
–
83
80
I
n
s
o
n
ar
,
a
b
r
o
ad
b
an
d
n
o
is
e
is
g
e
n
er
all
y
ac
co
m
p
a
n
ied
b
y
o
n
e
o
r
m
o
r
e
to
n
al
s
.
T
h
ese
to
n
als
ar
e
co
n
s
ta
n
t
i
n
f
r
eq
u
en
c
y
a
n
d
b
ec
au
s
e
o
f
Do
p
p
ler
s
h
i
f
t
;
a
p
ar
tic
u
lar
f
r
eq
u
en
c
y
m
ea
s
u
r
ed
b
y
t
h
e
o
w
n
s
h
ip
is
g
i
v
e
n
by
i
γ
C
i
B
i
R
i
B
i
R
i
f
i
f
(
j
)
f
y
x
(
j
)
s
(
j
)
m
c
o
s
s
i
n
1
(
1
1
)
W
h
er
e,
t
h
e
th
j
)
.
.
.
3
,
2
,
1
(
n
j
f
r
eq
u
en
c
y
m
ea
s
u
r
ed
b
y
t
h
e
o
w
n
s
h
ip
at
th
i
in
s
ta
n
t
is
)
(
)
(
i
f
j
m
,
th
e
u
n
k
n
o
w
n
co
n
s
ta
n
t
s
o
u
r
ce
f
r
e
q
u
en
c
y
i
s
,
th
e
s
p
ee
d
o
f
p
r
o
p
ag
atio
n
o
f
th
e
s
ig
n
al
is
,
)
(
)
(
i
j
f
is
t
h
e
ze
r
o
m
ea
n
Ga
u
s
s
ian
r
an
d
o
m
f
r
eq
u
en
c
y
m
ea
s
u
r
e
m
e
n
t
er
r
o
r
w
it
h
v
ar
ia
n
ce
2
f
.
x
R
an
d
y
R
ar
e
co
m
p
o
n
en
t
s
o
f
r
elativ
e
v
elo
cit
y
b
et
w
ee
n
t
h
e
tar
g
et
an
d
th
e
o
w
n
s
h
ip
.
2
.
4
.
Alg
o
ri
t
h
m
f
o
r
Uns
ce
nte
d K
a
l
m
a
n F
ilte
r
Un
s
ce
n
ted
tr
a
n
s
f
o
r
m
at
io
n
is
a
w
a
y
to
ap
p
r
o
x
i
m
a
te
h
o
w
t
h
e
m
ea
n
a
n
d
co
v
ar
ia
n
ce
o
f
a
r
an
d
o
m
v
ar
iab
le
ch
a
n
g
e
w
h
e
n
t
h
e
r
an
d
o
m
v
ar
iab
le
u
n
d
er
g
o
es
a
n
o
n
l
i
n
ea
r
tr
an
s
f
o
r
m
a
tio
n
.
C
o
n
s
id
er
a
r
an
d
o
m
v
ar
iab
le
x
(
d
i
m
e
n
s
io
n
1
L
)
p
r
o
p
ag
atin
g
t
h
r
o
u
g
h
a
n
o
n
li
n
ea
r
f
u
n
c
tio
n
,
)
(
x
o
y
A
s
s
u
m
e
x
h
as
m
ea
n
x
an
d
co
v
ar
ian
ce
x
P
.
T
o
ca
lcu
late
t
h
e
s
tatis
tic
s
o
f
y
a
m
at
r
i
x
χ
o
f
1
2
1
L
s
ig
m
a
v
ec
to
r
s
j
χ
(
w
it
h
co
r
r
esp
o
n
d
in
g
w
ei
g
h
ts
j
W
)
,
is
f
o
r
m
ed
ac
co
r
d
i
n
g
to
th
e
f
o
llo
w
i
n
g
eq
u
atio
n
[
4
]
:
1
1
2
1
0
1
0
1
1
1
1
1
0
2
1
2
1
1
2
1
1
1
L
,
.
.
.
,
j
L
W
W
λ
L
λ
W
λ
L
λ
W
L
,
.
.
.
,
L
j
P
λ
L
x
χ
,
.
.
.
