I
nte
rna
t
io
na
l J
o
urna
l o
f
Appl
ied P
o
w
er
E
ng
ineering
(
I
J
AP
E
)
Vo
l.
6
,
No
.
2
,
A
u
g
u
s
t
201
7
,
p
p
.
1
1
3
~1
2
2
I
SS
N:
2252
-
8
7
9
2
DOI
:
1
0
.
1
1
5
9
1
/i
j
ap
e.
v
6
.
i2
.
p
p
1
1
3
-
122
113
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
APE
New
O
pti
m
i
z
a
tio
n Metho
d of
t
he
M
PP
T
Alg
o
rit
h
m a
nd
Ba
la
ncing
Volta
g
e Control
of
t
he
T
hree
-
Lev
el Bo
o
st
Co
nv
erte
r
(
TLBC
)
H
a
s
s
a
n Abo
uo
ba
ida
,
Sa
id E
l
B
ied
L
a
b
o
ra
to
ry
o
f
En
g
in
e
e
rin
g
S
c
ien
c
e
s f
o
r
En
e
rg
y
,
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s o
f
El
Ja
d
i
d
a
,
C
h
o
u
a
i
b
-
Do
u
k
k
a
li
Un
iv
e
rsit
y
,
M
o
ro
c
c
o
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
y
1
5
,
2
0
1
7
R
ev
i
s
ed
J
u
n
25
,
2
0
1
7
A
cc
ep
ted
J
u
l 1
8
,
2
0
1
7
T
h
is
p
a
p
e
r
is
d
e
d
ica
ted
to
stu
d
y
in
g
th
e
c
o
n
tro
l
o
f
th
e
T
h
re
e
Lev
e
l
Bo
o
st
Co
n
v
e
rters
(T
LBC)
a
n
d
th
e
o
p
t
i
m
iz
a
ti
o
n
m
e
th
o
d
o
f
M
a
x
i
m
u
m
P
o
w
e
r
P
o
i
n
t
T
ra
c
k
in
g
(M
P
P
T
)
b
a
se
d
a
v
a
riab
le
ste
p
.
T
h
e
m
a
in
o
b
jec
ti
v
e
o
f
th
e
o
p
ti
m
iza
ti
o
n
is
to
f
in
d
a
c
o
m
p
ro
m
ise
b
e
t
w
e
e
n
th
e
re
sp
o
n
se
ti
m
e
a
n
d
t
h
e
a
m
p
li
tu
d
e
o
f
th
e
o
sc
il
latio
n
s
a
ro
u
n
d
th
e
o
p
ti
m
a
l
p
o
in
t
.
T
h
e
n
o
n
l
in
e
a
r
b
e
h
a
v
io
r
o
f
th
e
T
L
BC
is
m
a
n
if
e
s
ted
b
y
th
e
p
re
se
n
c
e
o
f
th
e
d
istu
rb
a
n
c
e
s.
F
o
r
re
a
so
n
s
o
f
si
m
p
li
c
it
y
o
f
th
e
c
o
n
tro
l,
a
li
n
e
a
riza
ti
o
n
b
a
se
d
o
n
th
e
d
y
n
a
m
ic
c
o
m
p
e
n
sa
ti
o
n
o
f
th
e
d
istu
rb
a
n
c
e
is
p
ro
p
o
se
d
.
On
th
e
o
n
e
h
a
n
d
,
a
c
a
s
c
a
d
e
d
M
P
P
T
a
lg
o
rit
h
m
a
n
d
a
si
m
p
le
li
n
e
a
r
re
g
u
lato
r
a
ll
o
w
a
d
ju
stin
g
th
e
in
d
u
c
ta
n
c
e
c
u
rre
n
t
a
n
d
a
m
a
x
i
m
u
m
p
o
w
e
r
o
p
e
ra
ti
o
n
o
f
th
e
w
in
d
sy
ste
m
.
On
th
e
o
t
h
e
r
h
a
n
d
,
a
se
c
o
n
d
li
n
e
a
r
re
g
u
lato
r
e
n
su
re
s
b
a
lan
c
i
n
g
o
f
th
e
o
u
tp
u
t
v
o
lt
a
g
e
s.
T
h
e
p
a
p
e
r
p
r
o
p
o
se
s
a
n
e
w
a
p
p
ro
a
c
h
t
o
th
e
o
p
ti
m
iza
ti
o
n
o
f
th
e
In
c
-
Co
n
d
M
P
P
T
.
T
h
e
su
g
g
e
ste
d
c
o
n
tri
b
u
ti
o
n
c
o
n
si
sts
o
f
u
sin
g
a
n
e
x
p
o
n
e
n
ti
a
l
f
u
n
c
t
io
n
o
f
th
e
p
o
w
e
r
d
e
riv
a
ti
v
e
to
d
e
v
e
lo
p
a
v
a
r
iab
le
ste
p
.
T
h
e
a
d
o
p
ti
o
n
o
f
th
e
v
a
riab
le
ste
p
siz
e
a
c
c
o
rd
in
g
to
th
e
d
y
n
a
m
ics
o
f
th
e
w
in
d
s
y
ste
m
i
m
p
li
e
s
a
c
o
m
p
ro
m
is
e
b
e
tw
e
e
n
th
e
re
sp
o
n
se
ti
m
e
a
n
d
th
e
a
m
p
li
tu
d
e
o
f
th
e
ri
p
p
les
a
ro
u
n
d
t
h
e
o
p
ti
m
a
l
p
o
i
n
t.
T
h
e
sim
u
latio
n
re
su
lt
s
sh
o
w
e
d
th
a
t
a
v
a
riab
le
ste
p
siz
e
,
e
sp
e
c
iall
y
in
tran
sie
n
t
c
o
n
d
it
io
n
s
a
n
d
d
u
ri
n
g
a
v
e
r
y
r
a
p
id
c
li
m
a
te
c
h
a
n
g
e
re
c
o
v
e
r
th
e
o
p
ti
m
u
m
p
o
we
r
p
o
in
t
w
it
h
in
a
re
a
so
n
a
b
le
ti
m
e
a
n
d
su
it
a
b
le
a
m
p
li
tu
d
e
o
f
th
e
o
sc
il
lat
io
n
s.
T
h
e
re
su
lt
s
a
c
h
iev
e
d
i
n
t
h
is
stu
d
y
sh
o
w
th
e
a
b
il
it
y
o
f
th
e
p
r
o
p
o
se
d
a
p
p
ro
a
c
h
to
e
x
trac
t
th
e
m
a
x
i
m
u
m
p
o
w
e
r
a
c
c
o
rd
in
g
to
th
e
a
v
a
il
a
b
le
w
in
d
sp
e
e
d
w
h
il
e
g
u
a
ra
n
tee
in
g
a
b
e
tt
e
r
e
f
f
i
c
ie
n
c
y
.
