I
nte
rna
t
io
na
l J
o
urna
l o
f
Appl
ied P
o
w
er
E
ng
ineering
(
I
J
AP
E
)
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
201
6
,
p
p
.
1
2
0
~
1
2
9
I
SS
N:
2252
-
8792
120
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
APE
A Multi
-
O
b
jec
tive
H
y
brid
H
euristi
c
Appro
a
ch
for
O
pti
m
a
l
Sett
ing
of
F
ACTS
Dev
ices
in
P
o
w
er
Sys
te
m
O
pera
tio
n
Sa
i R
a
m
I
n
k
o
ll
u
*
,
Ven
k
a
t
a
Reddy
K
o
t
a
**
*
Dh
a
n
e
k
u
la In
stit
u
te o
f
En
g
in
e
e
r
in
g
&
T
e
c
h
n
o
lo
g
y
,
V
ij
a
y
a
wa
d
a
,
A
n
d
h
ra
P
ra
d
e
sh
,
I
n
d
ia
**
Ja
w
a
h
a
rlal
Ne
h
ru
T
e
c
h
n
o
lo
g
ica
l
Un
iv
e
rsit
y
,
Ka
k
in
a
d
a
,
A
n
d
h
ra
P
ra
d
e
sh
,
I
n
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
2
,
2
0
1
6
R
ev
i
s
ed
Oct
2
,
2
0
1
6
A
cc
ep
ted
No
v
6
,
2
0
1
6
Im
p
ro
v
e
m
e
n
t
o
f
p
o
w
e
r
s
y
ste
m
p
e
rf
o
r
m
a
n
c
e
in
ter
m
s
o
f
in
c
re
a
s
e
d
v
o
lt
a
g
e
p
ro
f
il
e
a
n
d
d
e
c
re
a
se
d
tran
s
m
issi
o
n
lo
ss
is
b
e
c
o
m
in
g
o
n
e
o
f
th
e
c
h
a
ll
e
n
g
in
g
tas
k
s
to
th
e
s
y
st
e
m
o
p
e
ra
to
rs
u
n
d
e
r
o
p
e
n
a
c
c
e
ss
e
n
v
iro
n
m
e
n
t.
Ap
a
rt
f
ro
m
trad
it
io
n
a
l
p
o
w
e
r
f
lo
w
c
o
n
tro
ll
in
g
d
e
v
i
c
e
s,
u
se
o
f
F
lex
ib
le
A
C
T
r
a
n
sm
is
sio
n
S
y
st
e
m
(F
A
CT
S
)
d
e
v
ic
e
s ca
n
g
iv
e
a
n
a
tt
ra
c
ti
v
e
so
lu
ti
o
n
f
o
r
th
e
o
p
e
ra
ti
o
n
a
n
d
c
o
n
tro
l
o
f
d
e
re
g
u
late
d
p
o
w
e
r
s
y
st
e
m
.
T
h
e
t
y
p
e
,
siz
e
,
lo
c
a
ti
o
n
a
n
d
n
u
m
b
e
r
o
f
F
A
C
T
S
d
e
v
ice
s
a
re
to
b
e
o
p
ti
m
iz
e
d
a
p
p
ro
p
riate
ly
in
o
rd
e
r
to
g
e
t
th
e
targ
e
ted
b
e
n
e
f
it
s.
In
th
is
p
a
p
e
r,
tw
o
F
A
C
T
S
d
e
v
ice
s,
T
h
y
risto
r
Co
n
tro
ll
e
r
P
h
a
se
S
h
if
t
T
ra
n
s
f
o
r
m
e
r
(T
CP
S
T
)
a
n
d
In
te
rli
n
e
P
o
w
e
r
F
lo
w
Co
n
tro
l
ler
(
IP
F
C)
a
re
se
lec
ted
to
o
b
tain
th
e
re
q
u
ired
p
e
rf
o
r
m
a
n
c
e
su
c
h
a
s
i
m
p
ro
v
e
m
e
n
t
o
f
v
o
lt
a
g
e
p
ro
f
il
e
a
n
d
lo
ss
m
in
i
m
iza
t
io
n
.
To
se
a
rc
h
th
e
o
p
ti
m
a
l
lo
c
a
ti
o
n
a
n
d
o
p
ti
m
a
l
ra
ti
n
g
o
f
th
e
se
lec
ted
F
A
C
T
S
d
e
v
ice
s,
a
h
y
b
rid
a
lg
o
rit
h
m
w
h
ich
f
o
r
m
u
late
d
w
it
h
P
a
rti
c
le S
w
a
r
m
Op
ti
m
iza
ti
o
n
(
P
S
O) an
d
G
ra
v
it
a
ti
o
n
a
l
S
e
a
rc
h
A
l
g
o
rit
h
m
(G
S
A
)
is
p
ro
p
o
se
d
.
A
t
t
h
e
f
irst
ste
p
,
t
h
e
o
p
ti
m
iza
ti
o
n
p
ro
b
l
e
m
is
so
lv
e
d
f
o
r
f
in
d
in
g
th
e
o
p
ti
m
a
l
lo
c
a
ti
o
n
o
f
F
A
C
T
S
d
e
v
ice
s
u
sin
g
P
S
O
w
it
h
a
n
o
b
jec
ti
v
e
o
f
v
o
lt
a
g
e
p
ro
f
il
e
m
a
x
i
m
iz
a
ti
o
n
a
n
d
late
r
G
S
A
is
i
m
p
le
m
e
n
ted
to
o
p
t
im
ize
th
e
ir
p
a
ra
m
e
ters
w
it
h
a
n
o
b
jec
ti
v
e
o
f
tran
sm
is
sio
n
l
o
ss
m
in
im
iz
a
ti
o
n
.
T
h
e
p
ro
p
o
se
d
m
e
th
o
d
is
im
p
le
m
e
n
ted
o
n
IEE
E
3
0
-
b
u
s
tes
t
sy
ste
m
a
n
d
f
ro
m
th
e
sim
u
latio
n
re
su
lt
s
it
c
a
n
b
e
p
r
o
v
e
d
th
a
t
t
h
is
tec
h
n
i
q
u
e
is
w
e
ll
su
it
e
d
f
o
r
re
a
l
-
ti
m
e
a
p
p
li
c
a
ti
o
n
.
K
ey
w
o
r
d
:
Der
eg
u
la
ted
p
o
w
er
s
y
s
te
m
I
P
FC
Op
en
ac
ce
s
s
P
SO
-
GS
A
T
C
P
S
T
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sai Ra
m
I
n
k
o
llu
,
Dh
a
n
ek
u
la
I
n
s
tit
u
te
o
f
E
n
g
i
n
e
er
in
g
&
T
ec
h
n
o
lo
g
y
,
Vij
ay
a
w
ad
a
-
5
2
1
1
3
9
,
A
n
d
h
r
a
P
r
ad
esh
,
I
n
d
ia
.
E
m
ail:
i
n
k
o
llu
s
iar
a
m
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
p
r
ac
tical
li
m
i
tatio
n
s
to
e
x
p
an
s
io
n
an
d
e
v
er
i
n
cr
ea
s
i
n
g
el
ec
tr
icit
y
d
e
m
a
n
d
ar
e
ca
u
s
i
n
g
t
o
o
p
er
ate
tr
an
s
m
is
s
io
n
s
y
s
te
m
at
it
s
b
o
ttlen
ec
k
u
n
d
er
co
m
p
etiti
v
e
en
v
ir
o
n
m
e
n
t
i
n
d
er
eg
u
lated
p
o
w
er
s
y
s
te
m
.
I
n
ad
d
itio
n
,
th
e
r
an
d
o
m
n
e
s
s
i
n
p
o
w
er
in
j
ec
tio
n
a
n
d
w
it
h
d
r
a
w
al
s
w
it
h
t
h
e
s
tr
ate
g
ic
b
eh
av
io
r
o
f
m
ar
k
et
p
ar
ticip
an
ts
ar
e
f
u
r
t
h
er
ca
u
s
i
n
g
to
d
ec
r
ea
s
e
t
h
e
s
ec
u
r
it
y
m
ar
g
in
o
f
tr
a
n
s
m
i
s
s
io
n
s
y
s
te
m
.
U
n
d
er
th
i
s
s
ce
n
ar
io
,
th
e
p
r
i
m
ar
y
o
b
j
ec
tiv
es
to
i
n
tr
o
d
u
ce
Flex
ib
le
AC
T
r
an
s
m
i
s
s
io
n
S
y
s
te
m
(
F
AC
T
S)
d
ev
ices
ar
e
r
ed
ef
in
ed
b
y
ma
n
y
r
esear
c
h
er
s
d
u
r
i
n
g
la
s
t
d
ec
ad
e.
So
m
e
o
f
t
h
e
m
aj
o
r
ar
ea
s
f
o
cu
s
ed
w
it
h
F
AC
T
S
d
ev
ices
ar
e
lik
e
s
ec
u
r
it
y
m
ar
g
i
n
e
n
h
a
n
ce
m
en
t
[
1
-
3
]
,
s
t
ab
ilit
y
e
n
h
a
n
ce
m
en
t
[
4
-
1
0
]
,
r
eliab
ilit
y
m
a
n
ag
e
m
e
n
t
[
1
1
]
,
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
i
m
p
r
o
v
e
m
en
t
[
1
2
-
1
9
]
,
co
n
g
esti
o
n
m
a
n
ag
e
m
e
n
t
[
2
0
-
2
4
]
an
d
elec
tr
icit
y
m
ar
k
et
ec
o
n
o
m
ic
e
f
f
icie
n
c
y
m
ax
i
m
izatio
n
[
2
5
-
3
0
]
etc.
As
p
er
th
e
co
n
tr
o
llin
g
attr
ib
u
t
e
in
p
o
w
er
s
y
s
te
m
,
t
h
e
t
y
p
e,
s
i
ze
,
lo
ca
tio
n
,
n
u
m
b
er
etc.
ar
e
r
eq
u
ir
ed
to
o
p
tim
ize
v
er
y
p
r
ec
is
el
y
.
Ma
n
y
r
e
s
ea
r
ch
er
s
h
a
v
e
atte
m
p
ted
to
s
o
lv
e
th
i
s
p
r
o
b
lem
b
y
h
e
u
r
i
s
tic
alg
o
r
it
h
m
s
d
u
e
to
th
eir
ad
o
p
tab
ilit
y
f
o
r
m
u
lt
i
-
o
b
j
ec
tiv
e
co
m
p
le
x
p
r
o
b
lem
s
.
Usi
n
g
Gen
e
tic
A
lg
o
r
it
h
m
(
GA
)
,
th
e
o
p
ti
m
a
l
lo
ca
tio
n
an
d
n
u
m
b
er
o
f
th
y
r
is
to
r
-
co
n
tr
o
lled
p
h
ase
s
h
i
f
ter
s
a
r
e
o
p
tim
ized
in
[
3
1
,
3
2
]
.
I
n
[
3
3
]
,
h
y
b
r
id
T
S/S
A
ap
p
r
o
ac
h
h
as
b
ee
n
p
r
o
p
o
s
ed
t
o
s
o
lv
e
OP
F
p
r
o
b
lem
i
n
co
r
p
o
r
atin
g
F
AC
T
S
d
ev
ices.