,
L
j
P
λ
L
x
χ
x
c
j
m
j
c
m
L
j
x
j
j
x
j
(
1
9
)
w
h
er
e
1
1
2
L
κ
L
λ
is
a
s
ca
li
n
g
p
ar
a
m
et
er
.
d
eter
m
in
e
s
th
e
s
p
r
ea
d
o
f
th
e
s
ig
m
a
p
o
in
t
s
ar
o
u
n
d
x
an
d
is
u
s
u
all
y
s
et
to
a
s
m
all
p
o
s
iti
v
e
v
al
u
e,
κ
is
a
s
ec
o
n
d
ar
y
s
ca
li
n
g
p
ar
a
m
eter
wh
ich
is
u
s
u
a
ll
y
s
et
to
0
an
d
is
u
s
ed
to
in
co
r
p
o
r
ate
p
r
io
r
k
n
o
w
led
g
e
o
f
t
h
e
d
is
tr
ib
u
tio
n
o
f
x
(
f
o
r
Gau
s
s
ian
d
i
s
tr
ib
u
tio
n
s
,
2
is
o
p
tim
al)
.
j
x
P
L
1
is
th
e
th
j
r
o
w
o
f
th
e
m
atr
ix
s
q
u
ar
e
r
o
o
t.
m
W
0
,
c
W
0
,
m
W
an
d
c
W
ar
e
th
e
w
ei
g
h
ts
o
f
i
n
it
ialized
tar
g
e
t
s
t
ate
v
ec
to
r
,
co
v
ar
ia
n
ce
m
atr
i
x
o
f
i
n
itialized
tar
g
et
s
tate
v
ec
to
r
,
tar
g
et
s
ta
te
s
i
g
m
a
p
o
in
t
v
ec
to
r
an
d
co
v
ar
ian
ce
m
atr
i
x
o
f
tar
g
et
s
tate
s
i
g
m
a
p
o
in
t
v
ec
to
r
r
esp
ec
tiv
el
y
.
T
h
ese
s
ig
m
a
v
ec
to
r
s
ar
e
p
r
o
p
ag
ated
th
r
o
u
g
h
t
h
e
n
o
n
li
n
ea
r
f
u
n
ctio
n
1
2
1
L
,
.
.
.
,
j
χ
o
y
j
j
(
2
0
)
T
h
e
m
ea
n
a
n
d
co
v
ar
ian
ce
ar
e
ap
p
r
o
x
im
ated
u
s
in
g
a
w
eig
h
t
ed
s
a
m
p
le
m
ea
n
a
n
d
co
v
ar
ian
ce
o
f
th
e
p
o
s
ter
io
r
s
ig
m
a
p
o
in
t
s
[
4
].
UKF
is
a
s
tr
ai
g
h
t
f
o
r
w
ar
d
ex
t
en
s
io
n
o
f
t
h
e
u
n
s
ce
n
ted
tr
an
s
f
o
r
m
atio
n
to
th
e
r
ec
u
r
s
i
v
e
es
t
i
m
atio
n
.
I
n
UKF,
t
h
e
s
tate
r
an
d
o
m
v
ar
iab
le
is
r
ed
ef
i
n
ed
a
s
t
h
e
co
n
ca
te
n
a
tio
n
o
f
th
e
o
r
ig
i
n
al
s
tate
a
n
d
n
o
is
e
v
ar
i
ab
les.
T
h
e
u
n
s
ce
n
ted
tr
an
s
f
o
r
m
atio
n
s
i
g
m
a
p
o
in
t
s
elec
t
io
n
s
ch
e
m
e
i
s
ap
p
lied
to
th
i
s
n
e
w
a
u
g
m
en
ted
s
tate
r
an
d
o
m
v
ar
iab
le
to
ca
lcu
late
t
h
e
co
r
r
e
s
p
o
n
d
in
g
s
ig
m
a
m
atr
ix
.
T
h
e
s
tan
d
ar
d
UKF
i
m
p
le
m
en
t
atio
n
co
n
s
i
s
ts
o
f
th
e
f
o
llo
w
i
n
g
s
tep
s
:
a.