T
h
e
d
e
v
e
lo
p
e
d
stu
d
y
is
su
m
m
a
rize
d
b
y
th
e
f
o
ll
o
w
in
g
p
o
in
ts:
(a
)
m
o
d
e
li
n
g
th
e
w
in
d
c
o
n
v
e
rsio
n
s
y
ste
m
s,
(b
)
d
e
taili
n
g
th
e
c
o
n
tro
l
a
p
p
ro
a
c
h
o
f
th
e
TL
BC
a
n
d
p
re
se
n
ti
n
g
th
e
v
a
riab
le
ste
p
m
e
th
o
d
(c
)
p
re
s
e
n
ti
n
g
th
e
sim
u
latio
n
s
re
su
lt
s
a
n
d
e
v
a
lu
a
ti
n
g
th
e
p
e
rf
K
ey
w
o
r
d
:
MP
PT
P
MSG
T
h
r
ee
L
ev
el
B
o
o
s
t Co
n
v
er
ter
Var
iab
le
Step
Size
Vo
ltag
e
B
alan
ci
n
g
C
o
n
tr
o
l
Co
p
y
rig
h
t
©
2017
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Hass
a
n
A
b
o
u
o
b
aid
a,
L
ab
o
r
ato
r
y
o
f
E
n
g
in
ee
r
i
n
g
Sci
en
ce
s
f
o
r
E
n
er
g
y
,
Natio
n
al
Sc
h
o
o
l o
f
A
p
p
lied
Scien
ce
s
o
f
E
l J
ad
id
a
,
C
h
o
u
aib
-
Do
u
k
k
ali
U
n
i
v
er
s
it
y
,
Mo
r
o
cc
o
.
E
m
ail:
h
as
s
an
ab
o
u
o
b
aid
a@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
p
o
w
er
w
i
n
d
co
n
v
er
s
io
n
s
y
s
te
m
co
n
s
i
s
ts
o
f
a
s
y
n
c
h
r
o
n
o
u
s
g
en
er
ato
r
a
(
P
MSG)
,
a
t
h
r
ee
-
p
h
a
s
e
u
n
co
n
tr
o
lled
d
io
d
e
r
ec
tif
ier
an
d
a
th
r
ee
-
lev
e
l b
o
o
s
t c
o
n
v
er
ter
.
T
h
e
s
tr
u
ctu
r
e
s
t
u
d
ied
is
ill
u
s
t
r
ated
in
Fig
u
r
e
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
6
,
No
.
2
,
A
u
g
u
s
t 2
0
1
7
:
1
1
3
–
1
2
2
114
Fig
u
r
e
1
.
P
o
w
er
w
i
n
d
co
n
v
er
s
io
n
s
y
s
te
m
b
ased
P
MSG
g
en
er
ato
r
an
d
t
h
e
th
r
ee
-
lev
el
B
o
o
s
t
co
n
v
er
ter
T
L
B
C
1
.
1
.
T
he
t
urbi
ne
m
o
del
T
h
e
ae
r
o
d
y
n
a
m
ic
p
o
w
er
P
t
ca
p
tu
r
ed
b
y
t
h
e
w
i
n
d
tu
r
b
in
e
i
s
ex
p
r
ess
ed
b
y
th
e
f
o
llo
w
i
n
g
r
ela
tio
n
[
1
]
(
)
(
1
)
W
h
er
e
th
e
tip
s
p
ee
d
r
atio
λ
is
g
iv
e
n
b
y
(
2
)
v
is
th
e
w
i
n
d
s
p
ee
d
,
ρ
is
t
h
e
air
d
en
s
it
y
,
R
is
t
h
e
r
o
to
r
r
ad
iu
s
an
d
C
p
i
s
t
h
e
p
o
w
er
co
e
f
f
icie
n
t.
T
h
e
p
o
w
er
co
ef
f
icie
n
t i
s
ex
p
r
ess
ed
as
f
u
n
ctio
n
o
f
tip
s
p
ee
d
r
atio
λ
in
p
lace
o
f
p
itch
an
g
le
β a
s
(
)
(
3
)
(
4)
T
h
e
ae
r
o
d
y
n
a
m
ic
p
o
w
er
is
al
s
o
d
ef
in
ed
b
y
(
5
)
W
h
er
e
T
m
is
th
e
ae
r
o
d
y
n
a
m
ic
to
r
q
u
e
an
d
ω
m
is
th
e
r
o
to
r
s
p
e
ed
.
T
h
e
cu
r
v
e
o
f
p
o
w
er
in
ter
m
o
f
th
e
r
o
to
r
s
p
ee
d
an
d
th
e
ae
r
o
d
y
n
a
m
ic
p
o
w
er
in
ter
m
o
f
th
e
t
ip
s
p
ee
d
r
atio
ar
e
illu
s
tr
ated
in
Fi
g
u
r
e
2
an
d
Fig
u
r
e
3
r
esp
ec
tiv
el
y
.
Fig
u
r
e
2
.
C
u
r
v
e
o
f
p
o
w
er
o
f
t
h
e
w
i
n
d
Fig
u
r
e
3
.
T
h
e
p
o
w
er
co
ef
f
icie
n
t a
s
f
u
n
ctio
n
o
f
tip
s
p
ee
d
r
atio
I
n
th
i
s
w
o
r
k
,
t
h
e
co
n
tr
o
l
o
f
t
h
e
w
i
n
d
co
n
v
er
s
io
n
s
y
s
te
m
is
ca
r
r
ied
o
u
t
k
ee
p
in
g
th
e
p
itc
h
an
g
le
eq
u
al
to
ze
r
o
(
β=0
)
.
T
h
e
f
o
llo
w
i
n
g
m
ec
h
a
n
i
ca
l
m
o
d
el
g
i
v
es t
h
e
d
y
n
a
m
ic
o
f
th
e
w
i
n
d
t
u
r
b
in
e
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
A
P
E
I
SS
N:
2252
-
8792
N
ew
Op
tim
iz
a
tio
n
Meth
o
d
o
f t
h
e
MPP
T
A
lg
o
r
ith
m
a
n
d
B
a
la
n
cin
g
V
o
lta
g
e
C
o
n
tr
o
l
…
(
Ha
s
s
a
n
A
b
o
u
o
b
a
i
d
a
)
115
W
h
er
e
th
e
elec
tr
o
m
ag
n
etic
to
r
q
u
e
o
f
t
h
e
s
y
n
c
h
r
o
n
o
u
s
g
en
e
r
ato
r
,
J
is
th
e
tu
r
b
in
e
to
tal
i
n
e
r
tia
an
d
f
is
t
h
e
tu
r
b
in
e
to
tal
e
x
ter
n
al
d
a
m
p
i
n
g
.
1
.
2
.
T
he
P
M
SG
m
o
del
T
h
e
d
y
n
a
m
ic
eq
u
at
io
n
s
o
f
a
(
P
MSG)
g
en
er
ato
r
is
w
r
itte
n
i
n
a
s
y
n
c
h
r
o
n
o
u
s
l
y
r
o
tati
n
g
dq
r
ef
er
en
c
e
f
r
a
m
e
a
s
[
1
]
(
7
)
√
(
8
)
W
h
er
e
V
sq
an
d
V
sd
ar
e
th
e
q
-
ax
is
a
n
d
d
-
ax
i
s
s
tato
r
ter
m
i
n
a
l
v
o
ltag
e
s
.
an
d
ar
e
th
e
q
-
ax
is
an
d
d
-
a
x
i
s
s
ta
to
r
cu
r
r
en
ts
,
is
th
e
r
esis
ta
n
ce
o
f
th
e
s
tato
r
w
i
n
d
i
n
g
s
,
is
th
e
elec
tr
ical
an
g
u
lar
v
elo
cit
y
o
f
th
e
r
o
to
r
an
d
p
is
th
e
n
u
m
b
er
o
f
p
o
le
p
air
s
o
f
th
e
(
P
MSG)
.
is
th
e
f
l
u
x
lin
k
a
g
e
p
r
o
d
u
ce
d
b
y
th
e
p
er
m
an
e
n
t
m
ag
n
et
m
ec
h
an
i
s
m
lo
ca
ted
in
th
e
r
o
to
r
.