A
n
e
v
o
lu
tio
n
ar
y
al
g
o
r
ith
m
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
A
Mu
lti
-
Ob
jective
Hyb
r
id
Heu
r
is
tic
A
p
p
r
o
a
ch
fo
r
Op
tima
l S
ettin
g
o
f F
A
C
TS
Dev
ices…
(
S
a
i R
a
m
I
n
k
o
llu
)
121
b
ased
ev
o
lu
tio
n
s
tr
ateg
ies
(
E
S
)
tech
n
iq
u
e
is
p
r
o
p
o
s
ed
to
m
a
x
i
m
ize
s
y
s
te
m
lo
ad
ab
ilit
y
v
ia
o
p
tim
izin
g
t
y
p
e
o
f
F
A
C
T
S
d
ev
ice,
t
h
eir
lo
ca
tio
n
an
d
s
ett
in
g
s
[
3
4
]
.
Si
m
ilar
l
y
,
t
h
e
A
B
C
al
g
o
r
ith
m
a
n
d
P
SO
al
g
o
r
ith
m
ap
p
licatio
n
f
o
r
o
p
ti
m
izi
n
g
I
P
FC
lo
ca
tio
n
ca
n
b
e
f
o
u
n
d
[
3
5
,
3
6
]
.
On
o
t
h
er
s
id
e,
th
e
co
n
v
e
n
tio
n
al
ap
p
r
o
ac
h
lik
e
m
ix
ed
-
in
te
g
er
n
o
n
lin
ea
r
p
r
o
g
r
a
m
m
i
n
g
(
MI
NL
P
)
is
ad
o
p
ted
to
f
in
d
th
e
o
p
ti
m
al
s
etti
n
g
o
f
F
AC
T
S
d
ev
ices
u
s
ed
i
n
th
e
op
tim
a
l
p
o
w
er
-
f
lo
w
p
r
o
b
le
m
.
[
3
7
]
.
I
t
is
w
o
r
t
h
w
h
ile
to
n
o
ti
f
y
th
e
r
o
le
o
f
h
e
u
r
is
tic
al
g
o
r
ith
m
s
u
s
ed
to
s
o
lv
e
i
n
all
th
ese
co
m
p
lex
p
r
o
b
le
m
s
.
T
h
e
o
b
j
ec
tiv
e
o
f
t
h
is
p
ap
er
is
n
o
t
o
n
l
y
to
r
eso
l
v
e
m
u
lti
-
o
b
jectiv
e
o
p
ti
m
izatio
n
p
r
o
b
lem
b
u
t
also
t
o
in
v
e
s
ti
g
ate
th
e
e
f
f
e
cti
v
en
e
s
s
w
it
h
t
h
e
u
s
e
o
f
F
AC
T
S
d
ev
ices
f
o
r
th
e
i
m
p
r
o
v
e
m
en
t
o
f
th
e
p
er
f
o
r
m
an
ce
o
f
tr
an
s
m
is
s
io
n
s
y
s
te
m
.
T
h
is
is
a
n
ex
te
n
s
io
n
o
f
o
u
r
ex
is
tin
g
wo
r
k
s
[
3
8
]
u
n
d
er
o
p
en
ac
ce
s
s
en
v
ir
o
n
m
e
n
t.
U
n
d
er
o
p
en
ac
ce
s
s
,
th
e
b
ilater
al
o
r
m
u
ltil
a
ter
al
tr
an
s
ac
tio
n
s
ar
e
ex
ec
u
ted
w
it
h
a
n
a
s
s
u
m
p
tio
n
o
f
u
n
co
n
s
tr
ai
n
ed
tr
an
s
m
is
s
io
n
s
y
s
te
m
.
W
ith
t
h
i
s
n
e
w
g
en
er
at
io
n
an
d
lo
ad
in
g
lev
els,
t
h
e
ab
ilit
y
o
f
v
ar
io
u
s
F
AC
T
S
d
ev
ices
f
o
r
th
e
i
m
p
r
o
v
e
m
en
t
o
f
t
h
e
tr
a
n
s
m
is
s
io
n
s
y
s
te
m
p
er
f
o
r
m
an
ce
is
an
a
l
y
ze
d
.
T
w
o
F
AC
T
S
d
ev
ices,
T
C
P
ST
an
d
I
P
FC
d
ev
ices
ar
e
u
s
ed
i
n
th
is
w
o
r
k
.
T
o
id
en
tify
t
h
e
m
o
s
t
s
u
i
tab
le
lo
ca
tio
n
s
,
th
e
P
ar
ticle
S
w
ar
m
Op
ti
m
izat
io
n
(
P
SO)
is
ap
p
lied
f
ir
s
t.
L
ater
,
th
e
Gr
av
ita
tio
n
al
Sear
c
h
A
l
g
o
r
ith
m
(
GS
A
)
is
i
m
p
le
m
en
ted
t
o
f
in
d
th
e
o
p
ti
m
al
p
ar
am
eter
s
o
f
t
h
e
F
AC
T
S
d
ev
ices.
T
h
e
o
v
er
all
v
o
lta
g
e
d
e
v
i
atio
n
i
n
d
ex
(
VDI
)
is
co
n
s
id
er
ed
w
h
ile
o
p
ti
m
izi
n
g
th
e
lo
ca
tio
n
a
n
d
th
e
tr
an
s
m
is
s
i
o
n
lo
s
s
is
co
n
s
id
er
ed
w
h
ile
o
p
ti
m
izi
n
g
th
e
p
ar
a
m
e
ter
s
o
f
F
AC
T
S d
ev
ices.
T
h
is
p
ap
er
is
ar
r
an
g
ed
as
f
o
ll
o
w
s
:
s
ec
tio
n
1
g
i
v
es
in
tr
o
d
u
ctio
n
,
s
ec
tio
n
2
s
h
o
w
s
t
h
e
p
o
w
e
r
in
j
ec
ti
o
n
m
o
d
eli
n
g
o
f
v
ar
io
u
s
F
AC
T
S
d
ev
ices.
Sec
tio
n
3
ex
p
lai
n
s
th
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
i
n
t
h
e
n
ec
es
s
ar
y
m
at
h
e
m
at
ical
eq
u
atio
n
s
.
I
n
s
ec
tio
n
4
,
th
e
p
r
o
p
o
s
ed
h
y
b
r
id
alg
o
r
it
h
m
is
e
x
p
lain
ed
b
r
ief
l
y
.
Sec
tio
n
5
d
ea
ls
w
ith
v
ar
io
u
s
ca
s
e
s
tu
d
ie
s
o
n
s
ta
n
d
ar
d
I
E
E
E
test
s
y
s
te
m
s
an
d
s
ec
tio
n
6
co
n
clu
d
es th
e
p
ap
er
.
2.
M
O
DE
L
I
N
G
O
F
F
AC
T
S D
E
VIC
E
S
2
.
1
.
T
hy
risto
r
Co
ntr
o
ller
P
ha
s
e
Sh
if
t
T
ra
ns
f
o
r
m
er
As f
ar
as t
h
e
s
tat
ic
m
o
d
eli
n
g
i
s
co
n
ce
r
n
ed
,
th
e
p
o
w
er
i
n
j
ec
tio
n
eq
u
atio
n
s
ar
e
as f
o
llo
w
s
:
,
1
s
i
n
i
n
j
i
i
j
i
j
t
c
p
s
t
se
P
r
V
V
X
(
1
)
22
,
11
cos
i
n
j
i
i
i
j
i
j
t
c
p
s
t
s
e
s
e
Q
r
V
r
V
V
XX
(
2
)
,,
i
n
j
j
i
n
j
i
PP
(
3
)
,
1
c
o
s
i
n
j
j
i
j
i
j
t
c
p
s
t
se
Q
r
V
V
X
(
4
)
w
h
er
e,
t
a
n
t
c
p
s
t
is
t
h
e
p
h
a
s
e
a
n
g
le
ad
j
u
s
t
m
e
n
t
b
y
T
C
P
ST
b
et
w
ee
n
,
22
,
r
is
t
h
e
r
atio
b
et
w
ee
n
th
e
m
ag
n
it
u
d
e
o
f
t
h
e
i
n
d
u
ce
d
s
er
ies
v
o
ltag
e
an
d
m
a
g
n
itu
d
e
o
f
th
e
ith
b
u
s
v
o
ltag
e.
I
t
is
v
ar
iab
le
in
th
e
r
an
g
e
m
a
x
0,
r
,
i
an
d
j
ar
e
th
e
lo
ad
an
g
les
o
f
b
u
s
es
j
i
,
r
esp
ec
tiv
el
y
.
I
n
ad
d
itio
n
,
2
s
e
s
e
s
h
X
x
n
x
,
w
h
er
e
se
x
an
d
sh
x
ar
e
th
e
s
er
ie
s
an
d
s
h
u
n
t
r
ea
ctan
ce
s
o
f
tr
an
s
m
is
s
io
n
li
n
e
/tra
n
s
f
o
r
m
er
a
n
d
n
is
th
e
v
ar
i
ab
le
o
f
th
e
p
h
ase
s
h
i
f
t a
n
g
le.
T
h
e
d
etailed
in
f
o
r
m
atio
n
ca
n
b
e
f
o
u
n
d
in
[
3
9
]
.
2
.
2
.
I
nte
rline
P
o
w
er
F
lo
w
Co
ntr
o
ller
B
y
a
s
s
u
m
in
g
I
P
FC
lo
ca
tio
n
b
e
t
w
ee
n
b
u
s
es
i
,
j
an
d
k
,
th
e
p
o
wer
in
j
ec
tio
n
s
ar
e
as f
o
llo
w
s
[
1
5
,
1
6
]
.
,
,
s
i
n
i
n
i
n
i
n
j
i
i
s
e
i
n
i
s
e
n
j
k
P
V
V
b
(
5
)
,
,
cos
i
n
i
n
i
n
j
i
i
s
e
i
n
i
s
e
n
j
k
Q
V
V
b
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
201
6
:
1
2
0
–
1
2
9
122
,
s
i
n
i
n
i
n
i
n
j
n
j
s
e
i
n
j
s
e
P
V
V
b
,
n
j
k
(
7
)
,
c
o
s
i
n
i
n
i
n
j
n
j
s
e
i
n
j
s
e
Q
V
V
b
(
8
)
Her
e
in
se
V
an
d
in
se
ar
e
th
e
m
ag
n
it
u
d
e
a
n
d
an
g
le
o
f
s
er
ies i
n
j
ec
ted
v
o
lt
ag
e
s
o
u
r
ce
.
3
.
O
B
J
E
CT
I
V
E
F
UNC
T
I
O
N
T
h
e
tr
an
s
m
is
s
io
n
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
ca
n
b
e
m
at
h
e
m
a
tic
all
y
f
o
r
m
u
lated
in
ter
m
s
o
f
t
w
o
ter
m
s
:
v
o
ltag
e
d
ev
iatio
n
o
f
th
e
s
y
s
te
m
,
1
,
f
x
u
,
an
d
tr
an
s
m
i
s
s
io
n
lo
s
s
e
s
,
2
,
f
x
u
.