B
y
u
s
i
n
g
s
i
g
m
a
p
o
in
ts
s
tar
ti
n
g
f
r
o
m
t
h
e
i
n
itial
co
n
d
it
io
n
s
)
1
2
(
n
s
tate
v
ec
to
r
s
ar
e
ca
lcu
la
ted
,
w
h
er
e
n
is
d
i
m
e
n
s
io
n
o
f
tar
g
et
s
tate
v
ec
to
r
i
Ρ
λ
n
i
X
i
Ρ
λ
n
i
Χ
i
Χ
i
Χ
S
S
S
(
2
1
)
th
j
)
j
(
s
f
C
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
Un
d
erw
a
ter Ta
r
g
et
T
r
a
ck
in
g
Usi
n
g
Un
s
ce
n
ted
K
a
lma
n
F
ilter
(
M.
N
a
lin
i S
a
n
th
o
s
h
)
81
b.
C
o
n
v
er
s
io
n
o
f
th
e
s
e
s
i
g
m
a
p
o
in
ts
t
h
r
o
u
g
h
t
h
e
p
r
o
ce
s
s
m
o
d
el
u
s
i
n
g
eq
n
.
(
1
6
)
.
c.
T
h
e
p
r
e
d
ictio
n
o
f
th
e
s
tate
esti
m
ate
at
ti
m
e
1
i
w
it
h
m
ea
s
u
r
e
m
e
n
ts
u
p
to
ti
m
e
i
is
g
i
v
en
a
s
n
j
S
m
j
S
i
i
j
Χ
W
i
i
Χ
2
0
,
1
,
,
1
d.
As th
e
p
r
o
ce
s
s
n
o
is
e
is
ad
d
iti
v
e
an
d
in
d
ep
en
d
en
t,
t
h
e
p
r
ed
icted
co
v
ar
ian
ce
is
g
i
v
e
n
as
i
Q
i
i
Χ
i
i
i
Χ
i
i
Χ
i
i
i
Χ
W
i
i
P
T
S
S
n
j
S
S
c
j
,
1
,
1
,
,
1
,
1
,
,
1
2
0
(
2
3
)
e.
Up
d
atin
g
o
f
th
e
s
ig
m
a
p
o
in
t
s
w
ith
th
e
p
r
ed
icted
m
ea
n
an
d
co
v
ar
ian
ce
.
T
h
e
u
p
d
ated
s
ig
m
a
p
o
in
ts
ar
e
g
i
v
en
a
s
i
i
P
λ
n
i
i
Χ
i
i
P
λ
n
i
i
Χ
i
i
X
i
i
X
S
S
S
,
1
,
1
,
1
,
1
,
1
,
1
(
2
4
)
f.
T
r
an
s
f
o
r
m
atio
n
o
f
ea
ch
o
f
t
h
e
p
r
ed
icted
p
o
in
ts
th
r
o
u
g
h
m
ea
s
u
r
e
m
e
n
t
m
o
d
el
eq
n
.
(
2
2
)
g.
P
r
ed
ictio
n
o
f
m
ea
s
u
r
e
m
e
n
t g
i
v
en
a
s
n
j
(
m)
j
i
i
.Y
W
i
i
z
2
0
,
1
,
1
ˆ
w
h
er
e
i
i
X
h
i
i
Y
S
,
1
,
1
(
2
6
)
h.
Sin
ce
th
e
m
ea
s
u
r
e
m
e
n
t
n
o
is
e
is
al
s
o
ad
d
itiv
e
a
n
d
i
n
d
ep
en
d
en
t,
th
e
i
n
n
o
v
atio
n
co
v
ar
ian
ce
is
g
iv
e
n
as
i
i
i
z
i
i
j
Y
i
i
z
i
i
j
Y
W
P
B
T
n
j
(
c
)
j
yy
2
2
0
,
1
ˆ
,
1
,
,
1
ˆ
,
1
,
i.
T
h
e
cr
o
s
s
co
v
ar
ian
ce
is
g
i
v
e
n
as
T
n
j
S
S
(
c
)
j
xy
i
i
z
i
i
j
Y
i
i
X
i
i
j
X
W
P
,
1
ˆ
,
1
,
,
1
,
1
,
2
0
j.