T
h
e
p
o
w
er
p
r
o
d
u
ce
d
b
y
(
P
MSG)
g
e
n
er
ato
r
ca
n
b
e
ex
p
r
ess
ed
as
a
f
u
n
ctio
n
o
f
t
h
e
d
q
co
m
p
o
n
en
ts
o
f
cu
r
r
en
ts
a
n
d
th
e
d
q
co
m
p
o
n
en
ts
o
f
t
h
e
v
o
lta
g
e
ac
co
r
d
in
g
to
t
h
e
f
o
llo
w
i
n
g
r
elati
o
n
:
(
)
(
9
)
1
.
3
.
T
hree
-
lev
el
bo
o
s
t
co
nv
er
t
er
m
o
de
l
T
h
e
f
o
u
r
p
o
s
s
ib
ilit
ie
s
o
f
th
e
s
w
itc
h
in
g
s
ta
tes
o
f
t
h
e
p
o
w
er
s
w
itc
h
es
ar
e
illu
s
tr
ated
i
n
Fi
g
u
r
e
4
[2
-
9
]
:
(
a)
(
b
)
(
c)
(
d
)
Fig
u
r
e
4
.
P
o
s
s
ib
le
s
w
itc
h
i
n
g
s
t
ates in
t
h
r
ee
-
lev
el
b
o
o
s
t c
o
n
v
e
r
ter
: (
a)
s
tate
1
; (
b
)
s
tate
2
; (
c)
s
tate
3
; a
n
d
(
d
)
s
tate
4
T
h
e
d
y
n
a
m
ic
s
m
o
d
el
o
f
t
h
e
T
L
B
C
i
s
ex
p
r
ess
ed
b
y
t
h
e
f
o
llo
w
i
n
g
eq
u
atio
n
s
:
̇
(1
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
6
,
No
.
2
,
A
u
g
u
s
t 2
0
1
7
:
1
1
3
–
1
2
2
116
B
y
r
ep
laci
n
g
x
,
A
an
d
B
w
it
h
th
eir
e
x
p
r
ess
io
n
s
,
t
h
e
d
y
n
a
m
i
cs
o
f
t
h
e
co
n
v
er
ter
T
L
B
C
ca
n
b
e
m
o
d
eled
b
y
th
e
f
o
llo
w
in
g
m
atr
ix
:
[
̇
̇
̇
]
[
]
[
]
[
]
(
1
1
)
w
h
er
e
L,
I
L
a
n
d
I
b
ar
e
th
e
s
to
r
ag
e
i
n
d
u
cta
n
ce
,
t
h
e
cu
r
r
en
t a
cr
o
s
s
it a
n
d
th
e
o
u
tp
u
t c
u
r
r
en
t.
U
dc
, U
C1
an
d
U
C2
ar
e
th
e
o
u
tp
u
t
v
o
ltag
e
o
f
t
h
e
th
r
e
e
-
p
h
a
s
e
r
ec
tif
ier
an
d
th
e
v
o
lt
ag
e
o
f
th
e
ca
p
ac
ito
r
s
C
1
an
d
C
2
.
u
1
an
d
u
2
ar
e
r
esp
ec
tiv
el
y
th
e
co
n
tr
o
l sig
n
al
o
f
th
e
t
w
o
p
o
w
er
s
w
i
tch
e
s
T
1
an
d
T
2
[
1
0
]
.
2.
CO
NT
RO
L
AP
P
RO
A
CH
O
F
T
H
E
T
L
B
C
T
h
e
o
b
j
ec
tiv
es o
f
co
n
tr
o
llin
g
t
h
e
th
r
ee
-
le
v
el
b
o
o
s
t c
o
n
v
er
ter
lev
els ar
e
[
2
]
:
a.
B
alan
cin
g
t
h
e
t
w
o
v
o
lta
g
es
at
th
e
o
u
tp
u
t o
f
t
h
e
co
n
v
er
ter
.
b.
E
x
tr
ac
tio
n
o
f
m
a
x
i
m
u
m
p
o
w
e
r
f
r
o
m
th
e
w
i
n
d
g
e
n
er
ato
r
.
T
h
e
ad
j
u
s
t
m
e
n
t lo
o
p
s
ar
e
co
n
s
tr
u
cted
ac
co
r
d
in
g
to
th
e
f
o
llo
w
i
n
g
h
y
p
o
th
es
is
:
a.
T
h
e
o
u
tp
u
t
v
o
lta
g
e
o
f
t
h
e
T
L
B
C
is
as
s
u
m
ed
to
b
e
co
n
s
ta
n
t.
T
h
e
r
eg
u
latio
n
o
f
t
h
is
te
n
s
io
n
is
en
s
u
r
ed
b
y
an
o
th
er
co
n
tr
o
l lo
o
p
(
p
ar
t n
o
t
s
tu
d
ied
in
t
h
i
s
p
ap
er
)
.
b.
T
h
e
v
o
ltag
e
b
ala
n
ci
n
g
lo
o
p
o
f
Uc1
an
d
Uc2
i
s
f
aster
t
h
a
n
t
h
e
cu
r
r
en
t
ad
j
u
s
t
m
e
n
t
lo
o
p
I
L
.
I
n
clo
s
ed
lo
o
p
,
th
e
lo
o
p
o
f
th
e
v
o
ltag
es
i
s
d
esig
n
ed
to
b
e
f
aster
th
an
th
e
cu
r
r
en
t
lo
o
p
w
h
ich
allo
ws
a
v
er
y
f
a
s
t
co
n
v
er
g
e
n
ce
o
f
t
h
e
d
if
f
er
e
n
ce
Uc1
-
Uc2
to
ze
r
o
.
Usi
n
g
t
h
e
a
v
er
ag
e
eq
u
iv
ale
n
t
m
o
d
el,
t
h
e
T
L
B
C
co
n
v
er
ter
i
s
r
ep
r
esen
ted
in
th
e
o
p
en
lo
o
p
b
y
t
h
e
s
y
s
te
m
a
s
s
h
o
w
n
in
F
ig
u
r
e
5
.
Fig
u
r
e
5
.
O
p
en
-
lo
o
p
r
ep
r
esen
tatio
n
o
f
t
h
e
T
L
B
C
co
n
v
er
ter
w
h
er
e
d
1
an
d
d
2
ar
e
A
r
e
r
es
p
ec
tiv
el
y
th
e
av
er
a
g
e
v
a
lu
e
i
n
a
c
u
tti
n
g
p
er
io
d
o
f
th
e
co
m
m
an
d
u
1
an
d
t
h
e
co
m
m
a
n
d
u
2
.
A
cc
o
r
d
in
g
to
t
h
e
ab
o
v
e
-
m
e
n
tio
n
ed
h
y
p
o
t
h
esi
s
,
th
e
v
o
lta
g
e
s
Uc1
an
d
Uc2
ar
e
w
ell
m
ai
n
tai
n
ed
eq
u
al
(
Uc1
=
Uc2
=
Uc)
.
I
L
,
Uc
an
d
Ud
c
ar
e
co
n
s
id
er
ed
d
is
t
u
r
b
an
ce
s
w
h
ich
m
u
s
t
b
e
co
m
p
en
s
ated
d
u
r
i
n
g
a
clo
s
ed
-
lo
o
p
co
n
tr
o
l.
T
h
e
co
n
tr
o
l o
f
t
h
e
d
i
f
f
er
e
n
ce
Uc1
-
Uc2
an
d
th
e
cu
r
r
en
t I
L
is
r
ed
u
ce
d
to
a
f
ir
s
t o
r
d
er
s
y
s
te
m
.