T
h
er
ef
o
r
e
th
e
m
aj
o
r
o
b
j
ec
tiv
e
f
u
n
ctio
n
ca
n
b
e
d
ef
i
n
ed
as:
12
,
,
,
,
F
x
u
f
x
u
f
x
u
(
9
)
T
h
e
f
ir
s
t
o
b
j
ec
tiv
e
is
to
o
p
tim
ize
t
h
e
o
v
er
all
s
y
s
te
m
v
o
lta
g
e
p
r
o
f
ile
i.e
.
,
m
i
n
i
m
ize
th
e
v
o
ltag
e
d
ev
iatio
n
at
lo
ad
b
u
s
es,
w
h
ic
h
ca
n
b
e
d
ef
i
n
ed
as
2
1
1
,,
N
L
B
r
e
f
ii
i
f
x
u
V
D
I
x
u
V
V
(
1
0
)
W
h
er
e
N
B
L
is
t
h
e
n
u
m
b
er
o
f
lo
ad
b
u
s
es,
r
e
f
i
V
is
t
h
e
p
r
e
-
s
p
ec
if
ie
d
r
ef
er
en
ce
m
a
g
n
i
tu
d
e
at
i
th
lo
ad
b
u
s
,
w
h
ich
u
s
u
all
y
w
it
h
m
a
g
n
it
u
d
e
o
f
1
.
0
p
.
u
.
T
h
e
s
ec
o
n
d
o
b
j
ec
tiv
e
is
to
m
i
n
i
m
ize
t
h
e
to
tal
r
ea
l p
o
w
er
lo
s
s
o
f
th
e
li
n
es,
w
h
ic
h
is
w
r
itte
n
a
s
:
2,
1
,,
NL
l
o
s
s
i
l
o
s
s
i
f
x
u
P
x
u
P
(
1
1
)
w
h
er
e
,
i
l
o
s
s
P
is
t
h
e
r
ea
l p
o
w
er
lo
s
s
i
n
tr
an
s
m
is
s
io
n
li
n
e
i
,
an
d
N
L
is
th
e
to
tal
n
u
m
b
er
o
f
tr
a
n
s
m
i
s
s
i
o
n
lin
e
s
.
I
n
b
o
th
t
h
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
s
,
x
d
en
o
te
s
t
h
e
v
ec
to
r
o
f
d
ep
en
d
en
t
v
ar
iab
les
s
u
c
h
a
s
s
l
ac
k
b
u
s
p
o
w
er
P
G1
,
g
en
er
ato
r
r
ea
ctiv
e
p
o
w
er
o
u
tp
u
ts
Q
G
,
lo
ad
b
u
s
v
o
ltag
e
s
V
L
an
d
ap
p
ar
en
t p
o
w
er
f
lo
w
s
i
n
tr
a
n
s
m
i
s
s
io
n
l
in
e
s
S
L
.
T
h
er
ef
o
r
e
x
ca
n
b
e
d
ef
in
ed
as:
1
1
1
1
,
,
.
.
.
,
,
.
.
.
,
,
.
.
.
T
G
G
N
G
B
L
N
L
B
L
N
L
x
P
Q
Q
V
V
S
S
(
1
2
)
w
h
er
e
NGB
is
th
e
n
u
m
b
er
o
f
g
en
er
ato
r
b
u
s
e
s
.
Si
m
i
lar
l
y
,
u
d
en
o
tes
t
h
e
v
ec
t
o
r
o
f
co
n
tr
o
l
v
ar
iab
les
s
u
ch
a
s
g
en
er
ato
r
b
u
s
v
o
ltag
e
s
V
G
,
lo
ca
tio
n
o
f
F
A
C
T
S
d
ev
ices
L
,
an
d
r
ea
l a
n
d
r
ea
cti
v
e
p
o
w
er
i
n
j
ec
tio
n
s
P
inj
&
Q
inj
a
t F
A
C
T
S d
ev
ice
in
cid
e
n
t b
u
s
e
s
i,
j
r
esp
ec
tiv
el
y
.
T
h
er
ef
o
r
e
u
ca
n
b
e
ex
p
r
ess
ed
as:
1
1
,
,
,
,
,
.
.
.
,
,
.
.
.
,
,
,
,
T
G
N
G
B
N
L
i
n
j
i
i
n
j
i
i
n
j
j
i
n
j
j
u
V
V
L
L
P
Q
P
Q
(
1
3
)
As
p
er
th
e
t
y
p
e
o
f
F
A
C
T
S
d
ev
ice,
th
e
p
o
w
er
in
j
ec
tio
n
s
a
g
ain
co
n
tr
o
lled
w
ith
t
h
eir
r
es
p
ec
tiv
e
co
n
tr
o
lli
n
g
p
ar
am
eter
s
.
3
.
1
.
E
qu
a
lity
co
ns
t
ra
ints
T
h
e
eq
u
alit
y
co
n
s
tr
ai
n
ts
w
h
i
ch
ar
e
th
e
r
ea
l
an
d
r
ea
ctiv
e
p
o
w
er
b
alan
ce
eq
u
atio
n
s
f
o
r
all
th
e
b
u
s
es
ex
ce
p
t b
u
s
es
p
an
d
q
w
it
h
UP
FC
ar
e
s
h
o
w
n
i
n
th
e
f
o
llo
w
i
n
g
eq
u
atio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
A
Mu
lti
-
Ob
jective
Hyb
r
id
Heu
r
is
tic
A
p
p
r
o
a
ch
fo
r
Op
tima
l S
ettin
g
o
f F
A
C
TS
Dev
ices…
(
S
a
i R
a
m
I
n
k
o
llu
)
123
,,
1
c
o
s
NB
i
g
i
d
i
i
k
i
k
i
k
i
j
k
P
P
P
V
V
Y
(
1
4
)
,,
1
s
i
n
NB
i
g
i
d
i
i
k
i
k
i
k
i
j
k
Q
Q
Q
V
V
Y
1
,
2
,
.
.
.
,
i
N
B
; b
u
t
,
i
p
q
(
1
5
)
Fo
r
b
u
s
es
p
an
d
q
,
th
e
eq
u
alit
y
co
n
s
tr
ain
t
s
ca
n
b
e
w
r
itte
n
as
,
,
,
1
c
o
s
NB
p
g
p
d
p
p
k
p
k
p
k
p
j
p
i
n
j
k
P
P
P
V
V
Y
P
(
1
6
)
,
,
,
1
s
i
n
NB
p
g
p
d
p
p
k
p
k
p
k
p
j
p
i
n
j
k
Q
Q
Q
V
V
Y
Q
(
1
7
)
,
,
,
1
c
o
s
NB
q
g
q
d
q
q
k
q
k
q
k
q
j
q
i
n
j
k
P
P
P
V
V
Y
P
(
1
8
)
,
,
,
1
s
i
n
NB
q
g
q
d
q
q
k
q
k
q
k
q
j
q
i
n
j
k
Q
Q
Q
V
V
Y
Q
(
1
9
)
3
.
2
.
I
nequ
a
lity
co
ns
t
ra
ints
Rea
l
po
w
er
g
ener
a
t
io
n
li
m
i
t
s
:
T
h
e
u
p
p
er
an
d
lo
w
er
li
m
it
o
f
th
e
r
ea
l
p
o
w
er
g
e
n
er
at
ed
b
y
t
h
e
g
en
er
ato
r
s
ca
n
b
e
s
h
o
w
n
a
s
,,
m
i
n
m
a
x
,
g
i
g
i
gi
P
P
P
,
1
,
2
,
.
.
.
,
i
N
G
(
2
0
)
Rea
ct
iv
e
po
w
er
g
ener
a
t
io
n
l
i
m
it
s
:
T
h
e
u
p
p
er
an
d
lo
w
er
li
m
it
o
f
th
e
r
ea
ct
iv
e
p
o
w
er
ca
n
b
e
s
h
o
wn
as
,,
m
i
n
m
a
x
,
g
i
g
i
gi
Q
Q
Q
,
1
,
2
,
.
.
.
,
i
N
G
(
2
1
)
Vo
lt
a
g
e
li
m
it
s
: T
h
e
u
p
p
er
an
d
lo
w
er
li
m
it o
f
t
h
e
b
u
s
v
o
lta
g
e
m
ag
n
it
u
d
e
ca
n
b
e
s
h
o
w
n
as
m
i
n
m
a
x
ii
i
V
V
V
,
1
,
2
,
.
.
.
,
i
N
B
(
2
2
)
P
ha
s
e
a
ng
le
li
m
it
s
: T
h
e
u
p
p
er
an
d
lo
w
er
li
m
its
o
n
th
e
b
u
s
v
o
ltag
e
p
h
ase
a
n
g
le
ca
n
b
e
s
h
o
w
n
as
m
i
n
m
a
x
ii
i
,
1
,
2
,
.
.
.
,
i
N
B
(
2
3
)
T
a
p
-
Cha
ng
er
s
li
m
it
s
:
T
h
e
u
p
p
er
an
d
lo
w
er
l
i
m
its
o
n
t
h
e
t
ap
p
o
s
itio
n
s
in
tap
-
c
h
an
g
i
n
g
t
r
an
s
f
o
r
m
er
lin
es c
a
n
b
e
s
h
o
w
n
as
m
i
n
m
a
x
ii
i
a
a
a
,
1
,
2
,
.
.
.
,
i
N
T
C
L
(
2
4
)
M
VAr
inje
ct
i
o
n
li
m
it
s
:
T
h
e
u
p
p
er
an
d
lo
w
er
li
m
its
o
n
t
h
e
MV
A
r
in
j
ec
tio
n
s
at
v
o
lta
g
e
co
n
tr
o
lled
b
u
s
es c
a
n
b
e
s
h
o
w
n
a
s
,,
m
i
n
m
a
x
,
i
n
j
i
i
n
j
i
i
n
j
i
Q
Q
Q
,
1
,
2
,
.
.
.
,
i
N
V
C
B
(
2
5
)
L
ine f
lo
w
li
m
it
s
: T
h
e
m
ax
i
m
u
m
MV
A
p
o
w
er
f
lo
w
in
a
tr
a
n
s
m
is
s
io
n
li
n
e
ca
n
b
e
s
h
o
w
n
a
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
201
6
:
1
2
0
–
1
2
9
124
m
a
x
ll
SS
,
1
,
2
,
.
.
.
,
l
N
L
(
2
6
)
4
.
P
RO
P
O
SE
D
H
YB
RID A
L
G
O
RIT
H
M
T
h
e
h
y
b
r
id
alg
o
r
ith
m
ad
o
p
ted
h
er
e
is
s
i
m
i
lar
to
o
u
r
p
r
ev
io
u
s
w
o
r
k
s
a
n
d
th
e
d
etailed
al
g
o
r
ith
m
ca
n
b
e
f
o
u
n
d
[
3
8
]
.