Kal
m
a
n
g
ai
n
i
s
ca
lcu
lated
as
1
1
yy
xy
.P
P
i
G
k.
T
h
e
esti
m
ated
s
tate
i
s
g
i
v
e
n
as
i
i
z
i
i
z
i
G
i
i
X
i
i
X
,
1
ˆ
1
,
1
ˆ
1
,
1
1
,
1
w
h
er
e
)
1
(
i
z
is
m
ea
s
u
r
e
m
en
t v
ec
to
r
.
l.
E
s
ti
m
a
ted
er
r
o
r
co
v
ar
ian
ce
is
g
iv
e
n
as
1
1
,
1
1
,
1
i
G
P
i
G
i
i
P
i
i
P
T
yy
(
2
2
)
(
2
5
)
(
2
7
)
(
2
8
)
(2
9)
(
3
0
)
(
3
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
2
0
1
5
:
77
–
83
82
3.
SI
M
UL
AT
I
O
N
A
ND
RE
SU
L
T
S
Usi
n
g
n
u
m
b
er
o
f
g
eo
m
e
tr
ies
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
i
s
alg
o
r
ith
m
is
e
v
al
u
ated
.
T
h
e
p
er
io
d
o
f
s
i
m
u
lat
io
n
is
1
8
0
0
s
an
d
th
e
m
ea
s
u
r
e
m
e
n
t
i
n
te
r
v
a
l
h
as
b
ee
n
co
n
s
id
er
ed
as
1
s
.
A
d
d
itiv
e
ze
r
o
m
ea
n
Gau
s
s
ia
n
n
o
is
e
co
r
r
u
p
ts
all
th
e
r
a
w
f
r
e
q
u
en
c
y
a
n
d
b
ea
r
in
g
m
ea
s
u
r
em
en
ts
w
it
h
a
m
a
x
i
m
u
m
lev
e
l
o
f
0
.
9
Hz
an
d
1
°
r
esp
ec
tiv
el
y
.
Her
e
all
a
n
g
les a
r
e
ca
lcu
lated
w
ith
r
esp
ec
t to
Y
-
ax
is
,
0
-
3
6
0
° an
d
clo
ck
w
i
s
e
p
o
s
itiv
e.
Her
e
in
th
i
s
p
ap
er
,
th
e
r
e
s
u
l
t
o
f
o
n
e
s
ce
n
ar
io
is
i
m
p
le
m
e
n
t
ed
b
y
u
s
i
n
g
th
e
I
n
it
ial
R
an
g
e
as
2
8
0
0
m
,
I
n
itial
B
ea
r
in
g
as
3
d
eg
,
T
ar
g
et
Sp
ee
d
as
5
m
/
s
,
T
ar
g
et
C
o
u
r
s
e
as
2
0
0
d
eg
,
Su
m
o
f
So
u
r
ce
Fre
q
u
en
cie
s
as
5
0
0
Hz,
O
w
n
s
h
ip
Sp
ee
d
as 5
m
/s
a
n
d
O
w
n
s
h
ip
C
o
u
r
s
e
as 2
2
5
d
eg
.
T
h
e
r
esu
lts
o
f
o
n
e
s
ce
n
ar
io
ar
e
s
h
o
w
n
i
n
f
i
g
u
r
es.
T
h
e
p
o
s
iti
o
n
o
f
th
e
tar
g
et
an
d
o
w
n
s
h
ip
is
s
h
o
w
n
i
n
th
e
Fig
u
r
e
1
.
T
h
e
est
i
m
a
ted
r
an
g
e
er
r
o
r
,
esti
m
ated
s
p
ee
d
er
r
o
r
an
d
th
e
esti
m
ate
d
co
u
r
s
e
er
r
o
r
ar
e
s
h
o
w
n
i
n
Fig
u
r
e
2
a,
Fig
u
r
e
2
b
an
d
Fig
u
r
e
2
c
r
esp
ec
tiv
el
y
.