A
s
i
m
p
l
e
P
I
co
n
tr
o
ller
is
u
s
ed
to
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
A
P
E
I
SS
N:
2252
-
8792
N
ew
Op
tim
iz
a
tio
n
Meth
o
d
o
f t
h
e
MPP
T
A
lg
o
r
ith
m
a
n
d
B
a
la
n
cin
g
V
o
lta
g
e
C
o
n
tr
o
l
…
(
Ha
s
s
a
n
A
b
o
u
o
b
a
i
d
a
)
117
a.
B
alan
cin
g
t
h
e
t
w
o
v
o
lta
g
es o
f
th
e
t
w
o
c
ap
ac
ito
r
s
at
th
e
o
u
tp
u
t o
f
th
e
T
L
B
C
,
b.
T
h
e
ad
j
u
s
tin
g
t
h
e
cu
r
r
en
t I
L
wh
ich
al
lo
w
s
a
m
a
x
i
m
u
m
p
o
w
e
r
p
o
in
t o
p
er
atio
n
o
f
th
e
w
in
d
s
y
s
te
m
.
Fig
u
r
e
6
s
u
m
m
ar
izes t
h
e
co
n
tr
o
l a
p
p
r
o
ac
h
u
s
ed
[
2
]
-
[
1
1
]
:
(
a)
(
b
)
Fig
u
r
e
6
.
C
lo
s
ed
lo
o
p
co
n
tr
o
l,
(
a)
C
u
r
r
en
t c
o
n
tr
o
l a
p
p
r
o
ac
h
,
(
b
)
b
alan
cin
g
v
o
ltag
e
co
n
tr
o
l
3.
I
NC
-
CO
ND
M
P
P
T
B
ASE
D
A
F
I
XE
D
A
ND
VAR
I
AB
L
E
ST
E
P
SI
Z
E
3
.
1
.
I
nc
-
co
nd
M
P
P
T
ba
s
ed
a
f
ix
ed
s
t
ep
s
ize
T
h
e
co
n
v
en
tio
n
al
I
n
c
-
C
o
n
d
MP
PT
is
b
ased
o
n
a
c
o
n
s
tan
t
s
tep
.
Fig
u
r
e
7
illu
s
tr
ates
t
h
e
o
p
er
atin
g
p
r
in
cip
le
o
f
th
e
co
n
v
e
n
tio
n
al
I
n
c
-
C
o
n
d
MP
P
T
:
Fig
u
r
e
7
.
C
o
n
v
e
n
tio
n
al
I
n
c
-
C
o
n
d
MP
PT
A
r
elat
iv
el
y
lar
g
e
s
tep
lead
s
t
o
o
s
cillatio
n
s
o
f
g
r
ea
t
a
m
p
l
itu
d
es
an
d
a
v
er
y
i
n
ter
est
in
g
tr
a
ck
in
g
t
i
m
e.
A
v
er
y
s
m
al
l step
w
ill lea
d
to
a
v
er
y
l
o
n
g
tr
ac
k
in
g
ti
m
e
an
d
v
er
y
li
m
ited
o
s
cillatio
n
s
ar
o
u
n
d
a
d
esire
d
p
o
in
t.
3
.
2
.
P
ro
po
s
ed
inc
-
co
nd
M
P
P
T
ba
s
ed
v
a
ria
ble st
ep
s
ize
Fin
d
i
n
g
a
co
m
p
r
o
m
is
e
b
et
w
e
en
th
e
r
esp
o
n
s
e
ti
m
e
(
s
ea
r
ch
t
i
m
e
o
r
tr
ac
k
in
g
ti
m
e)
an
d
th
e
am
p
li
tu
d
e
o
f
th
e
r
ip
p
le
is
th
e
e
x
p
ec
ted
g
o
al
o
f
th
is
w
o
r
k
.
T
o
ac
h
iev
e
t
h
is
o
b
j
ec
tiv
e,
th
e
I
n
c
-
C
o
n
d
alg
o
r
ith
m
is
r
ea
lized
b
ased
o
n
a
v
ar
iab
le
s
tep
s
ize
f
u
n
ctio
n
o
f
th
e
d
y
n
a
m
ics
o
f
t
h
e
w
in
d
s
y
s
te
m
.
F
i
g
u
r
e
8
illu
s
tr
ates
th
e
o
p
er
atin
g
p
r
in
cip
le
o
f
th
e
p
r
o
p
o
s
ed
I
n
c
-
C
o
n
d
MP
PT
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
6
,
No
.
2
,
A
u
g
u
s
t 2
0
1
7
:
1
1
3
–
1
2
2
118
Fig
u
r
e
8
.
P
r
in
cip
le
o
f
th
e
I
NC
-
co
n
d
MP
PT
b
ased
a
v
ar
iab
le
s
tep
s
ize
4.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
T
h
e
m
o
d
el
o
f
th
e
p
o
w
er
w
i
n
d
co
n
v
er
s
io
n
s
y
s
te
m
,
th
r
ee
-
le
v
el
b
o
o
s
t
co
n
v
er
ter
T
L
B
C
an
d
t
h
e
p
r
o
p
o
s
ed
I
n
c
-
C
o
n
d
MP
P
T
ar
e
i
m
p
le
m
e
n
ted
i
n
Ma
tlab
/Si
m
u
lin
k
.
I
n
th
is
s
t
u
d
y
,
t
h
e
w
i
n
d
g
en
er
ato
r
d
eliv
er
s
a
m
ax
i
m
u
m
p
o
w
er
o
f
2
2
k
w
att
s
.
T
h
e
s
p
ec
if
icatio
n
o
f
t
h
e
co
n
tr
o
l
p
ar
am
eter
s
a
n
d
th
e
m
ai
n
c
h
ar
ac
ter
is
tics
o
f
t
h
e
w
i
n
d
s
y
s
te
m
ar
e
s
u
m
m
ar
ized
i
n
T
ab
le
1
an
d
T
a
b
le
2
r
esp
ec
ti
v
el
y
.
T
ab
le
1
.
P
ar
am
eter
s
U
s
ed
in
t
h
e
Si
m
u
latio
n
P
a
r
a
me
t
e
r
s
V
a
l
u
e
U
n
i
t
T
h
r
e
e
L
2
mH
L
e
v
e
l
C1
4
7
0
μF
B
o
o
st
C2
4
7
0
μF
C
o
n
v
e
r
t
e
r
f
2
0
k
Hz
I
n
c
-
C
o
n
d
M
P
P
T
S
t
e
p
0
.
0
0
1
-
T
ab
le
2
.
Ma
in
ch
ar
ac
ter
is
tics
o
f
th
e
W
in
d
t
u
r
b
in
e
an
d
P
MS
G
P
a
r
a
me
t
e
r
s
V
a
l
u
e
U
n
i
t
T
u
r
b
i
n
e
Vt
n
12
m/
s
R
4
m
P
M
S
G
U
s
5
0
0
V
P
n
2
2
k
W
f
50
Hz
R
s
5
0
m
Ω
L
d=
L
q
0
.
6
m
H
J
m
0
.
0
1
1
k
g
.
m
2
P
10
-
I
n
o
r
d
er
to
p
r
o
v
e
th
e
v
a
lid
it
y
o
f
th
e
co
n
tr
o
l a
p
p
r
o
ac
h
an
d
t
h
e
ef
f
icie
n
c
y
o
f
t
h
e
p
r
o
p
o
s
ed
o
p
ti
m
izatio
n
alg
o
r
ith
m
,
th
e
s
i
m
u
lat
io
n
r
esu
lts
o
f
th
e
co
n
v
e
n
tio
n
al
I
n
c
-
C
o
n
d
alg
o
r
ith
m
an
d
t
h
e
p
r
o
p
o
s
e
d
alg
o
r
ith
m
w
i
ll
b
e
p
r
esen
ted
,
d
is
cu
s
s
ed
a
n
d
co
m
p
ar
ed
.