T
h
e
p
s
eu
d
o
co
d
e
o
f
th
e
p
r
o
ce
d
u
r
e
in
v
o
l
v
ed
in
P
SO
-
GS
A
i
s
as
f
o
llo
w
s
:
P
S
O
f
o
r
O
p
t
i
m
a
l
L
o
c
a
t
i
o
n
G
S
A
f
o
r
O
p
t
i
m
a
l
P
a
r
a
me
t
e
r
s
1
.
F
o
r
e
a
c
h
p
a
r
t
i
c
l
e
i.
I
n
i
t
i
a
l
i
z
e
p
a
r
t
i
c
l
e
,
En
d
Do
2
.
F
o
r
e
a
c
h
p
a
r
t
i
c
l
e
ii.
C
a
l
c
u
l
a
t
e
f
i
t
n
e
ss v
a
l
u
e
I
f
i
t
i
s
b
e
t
t
e
r
t
h
a
n
t
h
e
b
e
st
f
i
t
n
e
ss v
a
l
u
e
(
p
Be
st
)
i
n
h
i
s
t
o
r
y
i
i
i
.
S
e
t
c
u
r
r
e
n
t
v
a
l
u
e
a
s
t
h
e
n
e
w
p
Be
st
En
d
3
.
C
h
o
o
se
t
h
e
p
a
r
t
i
c
l
e
w
i
t
h
t
h
e
b
e
st
f
i
t
n
e
ss v
a
l
u
e
o
f
a
l
l
t
h
e
p
a
r
t
i
c
l
e
s a
s
t
h
e
g
B
e
st
4
.
F
o
r
e
a
c
h
p
a
r
t
i
c
l
e
i.
C
a
l
c
u
l
a
t
e
v
e
l
o
c
i
t
y
ii.
U
p
d
a
t
e
p
o
s
i
t
i
o
n
En
d
-
w
h
i
l
e
max
i
m
u
m
i
t
e
r
a
t
i
o
n
s
o
r
m
i
n
i
mu
m e
r
r
o
r
c
r
i
t
e
r
i
a
i
s
n
o
t
a
t
t
a
i
n
e
d
.
1
.
S
e
a
r
c
h
s
p
a
c
e
i
d
e
n
t
i
f
i
c
a
t
i
o
n
,
t
=
0
;
2
.
R
a
n
d
o
m i
n
i
t
i
a
l
i
z
a
t
i
o
n
,
Xi
(
t
)
;
F
o
r
i
=
1
,
…
,
N
3
.
F
i
t
n
e
ss e
v
a
l
u
a
t
i
o
n
o
f
o
b
j
e
c
t
s
;
4
.
U
p
d
a
t
e
t
h
e
p
a
r
a
me
t
e
r
s o
f
G
,
b
e
s
t
,
w
o
rst
a
n
d
M;
F
o
r
i
=
1
,
…
,
N
5
.
C
a
l
c
u
l
a
t
i
o
n
o
f
t
h
e
f
o
r
c
e
o
n
e
a
c
h
o
b
j
e
c
t
;
6
.
C
a
l
c
u
l
a
t
i
o
n
o
f
t
h
e
a
c
c
e
l
e
r
a
t
i
o
n
a
n
d
t
h
e
v
e
l
o
c
i
t
y
o
f
e
a
c
h
o
b
j
e
c
t
;
7
.
U
p
d
a
t
e
t
h
e
p
o
si
t
i
o
n
o
f
t
h
e
a
g
e
n
t
s
b
y
(
4
)
t
o
y
i
e
l
d
Xi
(
t
+
1
)
;
t
=
t
+
1
;
8
.
R
e
p
e
a
t
st
e
p
s
3
t
o
7
u
n
t
i
l
t
h
e
s
t
o
p
c
r
i
t
e
r
i
a
i
s
r
e
a
c
h
e
d
;
9
.
En
d
5
.
CASE
S
T
UD
I
E
S
T
h
e
GSA
-
P
SO
al
g
o
r
ith
m
i
s
a
p
p
lied
f
o
r
o
p
tim
al
p
lace
m
en
t
o
f
ea
ch
F
AC
T
S
d
ev
ice
o
n
t
h
e
I
E
E
E
3
0
-
b
u
s
test
s
y
s
te
m
.
T
h
e
r
ea
l
lo
ad
o
f
th
e
s
y
s
te
m
i
s
2
8
3
.
4
MW.
W
e
h
av
e
allo
ca
ted
3
7
.
7
6
1
5
MW
f
o
r
g
en
er
ato
r
2
an
d
th
e
r
est
o
f
lo
ad
is
allo
ca
ted
to
g
en
er
ato
r
1
.
Sin
ce
th
e
te
s
t
s
y
s
te
m
h
as
co
n
s
is
ti
n
g
o
f
6
g
en
er
ato
r
b
u
s
es
an
d
2
1
lo
ad
b
u
s
es.
Hen
ce
ea
c
h
g
e
n
er
ato
r
ca
n
tr
ea
t a
s
s
o
u
r
ce
b
u
s
an
d
s
i
m
ilar
l
y
ea
c
h
lo
ad
b
u
s
c
an
b
e
lik
e
a
s
i
n
k
b
u
s
in
o
p
en
ac
ce
s
s
en
v
ir
o
n
m
e
n
t.
Sin
ce
t
h
e
p
ar
ticip
an
ts
an
d
th
eir
r
eq
u
ir
ed
MW
q
u
an
titi
es
a
r
e
u
n
p
r
ed
i
ctab
le
in
r
ea
l
-
ti
m
e,
w
e
h
av
e
d
eter
m
i
n
e
d
b
y
u
s
in
g
r
an
d
o
m
n
u
m
b
er
s
th
eo
r
y
.
I
t
m
ea
n
s
,
t
h
e
al
g
o
r
ith
m
w
il
l
d
ec
id
e
th
e
s
o
u
r
ce
b
u
s
a
n
d
s
i
n
k
b
u
s
a
s
w
e
ll a
s
t
h
eir
co
n
tr
ac
ted
p
o
w
er
.
F
o
r
ea
ch
s
i
m
u
lat
io
n
,
w
e
ca
n
h
a
v
e
eit
h
er
b
ilater
al
o
r
m
u
ltil
ater
al
co
n
tr
ac
t
s
an
d
h
e
n
ce
n
u
m
er
o
u
s
ca
s
e
s
t
u
d
ies
c
an
g
e
n
er
ate.
Her
e
w
e
h
a
v
e
g
iv
e
n
s
o
m
e
li
m
ited
tr
an
s
ac
tio
n
s
.
5
.
1
.
Wit
h T
CP
S
T
5
.
1
.
1
.
Sin
g
le
So
urce
–
Sin
g
le
Sin
ks
Si
m
u
la
t
io
n Re
s
ult
s
w
it
h T
CP
S
T
T
h
e
b
ase
ca
s
e
tr
an
s
m
is
s
io
n
l
o
s
s
b
ef
o
r
e
tr
an
s
ac
tio
n
is
1
8
.
0
5
2
4
MW.
I
t
h
as
b
ee
n
in
cr
ea
s
ed
d
u
r
in
g
tr
ac
tio
n
s
a
n
d
t
h
e
T
C
P
ST
co
n
tr
o
ls
i
n
li
n
e
1
2
–
1
6
ar
e
m
i
n
i
m
ized
t
h
at
i
n
cr
ea
s
ed
lo
s
s
at
ev
er
y
tr
a
n
s
ac
tio
n
.
Si
m
i
lar
l
y
,
t
h
e
v
o
ltag
e
d
ev
iati
o
n
in
d
e
x
(
VDI
)
is
h
i
g
h
w
it
h
o
u
t
T
C
SC
a
n
d
it
i
s
also
d
ec
r
ea
s
ed
w
ith
T
C
P
ST
.
Fin
all
y
,
t
h
e
tr
an
s
m
is
s
io
n
lo
s
s
e
s
as
w
ell
a
s
VDI
ar
e
o
p
ti
m
ize
d
at
ev
er
y
b
ilater
al
tr
an
s
ac
tio
n
as
g
i
v
en
i
n
T
ab
le
3
.
T
h
e
p
er
f
o
r
m
a
n
ce
ch
ar
ac
t
er
is
tics
o
f
P
SO
-
GS
A
f
o
r
f
ir
s
t
tr
an
s
ac
tio
n
ar
e
ill
u
s
tr
ated
in
Fig
.
2
a
n
d
3
r
esp
ec
tiv
el
y
a
n
d
th
e
v
o
lta
g
e
p
r
o
f
ile
as
w
ell
as
tr
an
s
m
is
s
io
n
lo
s
s
in
ea
ch
tr
a
n
s
m
is
s
io
n
li
n
e
ar
e
illu
s
tr
ated
i
n
Fig
.
4
an
d
Fi
g
.
5
r
esp
ec
tiv
el
y
.
T
ab
le
3
.
T
C
P
S
T
im
p
ac
t o
n
l
o
s
s
es a
n
d
VDI
f
o
r
s
in
g
le
s
o
u
r
ce
–
s
in
g
le
s
in
k
s
tr
an
s
ac
tio
n
s
S
o
u
r
c
e
S
i
n
k
C
o
n
t
r
a
c
t
e
d
P
o
w
e
r
(
M
W
)
T
r
a
n
smissi
o
n
l
o
sse
s (M
W
)
V
D
I
B
e
f
o
r
e
t
r
a
n
s
a
c
t
i
o
n
A
f
t
e
r
t
r
a
n
s
a
c
t
i
o
n
W
i
t
h
T
C
P
S
T
W
i
t
h
o
u
t
T
C
P
S
T
W
i
t
h
T
C
P
S
T
13
16
1
.
1
1
4
1
8
.
0
5
2
4
1
9
.
9
7
9
4
1
6
.
2
0
5
5
0
.
0
1
2
0
4
6
0
.
0
0
7
2
8
9
1
11
16
4
.
4
5
8
1
8
.
0
5
2
4
1
9
.
0
3
4
1
1
6
.
8
5
3
6
0
.
0
1
1
1
7
8
0
.
0
0
7
2
8
8
6
2
8
1
.
6
2
1
8
.
0
5
2
4
1
9
.
0
7
2
9
1
6
.
9
4
9
6
0
.
0
0
8
7
3
9
8
0
.
0
0
7
3
1
4
5
5
20
4
.
9
5
6
1
8
.
0
5
2
4
2
0
.
8
4
8
8
1
6
.
9
3
0
1
0
.
0
1
2
1
2
5
0
.
0
0
7
3
2
8
2
8
2
1
.
8
0
2
1
8
.
0
5
2
4
1
7
.
8
9
0
8
1
6
.
9
2
6
9
0
.
0
1
3
8
4
5
0
.
0
0
7
2
6
2
3
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
A
Mu
lti
-
Ob
jective
Hyb
r
id
Heu
r
is
tic
A
p
p
r
o
a
ch
fo
r
Op
tima
l S
ettin
g
o
f F
A
C
TS
Dev
ices…
(
S
a
i R
a
m
I
n
k
o
llu
)
125
5
.
1
.
2
.
Sin
g
le
So
urce
–
M
ultiple Sin
ks
Si
m
u
la
t
io
n Re
s
ult
s
w
it
h T
CP
ST
I
n
s
ec
t
io
n
5
.