I
n
u
n
d
er
w
a
ter
ap
p
licatio
n
s
th
e
ac
ce
p
tab
le
er
r
o
r
s
in
esti
m
ated
s
p
ee
d
,
co
u
r
s
e
an
d
r
an
g
e
ar
e
less
t
h
an
o
r
eq
u
al
to
2
0
%,
5
°
an
d
1
0
%
r
esp
ec
tiv
el
y
.
As
p
er
th
e
r
eq
u
ir
ed
ac
cu
r
ac
ies
t
h
e
en
t
ir
e
s
o
lu
t
io
n
o
f
th
e
e
s
ti
m
ated
p
ar
a
m
eter
s
s
p
ee
d
,
co
u
r
s
e
an
d
r
an
g
e
ar
e
o
b
tain
e
d
at
7
9
th
,
6
4
th
an
d
1
8
3
r
d
s
f
o
r
th
e
s
ce
n
ar
io
v
alu
es
g
i
v
en
ab
o
v
e.
Fig
u
r
e
1
.
T
h
e
Po
s
itio
n
o
f
T
h
e
T
ar
g
et
a
n
d
O
w
n
s
h
ip
Fig
u
r
e
2a
.
E
s
ti
m
ated
R
a
n
g
e
E
r
r
o
r
Fig
u
r
e
2b
.
E
s
ti
m
ated
Sp
ee
d
E
r
r
o
r
Fig
u
r
e
2c
.
E
s
ti
m
ated
C
o
u
r
s
e
E
r
r
o
r
4.
CO
NCLU
SI
O
N
No
w
a
d
a
y
s
t
h
er
e
ar
e
m
an
y
m
eth
o
d
s
f
o
r
o
b
tain
i
n
g
t
h
e
tar
g
e
t
tr
aj
ec
to
r
y
b
y
u
s
i
n
g
p
ass
i
v
e
s
o
n
ar
w
h
ich
is
in
s
talled
in
t
h
e
o
w
n
s
h
ip
w
it
h
o
u
t
m
an
o
e
u
v
r
i
n
g
.
I
t
is
v
er
y
d
if
f
icu
lt
to
ca
r
r
y
o
u
t
th
e
p
r
o
ce
s
s
u
n
til
t
h
e
r
eq
u
ir
ed
ac
cu
r
ac
y
i
s
ac
h
ie
v
ed
in
t
h
e
es
t
i
m
ated
tar
g
et
m
o
ti
o
n
p
ar
a
m
et
er
s
.
So
,
o
n
e
ca
n
u
s
e
DB
T
f
o
r
o
b
tain
in
g
t
h
e
tar
g
et
m
o
tio
n
p
ar
a
m
eter
s
w
i
th
o
u
t t
h
e
n
ee
d
o
f
m
a
n
o
eu
v
r
i
n
g
th
e
o
w
n
s
h
ip
.
T
h
is
m
et
h
o
d
is
v
er
y
ea
s
y
to
i
m
p
le
m
e
n
t a
n
d
ad
o
p
t in
u
n
d
er
w
ater
ap
p
licatio
n
f
o
r
p
ass
i
v
e
tar
g
et
tr
ac
k
i
n
g
.
I
n
th
i
s
p
ap
er
u
n
s
ce
n
ted
Kal
m
an
f
i
lter
is
p
r
o
p
o
s
ed
to
esti
m
a
te
tar
g
et
m
o
tio
n
p
ar
a
m
eter
s
with
o
u
t
th
e
n
ee
d
f
o
r
m
a
n
o
eu
v
r
in
g
t
h
e
o
w
n
s
h
ip
f
o
r
p
ass
iv
e
tar
g
et
tr
ac
k
i
n
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
Un
d
erw
a
ter Ta
r
g
et
T
r
a
ck
in
g
Usi
n
g
Un
s
ce
n
ted
K
a
lma
n
F
ilter
(
M.
N
a
lin
i S
a
n
th
o
s
h
)
83
RE
F
E
R
E
NC
E
S
[1
]
Y.
T
.
Ch
a
n
a
n
d
S
.
W
.
Ru
d
n
ick
i,
“
Be
a
rin
g
s
-
o
n
ly
a
n
d
Do
p
p
ler
-
b
e
a
rin
g
trac
k
in
g
u
sin
g
in
stru
m
e
n
tal
v
a
riab
les
”
,
IEE
E
T
ra
n
s.