A
w
i
n
d
p
r
o
f
ile
i
s
ap
p
l
ied
to
th
e
w
in
d
tu
r
b
in
e
b
l
ad
es
as
ill
u
s
tr
ated
i
n
Fig
u
r
e
9
(
a
)
.
Firstl
y
,
t
h
e
s
i
m
u
l
atio
n
r
esu
lts
ar
e
g
iv
e
n
f
o
r
I
n
c
-
C
o
n
d
MP
PT
b
ased
a
c
o
n
s
tan
t
s
tep
.
Fig
u
r
e
9
(
b
)
s
h
o
w
s
t
h
e
i
n
d
u
cta
n
ce
cu
r
r
en
t
an
d
it
s
r
e
f
er
en
ce
.
A
cc
o
r
d
in
g
t
o
th
i
s
f
i
g
u
r
e,
t
h
e
in
d
u
cto
r
cu
r
r
en
t i
s
w
ell
r
e
g
u
lated
to
its
r
ef
er
en
ce
.
A
cc
o
r
d
in
g
to
th
is
f
i
g
u
r
e,
i
n
tr
an
s
ien
t
m
o
d
e,
th
e
in
d
u
cta
n
ce
cu
r
r
en
t
r
ea
ch
e
s
its
r
ef
er
en
ce
p
o
in
t
af
ter
0
.
3
6
s
ec
o
n
d
s
.
Du
r
i
n
g
a
n
ab
r
u
p
t
ch
an
g
e
i
n
w
i
n
d
s
p
ee
d
,
th
e
i
n
d
u
cta
n
ce
cu
r
r
e
n
t
to
o
k
ab
o
u
t
0
.
7
s
ec
o
n
d
s
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
A
P
E
I
SS
N:
2252
-
8792
N
ew
Op
tim
iz
a
tio
n
Meth
o
d
o
f t
h
e
MPP
T
A
lg
o
r
ith
m
a
n
d
B
a
la
n
cin
g
V
o
lta
g
e
C
o
n
tr
o
l
…
(
Ha
s
s
a
n
A
b
o
u
o
b
a
i
d
a
)
119
r
ea
ch
it
s
r
ef
er
en
ce
.
Fi
g
u
r
e
1
0
(
c
)
s
h
o
w
s
an
i
n
d
u
cto
r
cu
r
r
en
t
zo
o
m
.
A
cc
o
r
d
in
g
to
th
is
f
ig
u
r
e,
th
e
a
m
p
lit
u
d
e
o
f
th
e
r
ip
p
le
o
f
t
h
e
i
n
d
u
cta
n
ce
c
u
r
r
en
t
is
0
.
6
A
.
Fi
g
u
r
e
9
(
d
)
ill
u
s
tr
ates
t
h
e
p
o
w
er
d
eliv
er
ed
b
y
t
h
e
w
i
n
d
s
y
s
te
m
a
s
a
f
u
n
ctio
n
o
f
ti
m
e.
B
y
co
m
p
a
r
in
g
t
h
e
ex
tr
ac
ted
p
o
w
er
ac
co
r
d
in
g
to
th
e
w
i
n
d
s
p
ee
d
an
d
th
e
m
a
x
i
m
u
m
p
o
w
er
g
iv
e
n
b
y
F
ig
u
r
e
2
,
it
i
s
n
o
ted
th
at
th
e
w
i
n
d
s
y
s
te
m
o
p
er
ates
at
it
s
m
a
x
i
m
u
m
p
o
w
er
.
Fi
g
u
r
e
9
(
e
)
s
h
o
w
s
t
h
e
w
i
n
d
p
o
w
er
co
ef
f
ic
ien
t.
A
cc
o
r
d
in
g
to
Fig
u
r
e
3
,
th
e
o
p
tim
a
l
v
alu
e
o
f
t
h
is
f
ac
to
r
is
0
.
4
5
.
T
h
e
co
n
tr
o
l
o
f
th
e
w
i
n
d
s
y
s
te
m
f
o
r
m
a
x
i
m
u
m
p
o
w
er
o
p
er
atio
n
m
ad
e
i
t
p
o
s
s
ib
l
e
to
ad
j
u
s
t
t
h
is
f
ac
to
r
to
its
o
p
ti
m
u
m
v
al
u
e.
I
t
i
s
n
o
ted
th
at
th
e
p
o
w
er
co
e
f
f
ic
i
en
t
d
ev
iates
f
r
o
m
its
o
p
ti
m
u
m
v
al
u
e
d
u
r
i
n
g
th
e
ch
a
n
g
e
o
f
w
in
d
s
p
ee
d
,
b
u
t
th
e
co
n
tr
o
l
w
as
ab
le
to
r
eset
th
i
s
f
ac
to
r
to
its
o
p
tim
al
v
al
u
e
f
o
r
0
.
6
s
ec
o
n
d
s
.
Fig
u
r
e
9(
f
)
s
h
o
w
s
th
e
v
o
lta
g
es
o
f
t
h
e
ca
p
ac
ito
r
s
at
th
e
o
u
tp
u
t
o
f
t
h
e
co
n
v
er
ter
.
A
cc
o
r
d
in
g
to
th
is
f
i
g
u
r
e,
it
ca
n
b
e
s
ee
n
t
h
at
t
h
e
s
e
t
w
o
v
o
lta
g
es
ar
e
w
ell
b
alan
ce
d
.
A
t
t
h
e
m
o
m
e
n
t
o
f
c
h
a
n
g
e
o
f
t
h
e
w
in
d
s
p
ee
d
,
a
v
er
y
n
e
g
li
g
ib
le
d
i
f
f
er
e
n
c
e
ap
p
ea
r
s
b
et
w
ee
n
th
ese
t
w
o
v
o
lt
ag
e
s
,
an
d
th
e
n
t
h
e
co
n
tr
o
l a
cts q
u
ic
k
l
y
to
m
ai
n
tai
n
b
alan
ci
n
g
t
h
e
s
e
v
o
lta
g
es
ag
ain
.
(
a)
(
b
)
(
c)
(
d
)
(
e)
(
f
)
Fig
u
r
e
9
.
I
n
c
-
co
n
d
MP
PT
r
esu
lts
b
ased
co
n
s
ta
n
t step
(
Step
=
0
.
0
0
1
)
,
(
a
)
W
in
d
s
p
ee
d
(
m
/S),
(
b
)
I
n
d
u
cto
r
cu
r
r
en
t (
A
)
,
(
c)
I
n
d
u
cto
r
cu
r
r
en
t z
o
o
m
(
A
)
,
(
d
)
P
o
w
er
(
W
)
,
(
e)
P
o
w
er
co
ef
f
icien
t,
(
f
)
C
ap
a
cito
r
v
o
ltag
es(V
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
6
,
No
.
2
,
A
u
g
u
s
t 2
0
1
7
:
1
1
3
–
1
2
2
120
I
n
o
r
d
er
to
c
o
m
p
ar
e
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
b
ased
o
n
a
v
ar
iab
le
s
tep
to
th
e
co
n
v
en
tio
n
al
I
n
c
-
C
o
n
d
MP
PT
p
r
esen
ted
in
th
e
p
r
ev
io
u
s
r
es
u
lt
s
,
th
e
s
a
m
e
w
i
n
d
s
p
ee
d
p
r
o
f
ile
is
ap
p
lied
to
th
e
w
i
n
d
s
y
s
te
m
.