1
,
w
e
h
a
v
e
e
x
ec
u
ted
o
n
l
y
w
it
h
o
n
e
s
o
u
r
ce
b
u
s
a
n
d
o
n
e
s
i
n
k
b
u
s
.
I
n
th
is
s
e
ctio
n
,
o
n
e
s
o
u
r
ce
b
u
s
an
d
t
w
o
s
i
n
k
b
u
s
e
s
ar
e
co
n
s
id
er
ed
f
o
r
ea
ch
tr
an
s
ac
tio
n
.
T
h
e
co
m
b
i
n
ed
in
cr
ea
s
ed
lo
ad
at
tw
o
s
i
n
k
b
u
s
es
i
s
s
u
p
p
lied
b
y
o
n
e
s
o
u
r
ce
b
u
s
.
T
h
e
m
u
lt
ilater
a
l
co
n
tr
ac
ts
an
d
s
y
s
te
m
p
er
f
o
r
m
a
n
c
e
w
it
h
T
C
P
ST
ar
e
g
iv
e
n
i
n
T
ab
le
4
an
d
T
a
b
le
5
r
esp
ec
tiv
el
y
.
Fo
r
m
u
ltip
le
s
o
u
r
ce
s
–
s
in
g
le
s
in
k
tr
an
s
ac
tio
n
s
a
n
d
co
r
r
esp
o
n
d
in
g
T
C
P
S
T
im
p
ac
t
o
n
s
y
s
te
m
p
er
f
o
r
m
an
ce
ar
e
g
iv
e
n
i
n
T
ab
le
6
an
d
T
a
b
le
7
r
esp
ec
tiv
el
y
.
Si
m
ilar
l
y
,
f
o
r
m
u
l
tip
le
s
o
u
r
ce
s
–
m
u
ltip
le
s
i
n
k
s
an
d
co
r
r
esp
o
n
d
in
g
T
C
P
S
T
im
p
ac
t o
n
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
ar
e
g
i
v
en
i
n
T
ab
le
8
an
d
T
ab
le
9
r
esp
ec
tiv
el
y
.
T
ab
le
4
.
Mu
ltil
ater
al
tr
an
s
ac
ti
o
n
s
f
o
r
s
i
n
g
le
s
o
u
r
ce
–
m
u
ltip
l
e
s
in
k
s
s
i
m
u
lat
io
n
s
S
o
u
r
c
e
S
i
n
k
s
C
o
n
t
r
a
c
t
e
d
P
o
w
e
r
(
M
W
)
A
t
si
n
k
1
A
t
si
n
k
2
A
t
si
n
k
3
T
o
t
a
l
13
24
24
18
4
.
7
6
8
0
1
.
4
4
4
0
1
.
6
5
4
0
7
.
8
6
6
0
2
14
4
8
1
.
1
3
4
0
2
.
1
9
1
0
3
.
5
0
3
0
6
.
8
2
8
0
1
16
17
15
1
.
9
7
7
0
2
.
2
9
7
0
3
.
0
3
8
0
7
.
3
1
2
0
1
16
3
17
2
.
5
0
3
0
4
.
5
5
8
0
3
.
0
4
8
0
1
0
.
1
0
9
0
5
15
23
30
4
.
4
4
6
0
3
.
5
8
0
0
3
.
4
7
7
0
1
1
.
5
0
3
0
T
ab
le
5
.
T
C
P
S
T
im
p
ac
t o
n
lo
s
s
es a
n
d
v
o
ltag
e
VDI
f
o
r
s
in
g
le
s
o
u
r
ce
–
m
u
lt
ip
le
s
i
n
k
s
s
i
m
u
l
atio
n
s
T
r
a
n
smissi
o
n
l
o
sse
s (M
W
)
V
D
I
B
e
f
o
r
e
T
r
a
n
sac
t
i
o
n
A
f
t
e
r
t
r
a
n
s
a
c
t
i
o
n
W
i
t
h
T
C
P
S
T
W
i
t
h
o
u
t
T
C
P
S
T
W
i
t
h
T
C
P
S
T
1
8
.
0
5
2
4
1
8
.
9
4
2
8
1
7
.
4
1
7
8
0
.
0
1
0
6
9
8
0
.
0
0
7
3
3
9
1
1
8
.
0
5
2
4
2
1
.
6
9
8
3
1
6
.
9
4
8
4
0
.
0
1
3
1
2
6
0
.
0
0
7
3
2
5
8
1
8
.
0
5
2
4
1
9
.
0
1
8
6
1
7
.
3
9
7
7
0
.
0
2
1
1
0
9
0
.
0
0
7
3
2
0
8
1
8
.
0
5
2
4
1
8
.
7
1
4
7
1
6
.
5
5
6
7
0
.
0
2
9
9
8
4
0
.
0
0
7
2
3
2
7
1
8
.
0
5
2
4
2
0
.
7
0
2
8
1
6
.
7
6
0
9
0
.
0
1
4
7
9
8
0
.
0
0
7
3
6
5
8
5
.
1
.
3
.
M
ultiple
So
urce
s
–
Sin
g
le
Sin
k
Si
m
ula
t
io
n Re
s
ults
w
it
h T
CP
ST
T
ab
le
6
.
Mu
ltil
ater
al
tr
an
s
ac
ti
o
n
s
f
o
r
m
u
lt
ip
le
s
o
u
r
ce
s
–
s
i
n
g
le
s
i
n
k
s
i
m
u
latio
n
s
S
o
u
r
c
e
s
S
i
n
k
C
o
n
t
r
a
c
t
e
d
P
o
w
e
r
(
M
W
)
A
t
so
u
r
c
e
1
A
t
so
u
r
c
e
2
A
t
so
u
r
c
e
3
T
o
t
a
l
8
11
2
24
1
.
0
6
3
0
3
.
7
4
2
0
2
.
7
5
4
0
7
.
5
5
9
0
11
11
1
16
2
.
9
2
3
0
2
.
0
5
2
0
4
.
8
9
4
0
9
.
8
6
9
0
2
5
11
12
3
.
6
8
4
0
4
.
7
2
7
0
2
.
5
1
0
0
1
0
.
9
2
1
0
8
13
1
8
4
.
8
0
9
0
1
.
9
9
3
0
2
.
7
3
0
0
9
.
5
3
2
0
1
5
8
26
4
.
3
8
0
0
1
.
4
2
5
0
3
.
0
1
3
0
8
.
8
1
8
0
T
ab
le
7
.
T
C
P
S
T
im
p
ac
t o
n
lo
s
s
es a
n
d
v
o
ltag
e
VDI
f
o
r
m
u
lti
p
le
s
o
u
r
ce
s
–
s
in
g
le
s
i
n
k
s
i
m
u
l
atio
n
s
T
r
a
n
smissi
o
n
l
o
sse
s (M
W
)
V
D
I
B
e
f
o
r
e
T
r
a
n
sac
t
i
o
n
A
f
t
e
r
t
r
a
n
s
a
c
t
i
o
n
W
i
t
h
T
C
P
S
T
W
i
t
h
o
u
t
T
C
P
S
T
W
i
t
h
T
C
P
S
T
1
8
.
0
5
2
4
1
7
.
5
8
9
3
1
6
.
4
0
3
4
0
.
0
1
2
4
1
8
0
.
0
0
7
3
3
3
6
1
8
.
0
5
2
4
1
8
.
8
3
9
9
1
7
.
1
4
4
0
.
0
1
6
7
0
8
0
.
0
0
7
3
3
4
9
1
8
.
0
5
2
4
1
9
.
9
0
7
7
1
7
.
5
4
9
6
0
.
0
1
8
6
6
4
0
.
0
0
7
3
0
8
2
1
8
.
0
5
2
4
1
8
.
2
2
3
2
1
7
.
5
0
2
1
0
.
0
1
0
2
3
9
0
.
0
0
7
3
2
7
1
1
8
.
0
5
2
4
1
8
.
6
5
1
3
1
6
.
8
2
8
4
0
.
0
1
4
4
5
9
0
.
0
0
7
2
7
3
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
201
6
:
1
2
0
–
1
2
9
126
5
.
1
.
4
.
M
ultiple
So
urce
s
–
M
u
lt
ipl
e
Sin
ks
Si
m
ula
t
io
n Re
s
u
lt
s
w
it
h T
CP
ST
T
ab
le
8
.
Mu
ltil
ater
al
tr
an
s
ac
ti
o
n
s
f
o
r
m
u
lt
ip
le
s
o
u
r
ce
s
–
m
u
l
tip
le
s
in
k
s
s
i
m
u
la
tio
n
s
S
o
u
r
c
e
s
S
i
n
k
s
C
o
n
t
r
a
c
t
e
d
P
o
w
e
r
(
M
W
)
A
t
so
u
r
c
e
1
A
t
so
u
r
c
e
2
A
t
si
n
k
1
A
t
si
n
k
2
T
o
t
a
l
11
2
16
12
2
.
2
0
0
0
2
.
6
6
5
0
2
.
2
0
0
0
2
.
6
6
5
0
4
.
8
6
5
0
2
5
10
16
3
.
6
2
3
0
1
.
8
6
6
0
3
.
6
2
3
0
1
.
8
6
6
0
5
.
4
8
9
0
2
8
2
3
4
.
1
9
7
0
3
.
5
4
9
0
4
.
1
9
7
0
3
.
5
4
9
0
7
.
7
4
6
0
11
11
19
23
3
.
6
8
0
0
2
.
3
5
6
0
3
.
6
8
0
0
2
.
3
5
6
0
6
.
0
3
6
0
11
13
21
17
1
.
9
8
1
0
1
.
5
5
5
0
1
.
9
8
1
0
1
.
5
5
5
0
3
.
5
3
6
0
T
ab
le
9
.
T
C
P
S
T
im
p
ac
t o
n
lo
s
s
es a
n
d
v
o
ltag
e
VDI
f
o
r
m
u
lti
p
le
s
o
u
r
ce
s
–
m
u
ltip
le
s
i
n
k
s
i
m
u
latio
n
s
T
r
a
n
smissi
o
n
l
o
sse
s (M
W
)
V
D
I
B
e
f
o
r
e
T
r
a
n
sac
t
i
o
n
A
f
t
e
r
t
r
a
n
s
a
c
t
i
o
n
W
i
t
h
T
C
P
S
T
W
i
t
h
o
u
t
T
C
P
S
T
W
i
t
h
T
C
P
S
T
1
8
.
0
5
2
4
2
0
.
4
3
9
4
1
7
.
3
8
7
3
0
.
0
2
2
8
5
4
0
.
0
0
7
2
9
0
4
1
8
.
0
5
2
4
1
8
.
3
0
7
3
1
7
.
4
3
5
3
0
.
0
0
7
9
4
9
8
0
.
0
0
7
3
0
2
4
1
8
.
0
5
2
4
1
9
.
9
3
7
3
1
7
.
6
5
0
2
0
.
0
1
2
3
1
4
0
.
0
0
7
3
6
3
1
1
8
.
0
5
2
4
2
0
.