Ae
ro
sp
.
El
e
c
tro
n
.
S
y
st
.,
Vo
l.
A
ES
-
2
8
,
No
.
4
,
p
p
1
0
7
6
-
1
0
8
3
,
Oc
t.
1
9
9
2
.
[2
]
X
iao
-
Jia
o
T
a
o
,
Ca
i
-
Ro
n
g
Zo
u
a
n
d
Zh
e
n
-
Ya
He
,
“
P
a
ss
iv
e
tar
g
e
t
trac
k
in
g
u
sin
g
m
a
x
i
m
u
m
li
k
e
li
h
o
o
d
e
stim
a
ti
o
n
”
,
IEE
E
T
ra
n
s.
A
e
ro
sp
.
El
e
c
tro
n
.
S
y
st
.
,
V
o
l.
A
ES
-
3
2
,
No
.
4
,
p
p
1
3
4
8
-
13
5
4
,
Oc
t.
1
9
9
6
.
[3
]
K.
C.
Ho
a
n
d
Y.
T
.
Ch
a
n
,
“
An
a
sy
mp
to
ti
c
a
ll
y
u
n
b
ia
se
d
e
stima
t
o
r
fo
r
b
e
a
rin
g
s
-
o
n
ly
a
n
d
Do
p
p
ler
-
b
e
a
rin
g
ta
rg
e
t
mo
ti
o
n
a
n
a
lys
is”
,
IEE
E
T
ra
n
s.
o
n
S
ig
n
a
l
P
r
o
c
e
ss
in
g
,
Vo
l.
5
4
,
No
.
3
,
p
p
8
0
9
-
8
2
2
,
M
a
r.
2
0
0
6
.
[4
]
E.
A
.
W
a
n
a
n
d
Ru
d
o
lp
h
V
a
n
De
r
M
e
rwe
,
“
T
h
e
u
n
sc
e
n
ted
K
a
lma
n
fi
lt
e
r
fo
r
n
o
n
li
n
e
a
r
e
stima
ti
o
n
”
,
in
P
ro
c
.
IE
EE
S
y
m
p
o
siu
m
2
0
0
0
o
n
A
d
a
p
ti
v
e
S
y
ste
m
s
f
o
r
S
ig
n
a
l
P
r
o
c
e
ss
in
g
,
Co
m
m
u
n
ica
ti
o
n
a
n
d
Co
n
tr
o
l
,
A
lb
e
rta,
Ca
n
a
d
a
,
p
p
153
-
1
5
8
,
Oc
t.
2
0
0
0
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
M
s.
M
y
lap
il
li
Na
li
n
i
S
a
n
th
o
sh
o
b
ta
in
e
d
h
e
r
B.
T
e
c
h
.
De
g
r
e
e
f
ro
m
Ba
b
a
In
stit
u
te
o
f
T
e
c
h
n
o
l
o
g
y
a
n
d
S
c
ien
c
e
s Co
ll
e
g
e
a
ff
il
iate
d
to
JN
TU
Ka
k
in
a
d
a
,
A
n
d
h
ra
P
ra
d
e
s
h
,
In
d
ia i
n
th
e
y
e
a
r
2
0
1
3
.
No
w
sh
e
is
p
u
rsu
i
n
g
M
.
T
e
c
h
.
(F
in
a
l
y
e
a
r)
f
ro
m
V
ig
n
a
n
’s
In
stit
u
te
o
f
In
f
o
rm
a
ti
o
n
a
n
d
T
e
c
h
n
o
lo
g
y
,
V
isa
k
h
a
p
a
tn
a
m
,
A
n
d
h
ra
P
ra
d
e
sh
,
a
ff
il
iate
d
to
JN
T
U
Ka
k
in
a
d
a
,
In
d
ia.
S
h
e
is
in
tere
ste
d
in
th
e
f
ield
s o
f
S
o
n
a
r
S
ig
n
a
l
P
ro
c
e
ss
in
g
.
D
r.
S
.