Fi
g
u
r
e
1
0
g
iv
e
s
t
h
e
s
i
m
u
latio
n
r
es
u
lt
s
o
f
th
e
co
n
tr
o
l o
f
t
h
e
T
L
B
C
u
s
in
g
th
e
o
p
ti
m
ized
MP
PT
.
Fig
u
r
e
1
0
(
b
)
s
h
o
w
s
t
h
e
i
n
d
u
c
tan
ce
c
u
r
r
en
t
a
n
d
it
s
r
ef
er
e
n
c
e.
A
cc
o
r
d
in
g
to
t
h
is
f
ig
u
r
e,
t
h
e
in
d
u
c
to
r
cu
r
r
en
t
is
w
ell
r
eg
u
lated
to
its
r
ef
er
en
ce
.
I
n
th
e
tr
an
s
ie
n
t
m
o
d
e,
th
e
i
n
d
u
cta
n
ce
cu
r
r
en
t
r
ea
ch
es
its
r
ef
er
e
n
ce
p
o
in
t
af
ter
0
.
1
2
s
ec
o
n
d
s
.
Du
r
in
g
a
n
ab
r
u
p
t
ch
a
n
g
e
i
n
w
i
n
d
s
p
ee
d
,
th
e
in
d
u
ctan
ce
c
u
r
r
en
t
to
o
k
ab
o
u
t
0
.
1
2
s
ec
o
n
d
s
to
r
ea
c
h
it
s
r
ef
er
e
n
ce
.
A
cc
o
r
d
in
g
to
t
h
e
s
e
r
es
u
lts
,
i
t
is
n
o
ted
t
h
at
t
h
e
tr
a
n
s
ie
n
t
t
i
m
e
a
n
d
t
h
e
tr
ac
k
in
g
ti
m
e
ar
e
w
ell
i
m
p
r
o
v
ed
co
m
p
ar
ed
to
th
e
ti
m
e
tak
e
n
b
y
t
h
e
co
n
v
e
n
tio
n
al
MP
PT
I
n
c
-
C
o
n
d
.
Fig
u
r
e
1
0
(
c
)
s
h
o
w
s
a
n
in
d
u
ct
o
r
cu
r
r
en
t
zo
o
m
.
T
h
e
a
m
p
lit
u
d
e
o
f
th
e
r
ip
p
le
o
f
th
is
cu
r
r
e
n
t
is
v
er
y
li
m
ited
.
A
cc
o
r
d
in
g
to
th
is
f
i
g
u
r
e,
th
e
a
m
p
lit
u
d
e
o
f
th
e
r
ip
p
les
ar
o
u
n
d
th
e
o
p
ti
m
u
m
p
o
in
t
is
w
ell
m
a
in
ta
in
ed
less
t
h
an
o
r
eq
u
al
to
0
.
5
A
.
Fig
u
r
e
1
0
(
d
)
illu
s
tr
ates
t
h
e
p
o
w
er
d
eliv
er
ed
b
y
th
e
w
i
n
d
s
y
s
te
m
as
a
f
u
n
c
tio
n
o
f
ti
m
e.
A
cc
o
r
d
in
g
Fi
g
u
r
e
2
,
it is
n
o
ted
th
at
th
e
w
i
n
d
s
y
s
te
m
o
p
er
ates a
t its
m
ax
i
m
u
m
p
o
w
er
.
Fig
u
r
e
1
0
(
e
)
s
h
o
w
s
th
e
w
i
n
d
p
o
w
er
co
ef
f
icie
n
t.
I
n
th
e
tr
a
n
s
ien
t
m
o
d
e,
th
e
p
o
w
er
co
ef
f
ici
en
t
r
ea
ch
e
s
its
o
p
ti
m
al
v
al
u
e
eq
u
al
to
0
.
4
5
af
ter
0
.
1
2
s
ec
o
n
d
s
.
I
t is n
o
ted
th
at
p
o
w
er
co
e
f
f
icien
t d
e
v
iate
s
f
r
o
m
its
o
p
ti
m
u
m
v
alu
e
d
u
r
in
g
t
h
e
ch
a
n
g
e
o
f
w
i
n
d
s
p
ee
d
,
b
u
t th
e
co
n
tr
o
l r
eset
s
th
i
s
f
ac
to
r
to
its
o
p
ti
m
a
l v
al
u
e
f
o
r
0
.
1
s
ec
o
n
d
.
Fig
u
r
e
10(
f
)
s
h
o
w
s
t
h
e
v
o
lta
g
es
o
f
t
h
e
ca
p
ac
ito
r
s
at
t
h
e
o
u
tp
u
t
o
f
t
h
e
co
n
v
er
ter
.
A
cc
o
r
d
in
g
to
Fig
u
r
e
10(
f
)
,
th
e
v
o
lta
g
e
s
Uc1
an
d
Uc2
ar
e
w
ell
b
ala
n
ce
d
.
At
th
e
m
o
m
e
n
t o
f
ch
a
n
g
e
o
f
t
h
e
w
i
n
d
s
p
ee
d
,
a
v
er
y
n
eg
l
ig
ib
le
d
if
f
er
e
n
ce
ap
p
ea
r
s
b
et
w
ee
n
t
h
ese
t
w
o
v
o
lta
g
es,
an
d
th
en
th
e
co
n
tr
o
l
ac
ts
q
u
ick
l
y
to
m
ai
n
ta
i
n
b
alan
cin
g
t
h
ese
v
o
ltag
e
s
ag
ai
n
.
Fig
u
r
e
1
0
(
g
)
s
h
o
w
s
th
e
s
tep
v
alu
e
u
s
ed
f
o
r
d
eter
m
i
n
in
g
th
e
o
p
tim
u
m
in
d
u
ctan
ce
c
u
r
r
en
t
v
alu
e.
I
t
is
n
o
ted
th
at
t
h
is
s
tep
ta
k
es
o
n
a
v
er
y
i
m
p
o
r
tan
t
v
a
lu
e
in
tr
an
s
i
en
t
m
o
d
e
o
r
d
u
r
in
g
a
c
h
a
n
g
e
i
n
w
i
n
d
s
p
ee
d
.
T
h
is
s
tep
ten
d
s
q
u
ic
k
l
y
to
a
v
er
y
lo
w
v
al
u
e
w
h
e
n
t
h
e
s
y
s
te
m
f
in
d
s
th
e
o
p
ti
m
a
l p
o
in
t.
Fig
u
r
e
1
0
(
h
)
s
h
o
w
s
i
n
zo
o
m
th
e
s
tep
u
s
ed
b
y
t
h
e
MP
PT
I
n
c
-
C
o
n
d
.
A
cc
o
r
d
in
g
to
t
h
is
f
ig
u
r
e,
t
h
e
v
ar
iatio
n
o
f
s
tep
s
ize
d
u
r
i
n
g
t
h
e
c
h
an
g
es
in
w
i
n
d
s
p
ee
d
o
r
in
tr
a
n
s
ie
n
t
co
n
d
itio
n
s
m
ad
e
i
t
p
o
s
s
ib
le
to
d
etec
t
th
e
o
p
ti
m
u
m
p
o
in
t
m
o
r
e
q
u
ic
k
l
y
.
W
h
e
n
t
h
e
o
p
ti
m
u
m
p
o
in
t
is
f
o
u
n
d
,
th
e
s
y
s
te
m
o
s
ci
llate
s
ar
o
u
n
d
t
h
i
s
p
o
in
t
w
it
h
v
er
y
li
m
ited
a
m
p
li
tu
d
e
r
ip
p
les,
w
h
ic
h
is
j
u
s
ti
f
ied
b
y
t
h
e
p
r
esen
ce
o
f
t
h
e
s
m
al
ler
s
tep
s
ize
in
th
e
estab
lis
h
ed
r
eg
i
m
e.