7
4
1
6
1
7
.
5
4
9
2
0
.
0
2
0
7
8
6
0
.
0
0
7
2
8
2
1
8
.
0
5
2
4
2
1
.
4
5
2
1
1
7
.
5
4
4
3
0
.
0
1
1
4
4
9
0
.
0
0
7
2
9
0
8
Fig
u
r
e1
.
B
u
s
S
y
s
te
m
v
o
lta
g
e
p
r
o
f
ile
w
it
h
T
C
P
ST
Fig
u
r
e
2
.
T
r
an
s
m
i
s
s
io
n
li
n
e
5
.
2
.
Wit
h IPF
C
5
.
2
.
1
.
M
ultiple
So
urce
s
–
M
u
lt
ipl
e
Sin
ks
Si
m
ula
t
io
n Re
s
u
lt
s
w
it
h IPF
C
T
h
e
b
ase
ca
s
e
tr
an
s
m
is
s
io
n
l
o
s
s
b
ef
o
r
e
tr
an
s
ac
tio
n
is
1
8
.
0
5
2
4
MW.
I
t
h
as
b
ee
n
in
cr
ea
s
ed
d
u
r
in
g
tr
ac
tio
n
s
a
n
d
th
e
I
P
FC
co
n
tr
o
ls
in
li
n
e
1
2
–
15
-
1
6
ar
e
m
i
n
i
m
ized
t
h
at
i
n
cr
ea
s
ed
lo
s
s
at
ev
er
y
tr
a
n
s
ac
tio
n
.
Si
m
i
lar
l
y
,
th
e
v
o
lta
g
e
d
e
v
iatio
n
i
n
d
ex
(
VDI
)
is
h
i
g
h
w
i
th
o
u
t
I
P
FC
an
d
it
is
also
d
ec
r
ea
s
ed
w
it
h
I
P
FC
.
Fi
n
all
y
,
th
e
tr
an
s
m
i
s
s
io
n
lo
s
s
e
s
as
w
e
ll
as
VDI
ar
e
o
p
ti
m
ized
at
ev
er
y
m
u
ltil
ater
al
tr
an
s
ac
tio
n
a
s
g
iv
e
n
in
T
ab
le
1
0
an
d
T
ab
le
1
1
r
esp
ec
tiv
el
y
.
T
h
e
v
o
ltag
e
p
r
o
f
ile
a
s
w
ell
as
tr
an
s
m
i
s
s
io
n
lo
s
s
i
n
ea
c
h
tr
an
s
m
i
s
s
io
n
li
n
e
ar
e
illu
s
tr
ated
in
Fi
g
.
4
an
d
Fig
.
5
r
esp
ec
tiv
el
y
.
0
5
10
15
20
25
30
0
.
9
6
0
.
9
8
1
1
.
0
2
1
.
0
4
1
.
0
6
1
.
0
8
1
.
1
B
u
s
N
o
B
u
s
V
o
l
t
a
g
e
N
-
R
M
e
t
h
o
d
T
r
a
n
s
a
c
t
i
o
n
G
S
A
0
5
10
15
20
25
30
35
40
45
-1
0
1
2
3
4
5
6
7
T
r
a
n
s
m
i
s
s
i
o
n
L
i
n
e
P
o
w
e
r
L
o
s
s
i
n
M
W
N
-
R
M
e
t
h
o
d
T
r
a
n
s
a
c
t
i
o
n
P
r
o
p
o
s
e
d
m
e
t
h
o
d
w
i
t
h
T
C
P
S
T
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
A
Mu
lti
-
Ob
jective
Hyb
r
id
Heu
r
is
tic
A
p
p
r
o
a
ch
fo
r
Op
tima
l S
ettin
g
o
f F
A
C
TS
Dev
ices…
(
S
a
i R
a
m
I
n
k
o
llu
)
127
T
ab
le
1
0
.
I
P
FC
im
p
ac
t o
n
lo
s
s
es a
n
d
VDI
f
o
r
s
i
n
g
le
s
o
u
r
ce
–
s
in
g
le
s
i
n
k
s
tr
a
n
s
ac
tio
n
s
S
o
u
r
c
e
S
i
n
k
C
o
n
t
r
a
c
t
e
d
P
o
w
e
r
(
M
W
)
T
r
a
n
smissi
o
n
l
o
sse
s (M
W
)
V
D
I
B
e
f
o
r
e
t
r
a
n
s
a
c
t
i
o
n
A
f
t
e
r
t
r
a
n
s
a
c
t
i
o
n
W
i
t
h
I
P
F
C
W
i
t
h
o
u
t
I
P
F
C
W
i
t
h
I
P
F
C
5
14
4
.
9
1
7
1
8
.
0
5
2
4
1
9
.
2
2
6
6
1
6
.
9
0
7
0
.
1
1
6
1
0
.
0
1
2
4
6
2
11
30
3
.
3
1
6
1
8
.
0
5
2
4
1
8
.
8
3
2
3
1
8
.
2
3
9
1
0
.
1
4
0
1
4
0
.
0
2
4
5
7
5
21
1
.
7
4
5
1
8
.
0
5
2
4
1
7
.
9
0
5
9
1
6
.
8
2
1
8
0
.
1
1
4
1
3
0
.
0
0
8
0
6
5
6
1
19
4
.
0
5
9
1
8
.
0
5
2
4
1
8
.
6
7
9
1
6
.
8
2
9
5
0
.
1
0
5
1
8
0
.
0
2
3
3
2
8
1
4
4
.
7
1
7
1
8
.
0
5
2
4
2
0
.
5
0
7
8
8
.
7
2
2
0
.
1
0
8
9
5
0
.
0
2
8
0
0
8
Fig
u
r
e
3
.
B
u
s
v
o
lta
g
e
p
r
o
f
ile
w
it
h
I
P
FC
Fig
u
r
e
4
.
L
o
s
s
i
n
ea
ch
tr
a
n
s
m
i
s
s
io
n
l
in
e
w
it
h
I
P
FC
5.
CO
NCLU
SI
O
NS
I
n
o
p
en
ac
ce
s
s
tr
an
s
m
i
s
s
io
n
s
y
s
te
m
,
t
h
e
tr
an
s
ac
tio
n
s
ca
n
tak
e
p
lace
at
an
y
ti
m
e
a
m
o
n
g
v
ar
io
u
s
m
ar
k
et
p
ar
ticip
a
n
ts
.
So
m
e
tr
a
n
s
ac
tio
n
s
ca
n
ca
u
s
e
to
d
ec
r
ea
s
e
to
tal
tr
an
s
m
is
s
io
n
lo
s
s
es
d
u
e
to
co
u
n
ter
f
lo
w
s
an
d
s
o
m
e
ar
e
ca
u
s
e
to
i
n
cr
ea
s
e
d
u
e
to
d
o
m
i
n
an
t
f
lo
w
s
.
I
r
r
esp
ec
tiv
e
o
f
tr
an
s
ac
tio
n
s
an
d
th
eir
v
o
l
u
m
es,
t
h
e
m
aj
o
r
r
esp
o
n
s
ib
ilit
y
o
f
p
o
w
er
s
y
s
te
m
en
g
i
n
ee
r
s
i
s
to
d
ec
r
ea
s
e
n
et
tr
an
s
m
i
s
s
io
n
lo
s
s
e
s
as
w
ell
as
to
m
ai
n
tai
n
g
o
o
d
v
o
ltag
e
p
r
o
f
ile
f
o
r
th
e
b
etter
p
er
f
o
r
m
an
ce
o
f
s
y
s
te
m
.
I
n
t
h
is
p
ap
er
,
th
e
i
m
p
ac
t
o
f
T
C
P
ST
a
n
d
I
P
FC
o
n
s
y
s
te
m
p
er
f
o
r
m
an
ce
is
a
n
al
y
z
ed
f
o
r
b
o
th
b
ilater
al
an
d
m
u
lti
later
al
tr
an
s
ac
tio
n
s
.
I
t
h
as
b
ee
n
o
b
s
er
v
ed
th
at
th
e
tr
an
s
m
is
s
io
n
lo
s
s
es
ar
e
d
ec
r
ea
s
ed
an
d
v
o
ltag
e
p
r
o
f
ile
i
s
i
n
cr
ea
s
ed
s
ig
n
i
f
ica
n
tl
y
w
it
h
F
AC
T
S
co
n
tr
o
ller
s
in
th
e
n
et
w
o
r
k
.
T
h
e
ad
o
p
ted
h
y
b
r
i
d
alg
o
r
ith
m
GS
A
-
P
SO
is
p
r
o
v
ed
its
ab
ilit
y
to
s
o
lv
e
co
m
p
lex
o
p
ti
m
izatio
n
p
r
o
b
lem
w
it
h
m
u
lt
ip
le
o
b
j
ec
ti
v
es.
RE
F
E
R
E
NC
E
S
[1
]
G
e
rb
e
x
,
S
.
,
R.
Ch
e
rk
a
o
u
i,
a
n
d
A
.
J.
Ge
r
m
o
n
d
.
"
Op
ti
m
a
l
l
o
c
a
ti
o
n
o
f
FA
CT
S
d
e
v
ice
s
to
e
n
h
a
n
c
e
p
o
we
r
sy
ste
m
se
c
u
rity."
P
o
w
e
r
T
e
c
h
Co
n
f
e
re
n
c
e
P
r
o
c
e
e
d
in
g
s,
2
0
0
3
IEE
E
Bo
lo
g
n
a
.
V
o
l.
3
.
IEE
E
,
2
0
0
3
.
[2
]
On
g
sa
k
u
l,
W
e
e
ra
k
o
rn
,
a
n
d
P
e
e
ra
p
o
l
Jira
p
o
n
g
.
"
O
p
ti
ma
l
a
ll
o
c
a
ti
o
n
o
f
FA
CT
S
d
e
v
ice
s
to
e
n
h
a
n
c
e
to
ta
l
tr
a
n
sfe
r
c
a
p
a
b
il
it
y
u
sin
g
e
v
o
l
u
ti
o
n
a
ry
p
ro
g
ra
mm
in
g
.
"
Circu
i
ts
a
n
d
S
y
s
tem
s,
2
0
0
5
.
I
S
CA
S
2
0
0
5
.
I
E
E
E
In
tern
a
ti
o
n
a
l
S
y
m
p
o
siu
m
o
n
.
IEE
E,
2
0
0
5
.
[3
]
Zh
a
n
g
,
Ju
n
,
a
n
d
A
k
ih
ik
o
Yo
k
o
y
a
m
a
.
"
A
p
p
li
c
a
ti
o
n
o
f
in
terli
n
e
p
o
w
e
r
f
lo
w
c
o
n
tro
ll
e
r
to
A
T
C
e
n
h
a
n
c
e
m
e
n
t
b
y
o
p
ti
m
a
l
p
o
w
e
r
f
lo
w
c
o
n
tro
l.
"
P
o
w
e
r
T
e
c
h
,
2
0
0
7
IEE
E
L
a
u
sa
n
n
e
.
I
EE
E,
2
0
0
7
.
[4
]
Ha
m
m
a
d
,
A
.
E.