Ko
tes
w
a
ra
Ra
o
is
a
re
ti
re
d
S
c
ien
ti
st
’G
’
a
t
Na
v
a
l
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
ica
l
L
a
b
o
ra
to
ry
(NST
L
),
DR
DO
.
A
n
d
He
is
c
u
rre
n
tl
y
w
o
rk
in
g
a
s
S
r.
P
ro
f
e
ss
o
r
in
th
e
d
e
p
a
rtm
e
n
t
o
f
ECE
o
f
V
ig
n
a
n
’s
I
n
stit
u
te
o
f
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
,
V
isa
k
h
a
p
a
tn
a
m
.
He
re
c
e
iv
e
d
h
is
B.
T
e
c
h
(
EE
)
in
1
9
7
7
a
t
JN
T
U
a
n
d
M
E
(
EE
)
in
1
9
7
9
,
P
S
G
c
o
ll
e
g
e
o
f
tec
h
n
o
lo
g
y
Co
im
b
a
to
re
.
He
c
o
m
p
lete
d
h
is
P
h
.
D.
f
r
o
m
Co
ll
e
g
e
o
f
En
g
in
e
e
ri
n
g
A
n
d
h
ra
Un
iv
e
rsit
y
in
2
0
1
0
.
He
p
u
b
li
sh
e
d
se
v
e
ra
l
p
a
p
e
rs
in
IEE
E/
IIE
E
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
s
a
n
d
Jo
u
rn
a
ls
in
t
h
e
f
ield
o
f
S
ig
n
a
l
P
r
o
c
e
ss
in
g
.
He
g
u
id
e
d
se
v
e
r
a
l
M
.
T
e
c
h
stu
d
e
n
ts
f
o
r
t
h
e
ir
p
ro
jec
t
w
o
rk
in
th
e
f
ield
o
f
S
tati
stica
l
S
ig
n
a
l
p
r
o
c
e
ss
in
g
.
He
is
a
f
e
ll
o
w
m
e
m
b
e
r
o
f
IE
T
E.
Dr.
Ru
d
ra
P
ra
tap
Da
s
,
P
h
.
D
c
o
m
p
le
ted
B.
T
e
c
h
(Ho
n
s
)
in
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rin
g
a
t
IIT
,
Kh
a
ra
g
p
u
r
in
1
9
7
6
.
He
wa
s
a
wa
rd
e
d
P
h
.
D
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
b
y
II
T
,
Bo
m
b
a
y
in
1
9
8
7
.
A
f
ter
t
w
e
n
t
y
y
e
a
rs
o
f
In
d
u
strial
Re
se
a
rc
h
&
P
ro
d
u
c
t
io
n
A
c
ti
v
it
ies
in
Bo
m
b
a
y
a
n
d
Bh
u
b
a
n
e
sw
a
r
in
w
h
ich
S
a
li
n
o
m
e
ters
,
M
icro
p
ro
c
e
ss
o
r
b
a
se
d
we
ig
h
in
g
m
a
c
h
in
e
s
a
n
d
in
d
u
c
e
d
p
o
lariz
a
ti
o
n
e
q
u
ip
m
e
n
t
h
e
j
o
i
n
e
d
th
e
e
d
u
c
a
ti
o
n
a
l
a
ss
ig
n
m
e
n
ts
in
1
9
9
6
u
n
d
e
r
A
ICT
E
a
p
p
ro
v
e
d
e
n
g
in
e
e
rin
g
Co
ll
e
g
e
s
a
s
p
ro
f
e
ss
o
r
&
p
rin
c
ip
a
l.
P
ro
f
e
ss
io
n
a
ll
y
h
e
i
s
a
ss
o
c
iate
d
w
it
h
IS
T
E,
IEE
E
a
n
d
Na
ti
o
n
a
l
A
ss
o
c
iate
o
f
A
p
p
li
c
a
ti
o
n
.
His
a
re
a
s
o
f
in
tere
st
a
re
A
I,
V
L
S
I,
NN
F
L
a
n
d
Co
m
p
u
ter
A
rc
h
it
e
c
tu
re
.
L
o
w
Co
st M
RI
h
a
s
b
e
e
n
h
is
late
st i
n
v
o
lv
e
m
e
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.