(
a)
(
b
)
(
c)
(
d
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
A
P
E
I
SS
N:
2252
-
8792
N
ew
Op
tim
iz
a
tio
n
Meth
o
d
o
f t
h
e
MPP
T
A
lg
o
r
ith
m
a
n
d
B
a
la
n
cin
g
V
o
lta
g
e
C
o
n
tr
o
l
…
(
Ha
s
s
a
n
A
b
o
u
o
b
a
i
d
a
)
121
(
e)
(
f
)
(
g
)
(
h
)
Fig
u
r
e
1
0
.
I
n
c
-
co
n
d
MP
PT
r
es
u
lts
b
ased
v
ar
iab
le
s
tep
(
Step
)
,
(
a)
W
in
d
s
p
ee
d
(
m
/S),
(
b
)
I
n
d
u
cto
r
cu
r
r
en
t
(
A
)
,
(
c)
I
n
d
u
cto
r
cu
r
r
en
t z
o
o
m
(
A
)
,
(
d
)
Po
w
er
(
W
)
,
(
e)
Po
w
e
r
co
ef
f
icie
n
t,
(
f
)
C
ap
ac
ito
r
v
o
l
tag
es (
V)
,
(
g
)
Step
s
ize,
(
h
)
Step
s
ize
zo
o
m
T
h
e
s
i
m
u
latio
n
r
es
u
lt
s
in
d
icat
e
th
at:
a.
T
h
e
v
o
ltag
es
o
f
th
e
ca
p
ac
ito
r
s
ar
e
k
ep
t
eq
u
al.
B
ased
o
n
th
e
r
esu
lt
s
,
it
ca
n
b
e
d
ed
u
ce
d
th
at
th
e
b
alan
ci
n
g
o
f
t
h
e
o
u
tp
u
t v
o
lta
g
es o
f
th
e
T
L
B
C
i
s
ass
u
r
ed
,
b.
T
h
e
p
o
w
er
e
x
tr
ac
ted
is
id
en
tic
al
to
th
e
v
alu
e
g
i
v
e
n
b
y
t
h
e
t
h
eo
r
etica
l
p
o
w
er
c
u
r
v
e
ac
co
r
d
in
g
to
th
e
w
i
n
d
s
p
ee
d
.
T
h
e
m
a
x
i
m
u
m
p
o
w
er
o
p
er
atio
n
an
d
th
e
ad
j
u
s
t
m
e
n
t
ap
p
r
o
ac
h
o
f
t
h
e
in
d
u
ctan
ce
cu
r
r
en
t
ar
e
v
alid
ated
.
c.
T
h
e
s
ea
r
ch
ti
m
e
a
n
d
t
h
e
tr
ac
k
in
g
ti
m
e
ar
e
i
m
p
r
o
v
ed
in
t
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
.
T
h
e
im
p
r
o
v
ed
MPPT
tak
es t
h
e
litt
le
t
i
m
e
(
0
.
1
2
S in
s
tead
o
f
0
.
3
6
S)
to
r
ec
o
v
er
th
e
o
p
ti
m
al
p
o
in
t.
d.
T
h
e
a
m
p
lit
u
d
e
o
f
t
h
e
r
ip
p
les
a
r
o
u
n
d
t
h
e
o
p
ti
m
a
l
p
o
in
t
is
w
el
l
m
ai
n
tai
n
ed
at
a
m
ax
i
m
u
m
wh
ich
d
o
es
n
o
t
ex
ce
ed
0
.
5
A
w
h
ic
h
j
u
s
ti
f
y
th
e
v
alid
it
y
o
f
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
.
5.
CO
NCLU
SI
O
N
T
h
e
p
ap
er
ad
d
r
ess
ed
th
e
m
o
d
elin
g
an
d
co
n
tr
o
l
o
f
th
e
T
L
B
C
.
T
h
e
co
n
tr
o
l
ap
p
r
o
ac
h
is
b
ased
o
n
lin
ea
r
izatio
n
an
d
d
is
t
u
r
b
an
ce
c
o
m
p
e
n
s
at
io
n
s
in
ce
t
h
e
t
h
r
ee
-
le
v
el
b
o
o
s
t c
o
n
v
er
ter
e
x
h
ib
its
n
o
n
-
li
n
ea
r
b
eh
a
v
io
r
.
T
h
e
o
b
j
ec
tiv
es
f
i
x
ed
b
y
t
h
e
c
o
n
tr
o
l
ar
e
r
esp
ec
tiv
el
y
b
alan
c
in
g
t
h
e
v
o
ltag
e
s
o
f
th
e
ca
p
ac
i
to
r
s
an
d
ex
tr
ac
tin
g
th
e
m
a
x
i
m
u
m
p
o
w
er
.
On
th
e
o
n
e
h
an
d
,
ac
co
r
d
in
g
to
th
e
s
i
m
u
latio
n
s
r
esu
l
ts
,
it
is
n
o
ted
t
h
at
th
e
co
n
tr
o
l
an
d
lin
ea
r
izatio
n
ap
p
r
o
ac
h
is
w
ell
v
alid
ated
a
n
d
th
e
w
i
n
d
s
y
s
te
m
is
o
p
er
atin
g
at
it
s
m
a
x
i
m
u
m
p
o
w
er
.
O
n
t
h
e
o
t
h
er
h
an
d
,
t
h
e
o
p
ti
m
izatio
n
ap
p
r
o
a
ch
o
f
t
h
e
I
n
c
-
C
o
n
d
MP
PT
is
v
alid
ated
s
in
ce
t
h
e
tr
an
s
ien
t
ti
m
e
an
d
t
h
e
tr
ac
k
i
n
g
ti
m
e
ar
e
w
ell
m
in
i
m
ized
an
d
th
e
r
ip
p
le
ar
o
u
n
d
th
e
o
p
ti
m
al
p
o
in
t is
w
ell
m
ai
n
tai
n
ed
at
a
r
ea
s
o
n
ab
le
li
m
it.
RE
F
E
R
E
NC
E
S
[1
]
H.
A
b
o
u
o
b
a
id
a
a
n
d
E.
Be
id
S
a
id
,
"
Ne
w
M
P
P
T
c
o
n
tro
l
f
o
r
w
in
d
c
o
n
v
e
rsio
n
sy
ste
m
b
a
se
d
P
M
S
G
a
n
d
a
c
o
m
p
a
ra
iso
n
to
c
o
n
v
e
n
ti
o
n
a
ls
a
p
p
r
o
a
c
h
s,"
2
0
1
7
1
4
t
h
In
ter
n
a
ti
o
n
a
l
M
u
lt
i
-
Co
n
fer
e
n
c
e
o
n
S
y
ste
ms
,
S
ig
n
a
ls
&
De
v
ice
s
(
S
S
D)
,
M
a
rra
k
e
c
h
,
2
0
1
7
,
p
p
.
3
8
-
4
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8792
IJ
A
P
E
Vo
l.
6
,
No
.
2
,
A
u
g
u
s
t 2
0
1
7
:
1
1
3
–
1
2
2
122
[2
]
H.
Ch
e
n
a
n
d
W
.
L
in
,
"
M
P
P
T
a
n
d
V
o
l
tag
e
Ba
lan
c
in
g
Co
n
tro
l
W
it
h
S
e
n
sin
g
On
ly
In
d
u
c
to
r
C
u
rre
n
t
f
o
r
P
h
o
t
o
v
o
lt
a
ic
-
F
e
d
,
T
h
re
e
-
Lev
e
l,
Bo
o
st
-
Ty
p
e
C
o
n
v
e
rters
,
"
in
IEE
E
T
ra
n
s
a
c
ti
o
n
s
o
n
Po
we
r
El
e
c
tro
n
ics
,
v
o
l.