"
A
n
a
l
y
sis
o
f
p
o
w
e
r
s
y
s
te
m
sta
b
il
it
y
e
n
h
a
n
c
e
m
e
n
t
b
y
sta
ti
c
V
A
R
c
o
m
p
e
n
sa
to
rs."
P
o
w
e
r
S
y
st
e
m
s,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
1
.
4
(1
9
8
6
):
2
2
2
-
2
2
7
.
[5
]
M
o
h
a
n
ty
,
A
lo
k
Ku
m
a
r,
a
n
d
Am
a
r
Ku
m
a
r
Ba
ri
k
.
"
P
o
w
e
r
S
y
ste
m
S
tab
il
it
y
I
m
p
ro
v
e
m
e
n
t
Us
in
g
F
ACT
S
De
v
ice
s."
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
l
o
f
M
o
d
e
rn
En
g
in
e
e
rin
g
Re
se
a
rc
h
(IJME
R)
1
.
2
(2
0
1
1
):
6
6
6
-
6
7
2
.
[6
]
Ku
m
k
ra
tu
g
,
P
re
c
h
a
n
o
n
.
"
A
p
p
li
c
a
ti
o
n
o
f
in
terli
n
e
p
o
w
e
r
f
lo
w
c
o
n
tro
ll
e
r
to
in
c
re
a
se
tran
sie
n
t
sta
b
il
it
y
o
f
p
o
w
e
r
s
y
ste
m
.
"
Jo
u
rn
a
l
o
f
Co
m
p
u
ter S
c
i
e
n
c
e
6
.
1
2
(2
0
1
0
):
1
4
9
0
.
[7
]
M
o
h
a
n
ty
,
A
lo
k
Ku
m
a
r,
a
n
d
Am
a
r
Ku
m
a
r
Ba
ri
k
.
"
P
o
w
e
r
S
y
ste
m
S
tab
il
it
y
I
m
p
ro
v
e
m
e
n
t
Us
in
g
F
ACT
S
De
v
ice
s."
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
l
o
f
M
o
d
e
rn
En
g
in
e
e
rin
g
Re
se
a
rc
h
(IJME
R)
1
.
2
(2
0
1
1
):
6
6
6
-
6
7
2
.
0
5
10
15
20
25
30
0
.
9
6
0
.
9
8
1
1
.
0
2
1
.
0
4
1
.
0
6
1
.
0
8
1
.
1
B
U
S
N
O
B
U
S
v
o
l
t
a
g
e
p
e
r
f
o
r
m
e
n
c
e
o
f
I
P
FC
b
u
s
n
o
v
s
b
u
s
v
o
l
t
a
g
e
N
-
R
M
e
t
h
o
d
T
r
a
n
s
a
t
i
o
n
G
S
A
0
5
10
15
20
25
30
35
40
45
-1
0
1
2
3
4
5
6
7
T
r
a
n
s
m
i
s
s
i
o
n
L
i
n
e
P
o
w
e
r
L
o
s
s
i
n
M
W
N
-
R
M
e
t
h
o
d
T
r
a
n
s
a
t
i
o
n
P
r
o
p
o
s
e
d
m
e
t
h
o
d
w
i
t
h
I
P
FC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8792
IJ
A
P
E
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
201
6
:
1
2
0
–
1
2
9
128
[8
]
Zh
a
n
g
,
Ju
n
,
a
n
d
A
k
ih
ik
o
Yo
k
o
y
a
m
a
.
"
P
o
w
e
r
S
y
ste
m
T
ra
n
sie
n
t
S
tab
il
it
y
Im
p
ro
v
e
m
e
n
t
b
y
th
e
In
terli
n
e
P
o
w
e
r
F
lo
w
Co
n
tr
o
ll
e
r
(I
P
F
C).
"
電気学会論文誌
B
(
電力・エネルギー部門誌
)
1
2
8
.
1
(2
0
0
8
):
2
0
8
-
2
1
5
.
[9
]
Ka
ra
m
i,
A
.
,
M
.
Ra
sh
id
in
e
jad
,
a
n
d
A
.
A
.
G
h
a
r
a
v
e
isi.
"
V
o
lt
a
g
e
S
e
c
u
rit
y
En
h
a
n
c
e
m
e
n
t
a
n
d
Co
n
g
e
stio
n
M
a
n
a
g
e
m
e
n
t
v
ia
S
TAT
COM
&
IP
F
C
u
sin
g
A
rti
f
icia
l
In
telli
g
e
n
c
e
*
.
"
Ira
n
ian
Jo
u
rn
a
l
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
3
1
.
B3
(
2
0
0
7
)
:
2
8
9
.
[1
0
]
G
u
p
ta,
S
a
n
d
e
e
p
,
R.
K.
T
rip
a
th
i,
a
n
d
Rish
a
b
h
De
v
S
h
u
k
la.
"
Vo
lt
a
g
e
sta
b
il
it
y
im
p
ro
v
e
me
n
t
in
p
o
we
r
sy
ste
ms
u
sin
g
fa
c
ts
c
o
n
tro
ll
e
rs
:
S
ta
te
-
of
-
t
h
e
-
a
rt
re
v
iew."
P
o
w
e
r,
Co
n
tro
l
a
n
d
E
m
b
e
d
d
e
d
S
y
ste
m
s
(ICP
CES
),
2
0
1
0
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
.
IEE
E,
2
0
1
0
.
[1
1
]
M
o
g
h
a
d
a
si,
S
-
M
.
,
e
t
a
l.
"
Co
m
p
o
site
s
y
st
e
m
re
li
a
b
il
it
y
a
ss
e
ss
m
e
n
t
in
c
o
rp
o
ra
ti
n
g
a
n
in
terli
n
e
p
o
w
e
r
-
f
lo
w
c
o
n
tro
ll
e
r.
"
P
o
w
e
r
De
li
v
e
r
y
,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
2
3
.
2
(2
0
0
8
):
1
1
9
1
-
1
1
9
9
.
[1
2
]
Bh
a
sk
a
r,
M
.
A
ru
n
,
e
t
a
l.
"
Vo
lt
a
g
e
p
ro
fi
le
imp
ro
v
e
me
n
t
u
si
n
g
FA
CT
S
d
e
v
ice
s:
A
c
o
mp
a
riso
n
b
e
tw
e
e
n
S
VC,
T
CS
C
a
n
d
T
CPS
T
.
"
A
d
v
a
n
c
e
s
in
Re
c
e
n
t
T
e
c
h
n
o
lo
g
ies
in
Co
m
m
u
n
ica
ti
o
n
a
n
d
Co
m
p
u
ti
n
g
,
2
0
0
9
.
A
R
T
Co
m
'
0
9
.
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
.
IE
E
E,
2
0
0
9
.
[1
3
]
S
in
a
g
h
a
m
,
Ra
jsh
e
k
a
r
,
a
n
d
K.
Vijay
Ku
m
a
r.
"
Ro
le
o
f
In
terlin
e
P
o
w
e
r
F
lo
w
Co
n
tro
ll
e
r
f
o
r
V
o
l
tag
e
Qu
a
li
t
y
.
"
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
l
o
f
A
d
v
a
n
c
e
s
in
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
E
n
g
in
e
e
rin
g
,
(IJA
EE
E),
IS
S
N
(2
0
1
3
):
2
3
1
9
-
1
1
1
2
.
[1
4
]
F
a
rd
a
n
e
sh
,
B.
"
Op
ti
m
a
l
u
ti
li
z
a
ti
o
n
,
siz
in
g
,
a
n
d
ste
a
d
y
-
sta
te
p
e
r
f
o
r
m
a
n
c
e
c
o
m
p
a
riso
n
o
f
m
u
lt
ico
n
v
e
rter
V
S
C
-
b
a
se
d
F
A
C
T
S
c
o
n
tro
l
lers
.
"
P
o
w
e
r
De
li
v
e
r
y
,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
1
9
.
3
(2
0
0
4
):
1
3
2
1
-
1
3
2
7
.
[1
5
]
Ba
b
u
,
A
V
Na
re
sh
,
e
t
a
l.
"
M
u
lt
i
-
L
in
e
P
o
w
e
r
F
lo
w
Co
n
tr
o
l
u
si
n
g
In
terlin
e
P
o
w
e
r
F
lo
w
Co
n
tro
ll
e
r
(
IP
F
C)
in
P
o
w
e
r
T
ra
n
s
m
issio
n
S
y
ste
m
s."
W
o
rld
A
c
a
d
e
m
y
o
f
S
c
ien
c
e
,
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
l
o
f
El
e
c
tri
c
a
l,
Co
m
p
u
ter,
En
e
rg
e
ti
c
,
El
e
c
tro
n
ic an
d
Co
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
4
.
3
(
2
0
1
0
):
5
7
7
-
5
8
1
.
[1
6
]
Ba
b
u
,
A
V
Na
re
sh
,
a
n
d
S
.
S
iv
a
n
a
g
a
ra
ju
.
"
M
a
th
e
ma
ti
c
a
l
mo
d
e
ll
in
g
,
a
n
a
lys
is
a
n
d
e
ff
e
c
ts
o
f
i
n
ter
li
n
e
p
o
we
r
fl
o
w
c
o
n
tro
ll
e
r
(
IPF
C)
p
a
ra
me
ter
s
i
n
p
o
we
r
fl
o
w
stu
d
ies
.
"
P
o
w
e
r
El
e
c
tro
n
ics
(IICP
E),
2
0
1
0
In
d
i
a
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
.
IEE
E,
2
0
1
1
.
[1
7
]
Ka
h
y
a
e
i,
Am
ir.
"
A
n
a
l
y
sis
o
f
in
terlin
e
p
o
w
e
r
f
lo
w
c
o
n
tro
ll
e
r
(I
P
F
C)
lo
c
a
ti
o
n
i
n
p
o
w
e
r
tran
s
m
is
sio
n
sy
ste
m
s."
Re
se
a
rc
h
Jo
u
rn
a
l
o
f
A
p
p
li
e
d
S
c
ie
n
c
e
s,
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
l
o
g
y
3
.
7
(2
0
1
1
):
6
3
3
-
6
3
9
.
[1
8
]
Ka
rg
a
rian
,
Am
in
,
e
t
a
l.
"
M
u
lt
i
o
b
jec
ti
v
e
o
p
ti
m
a
l
p
o
w
e
r
f
lo
w
a
l
g
o
rit
h
m
to
e
n
h
a
n
c
e
m
u
lt
i
-
m
icro
g
rid
s
p
e
rf
o
rm
a
n
c
e
in
c
o
rp
o
ra
ti
n
g
I
P
F
C.
"
P
o
w
e
r
a
n
d
En
e
rg
y
S
o
c
ie
ty
Ge
n
e
ra
l
M
e
e
ti
n
g
,
2
0
1
2
IE
EE
.
I
EE
E
,
2
0
1
2
.
[1
9
]
S
in
g
h
,
S
u
n
il
Ku
m
a
r,
L
o
b
z
a
n
g
P
h
u
n
c
h
o
k
,
a
n
d
Y.
R
.
S
o
o
d
.