2
9
,
n
o
.
1
,
p
p
.
2
9
-
3
5
,
Ja
n
.
2
0
1
4
.
[3
]
S
a
id
El
Be
id
,
Ha
ss
a
n
A
b
o
u
o
b
a
id
a
,
A
b
d
e
lo
w
a
h
e
d
Ha
jj
a
ji
,
"
T
S
F
u
z
z
y
M
o
d
e
li
n
g
A
p
p
o
a
c
h
f
o
r
t
h
e
T
h
re
e
L
e
v
e
l
Bo
o
s
t
Co
n
v
e
rter
,
"
T
h
e
In
ter
n
a
t
io
n
a
l
c
o
n
fer
e
n
c
e
o
n
Ad
v
a
n
c
e
d
M
a
ter
ia
ls
fo
r
Ph
o
to
n
ics
,
S
e
n
si
n
g
a
n
d
En
e
rg
y
Ap
p
li
CAt
io
n
s
(
AM
PS
ECA
'
2
0
1
7
)
,
2
0
1
7
[4
]
Ha
ss
a
n
F
a
th
a
b
a
d
i,
"
No
v
e
l
h
ig
h
e
ff
ici
e
n
t
sp
e
e
d
se
n
so
rles
s
c
o
n
tro
ll
e
r
f
o
r
m
a
x
i
m
u
m
p
o
w
e
r
e
x
tra
c
t
io
n
f
ro
m
w
in
d
e
n
e
rg
y
c
o
n
v
e
rsio
n
sy
ste
m
s
,
"
En
e
rg
y
Co
n
v
e
rs
io
n
a
n
d
M
a
n
a
g
e
me
n
t
,
v
o
l.
1
2
3
,
p
p
.
3
9
2
-
4
0
1
,
S
e
p
tem
b
e
r
2
0
1
6
.
[5
]
Y.
Zh
a
o
,
C
.
W
e
i,
Z.
Zh
a
n
g
a
n
d
W
.
Qia
o
,
"
A
Re
v
i
e
w
o
n
P
o
sit
io
n
/
S
p
e
e
d
S
e
n
s
o
rles
s
Co
n
tr
o
l
f
o
r
P
e
r
m
a
n
e
n
t
-
M
a
g
n
e
t
S
y
n
c
h
ro
n
o
u
s
M
a
c
h
in
e
-
Ba
se
d
W
in
d
En
e
rg
y
Co
n
v
e
rsio
n
S
y
ste
m
s
,
"
in
IEE
E
J
o
u
rn
a
l
o
f
Eme
rg
i
n
g
a
n
d
S
e
lec
te
d
T
o
p
ics
i
n
P
o
we
r E
lec
tro
n
ics
,
v
o
l.
1
,
n
o
.
4
,
p
p
.
2
0
3
-
2
1
6
,
De
c
.
2
0
1
3
.
[6
]
A
.
Urta
su
n
,
P
.
S
a
n
c
h
is
a
n
d
L
.
M
a
rro
y
o
,
"
S
m
a
ll
W
in
d
T
u
rb
in
e
S
e
n
s
o
rles
s M
P
P
T
:
Ro
b
u
st
n
e
ss
A
n
a
l
y
s
is
a
n
d
L
o
ss
les
s
A
p
p
ro
a
c
h
,
"
in
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
In
d
u
stry
Ap
p
li
c
a
ti
o
n
s
,
v
o
l.
5
0
,
n
o
.
6
,
p
p
.
4
1
1
3
-
4
1
2
1
,
No
v
.
-
De
c
.
2
0
1
4
.
[7
]
Zh
a
n
g
X
,
L
i
Q,
Yi
n
M
,
Ye
X
,
Z
o
u
Y,
"
A
n
im
p
ro
v
e
d
h
il
l
-
c
li
m
b
in
g
se
a
rc
h
in
g
m
e
th
o
d
b
a
se
d
o
n
h
a
lt
m
e
c
h
a
n
is
m
,
"
In
Z
h
o
n
g
g
u
o
Di
a
n
ji
Go
n
g
c
h
e
n
g
X
u
e
b
a
o
/P
ro
c
e
e
d
Ch
i
n
S
o
c
El
e
c
tr
En
g
,
p
p
.
1
2
8
–
3
4
,
2
0
1
2
[8
]
L
.
A
.
V
it
o
i,
R.
Krish
n
a
,
D.
E.
S
o
m
a
n
,
M
.
L
e
ij
o
n
a
n
d
S
.
K.
Ko
t
t
a
y
il
,
"
Co
n
tro
l
a
n
d
im
p
lem
e
n
tatio
n
o
f
th
re
e
lev
e
l
b
o
o
st
c
o
n
v
e
rter
f
o
r
lo
a
d
v
o
lt
a
g
e
re
g
u
latio
n
,
"
IECON
2
0
1
3
-
3
9
th
An
n
u
a
l
Co
n
fer
e
n
c
e
o
f
t
h
e
I
EE
E
In
d
u
stri
a
l
El
e
c
t
ro
n
ics
S
o
c
iety
,
Vie
n
n
a
,
2
0
1
3
,
p
p
.
5
6
1
-
5
6
5
.
[9
]
H.
Ch
e
n
a
n
d
W
.
L
in
,
"
T
h
re
e
-
le
v
e
l
b
o
o
sti
n
g
M
P
P
T
c
o
n
tro
l
w
it
h
re
d
u
c
e
d
n
u
m
b
e
r
o
f
se
n
so
rs,"
2
0
1
3
4
th
IEE
E
In
ter
n
a
t
io
n
a
l
S
y
mp
o
si
u
m
o
n
Po
we
r
El
e
c
tro
n
ics
fo
r
Distrib
u
te
d
Ge
n
e
ra
ti
o
n
S
y
ste
ms
(
PE
DG
)
,
Ro
g
e
rs,
A
R,
2
0
1
3
,
p
p
.
1
-
6.
[1
0
]
M
.
D.
Bo
u
g
rin
e
,
A
.
Be
n
a
li
a
a
n
d
M
.
H.
Be
n
b
o
u
z
id
,
"
S
im
p
le
slid
i
n
g
m
o
d
e
a
p
p
li
e
d
to
t
h
e
th
re
e
-
lev
e
l
b
o
o
st
c
o
n
v
e
rter
f
o
r
f
u
e
l
c
e
ll
a
p
p
li
c
a
ti
o
n
s,"
2
0
1
5
3
rd
In
ter
n
a
ti
o
n
a
l
C
o
n
fer
e
n
c
e
o
n
Co
n
tro
l,
E
n
g
in
e
e
rin
g
&
In
fo
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
(
CEIT
)
,
T
le
m
c
e
n
,
2
0
1
5
,
p
p
.
1
-
6.
[1
1
]
J.
K
w
o
n
,
B.
Kw
o
n
a
n
d
K.
Na
m
,
"
T
h
re
e
-
P
h
a
se
P
h
o
t
o
v
o
lt
a
ic
S
y
ste
m
W
it
h
T
h
re
e
-
L
e
v
e
l
Bo
o
stin
g
M
P
P
T
Co
n
tro
l,
"
in
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r E
lec
tro
n
ics
,
v
o
l.
2
3
,
n
o
.
5
,
p
p
.
2
3
1
9
-
2
3
2
7
,
S
e
p
t.
2
0
0
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.