"
V
o
lt
a
g
e
p
ro
f
il
e
a
n
d
p
o
w
e
r
f
lo
w
e
n
h
a
n
c
e
m
e
n
t
w
it
h
f
a
c
ts
c
o
n
tro
ll
e
rs."
In
tern
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
En
g
in
e
e
rin
g
Re
se
a
rc
h
a
n
d
T
e
c
h
n
o
l
o
g
y
.
V
o
l.
1
.
No
.
5
(Ju
ly
-
2
0
1
2
).
E
S
RS
A
P
u
b
l
ica
ti
o
n
s,
2
0
1
2
.
[2
0
]
S
in
g
h
,
S
.
N.,
a
n
d
A
.
K.
Da
v
id
.
"
Co
n
g
e
sti
o
n
m
a
n
a
g
e
me
n
t
b
y
o
p
ti
misin
g
FA
C
T
S
d
e
v
ice
lo
c
a
t
io
n
.
"
El
e
c
tri
c
Util
it
y
De
re
g
u
latio
n
a
n
d
Re
stru
c
t
u
rin
g
a
n
d
P
o
w
e
r
T
e
c
h
n
o
lo
g
ies
,
2
0
0
0
.
P
ro
c
e
e
d
i
n
g
s.
DR
P
T
2
0
0
0
.
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
.
IEE
E,
2
0
00.
[2
1
]
S
in
g
h
,
S
.
N.,
a
n
d
A
.
K.
Da
v
id
.
"
Op
ti
m
a
l
lo
c
a
ti
o
n
o
f
F
A
C
T
S
d
e
v
i
c
e
s
f
o
r
c
o
n
g
e
stio
n
m
a
n
a
g
e
m
e
n
t.
"
El
e
c
tric
Po
we
r
S
y
ste
ms
Res
e
a
rc
h
5
8
.
2
(2
0
0
1
):
7
1
-
79.
[2
2
]
Zh
a
n
g
,
Ju
y
o
n
g
.
"
Op
ti
m
a
l
p
o
we
r
fl
o
w
c
o
n
tro
l
f
o
r
c
o
n
g
e
stio
n
m
a
n
a
g
e
me
n
t
b
y
i
n
ter
li
n
e
p
o
we
r
f
lo
w
c
o
n
tro
ll
e
r
(I
PF
C).
"
P
o
w
e
r
S
y
st
e
m
Tec
h
n
o
lo
g
y
,
2
0
0
6
.
P
o
w
e
rCo
n
2
0
0
6
.
I
n
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
.
IE
EE
,
2
0
0
6
.
[2
3
]
S
h
a
o
,
W
e
i,
a
n
d
V
ij
a
y
V
it
tal.
"
L
P
-
b
a
se
d
O
P
F
f
o
r
c
o
rre
c
ti
v
e
F
A
C
T
S
c
o
n
tro
l
to
re
li
e
v
e
o
v
e
rlo
a
d
s
a
n
d
v
o
lt
a
g
e
v
io
latio
n
s."
P
o
w
e
r
S
y
ste
m
s,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
2
1
.
4
(2
0
0
6
):
1
8
3
2
-
1
8
3
9
.
[2
4
]
Ha
jf
o
ro
o
sh
,
S
.
,
S
.
M
.
H.
Na
b
a
v
i
,
a
n
d
M
o
h
a
m
m
a
d
A
S
M
a
so
u
m
.
"
Co
o
rd
i
n
a
ted
a
g
g
re
g
a
t
e
d
-
b
a
se
d
p
a
rti
c
le
sw
a
r
m
o
p
ti
m
isa
ti
o
n
a
lg
o
rit
h
m
f
o
r
c
o
n
g
e
stio
n
m
a
n
a
g
e
m
e
n
t
in
re
stru
c
tu
r
e
d
p
o
w
e
r
m
a
rk
e
t
b
y
p
lac
e
m
e
n
t
a
n
d
siz
in
g
o
f
u
n
if
ied
p
o
w
e
r
f
lo
w
c
o
n
tro
ll
e
r.
"
S
c
ien
c
e
,
M
e
a
su
re
m
e
n
t
&
T
e
c
h
n
o
lo
g
y
,
IET
6
.
4
(2
0
1
2
):
2
6
7
-
2
7
8
.
[2
5
]
S
in
g
h
,
S
.
N
.
,
a
n
d
A
.
K.
Da
v
id
.
"
Pl
a
c
e
me
n
t
o
f
FA
CT
S
d
e
v
ice
s
in
o
p
e
n
p
o
we
r
ma
rk
e
t.
"
A
d
v
a
n
c
e
s
in
P
o
w
e
r
S
y
ste
m
Co
n
tr
o
l,
O
p
e
ra
ti
o
n
a
n
d
M
a
n
a
g
e
m
e
n
t,
2
0
0
0
.
A
P
S
COM
-
0
0
.
2
0
0
0
In
t
e
rn
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
.
Vo
l.
1
.
IET
,
2
0
0
0
.
[2
6
]
Ca
i,
L
.
J.,
Ist
v
a
n
Erl
ich
,
a
n
d
G
e
o
rg
io
s
S
tam
t
sis.
"
Op
ti
ma
l
c
h
o
ice
a
n
d
a
ll
o
c
a
ti
o
n
o
f
F
ACT
S
d
e
v
ice
s
in
d
e
re
g
u
la
ted
e
lec
tricity
ma
rk
e
t
u
sin
g
g
e
n
e
ti
c
a
lg
o
rit
h
ms
.
"
P
o
w
e
r
S
y
ste
m
s
Co
n
fe
re
n
c
e
a
n
d
Ex
p
o
siti
o
n
,
2
0
0
4
.
IE
EE
P
ES
.
I
EE
E
,
2
0
0
4
.
[2
7
]
Ka
z
e
m
i,
A
h
a
d
,
a
n
d
Re
z
a
S
h
a
rif
i
.
"
Op
ti
m
a
l
lo
c
a
ti
o
n
o
f
T
h
y
risto
r
c
o
n
tro
ll
e
d
p
h
a
se
sh
if
ter
in
re
stru
c
tu
re
d
p
o
we
r
sy
ste
ms
b
y
c
o
n
g
e
stio
n
m
a
n
a
g
e
me
n
t.
"
In
d
u
strial
T
e
c
h
n
o
l
o
g
y
,
2
0
0
6
.
ICIT
2
0
0
6
.
IEE
E
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
.
IEE
E,
2
0
0
6
.
[2
8
]
On
g
sa
k
u
l,
W
.
,
a
n
d
P
.
Bh
a
sa
p
u
t
ra
.
"
Op
t
im
a
l
p
o
w
e
r
f
lo
w
w
it
h
F
A
C
T
S
d
e
v
ice
s
b
y
h
y
b
rid
T
S
/S
A
a
p
p
ro
a
c
h
.
"
In
tern
a
ti
o
n
a
l
j
o
u
r
n
a
l
o
f
e
lec
tri
c
a
l
p
o
w
e
r
&
e
n
e
rg
y
s
y
ste
m
s
2
4
.
1
0
(
2
0
0
2
):
8
5
1
-
8
5
7
.
[2
9
]
Bh
a
sa
p
u
tra,
P
.
,
a
n
d
W
.
On
g
sa
k
u
l.
"
O
p
ti
ma
l
p
o
we
r
fl
o
w
wit
h
mu
lt
i
-
typ
e
o
f
F
ACT
S
d
e
v
ice
s
b
y
h
y
b
rid
T
S
/
S
A
a
p
p
r
o
a
c
h
.
"
In
d
u
strial
T
e
c
h
n
o
lo
g
y
,
2
0
0
2
.
IEE
E
ICIT
'
0
2
.
2
0
0
2
IE
EE
In
ter
n
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
.
Vo
l.
1
.
IEE
E
,
2
0
0
2
.
[3
0
]
Ch
u
n
g
,
T
.
S
.
,
a
n
d
Y
.
Z.
L
i.
"
A
h
y
b
rid
GA
a
p
p
ro
a
c
h
f
o
r
OP
F
w
it
h
c
o
n
sid
e
ra
ti
o
n
o
f
F
A
CT
S
d
e
v
ice
s.
"
P
o
w
e
r
En
g
in
e
e
rin
g
Re
v
iew
,
IEE
E
2
0
.
8
(
2
0
0
0
):
5
4
-
5
7
.
[3
1
]
Ip
p
o
li
to
,
L
.
,
a
n
d
P
.
S
ian
o
.
"
S
e
lec
ti
o
n
o
f
o
p
ti
ma
l
n
u
m
b
e
r
a
n
d
l
o
c
a
ti
o
n
o
f
th
y
risto
r
-
c
o
n
tro
l
led
p
h
a
se
sh
if
ter
s
u
si
n
g
g
e
n
e
ti
c
b
a
se
d
a
l
g
o
rit
h
ms
.
"
G
e
n
e
ra
ti
o
n
,
T
ra
n
sm
is
sio
n
a
n
d
Distrib
u
ti
o
n
,
IEE
P
ro
c
e
e
d
i
n
g
s
-
.
V
o
l.
1
5
1
.
No
.
5
.
IET
,
2
0
0
4
.
[3
2
]
G
e
rb
e
x
,
S
tép
h
a
n
e
,
Ra
c
h
id
C
h
e
rk
a
o
u
i,
a
n
d
A
lain
J.
G
e
r
m
o
n
d
.
"
Op
ti
m
a
l
lo
c
a
ti
o
n
o
f
m
u
lt
i
-
ty
p
e
F
A
C
T
S
d
e
v
ice
s
in
a
p
o
w
e
r
s
y
ste
m
b
y
m
e
a
n
s o
f
g
e
n
e
ti
c
a
lg
o
rit
h
m
s."
P
o
w
e
r
S
y
ste
m
s,
IE
EE
T
ra
n
sa
c
ti
o
n
s o
n
1
6
.
3
(2
0
0
1
):
5
3
7
-
5
4
4
.
[3
3
]
On
g
sa
k
u
l,
W
.
,
a
n
d
P
.
Bh
a
sa
p
u
t
ra
.
"
Op
ti
m
a
l
p
o
w
e
r
f
lo
w
w
it
h
F
A
C
T
S
d
e
v
ice
s
b
y
h
y
b
rid
T
S
/S
A
a
p
p
ro
a
c
h
.
"
In
tern
a
ti
o
n
a
l
j
o
u
r
n
a
l
o
f
e
lec
tri
c
a
l
p
o
w
e
r
&
e
n
e
rg
y
s
y
ste
m
s
2
4
.
1
0
(
2
0
0
2
):
8
5
1
-
8
5
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
P
E
I
SS
N:
2252
-
8792
A
Mu
lti
-
Ob
jective
Hyb
r
id
Heu
r
is
tic
A
p
p
r
o
a
ch
fo
r
Op
tima
l S
ettin
g
o
f F
A
C
TS
Dev
ices…
(
S
a
i R
a
m
I
n
k
o
llu
)
129
[3
4
]
S
a
n
ti
a
g
o
-
L
u
n
a
,
M
.
,
a
n
d
J.
R.
Ce
d
e
n
o
-
M
a
ld
o
n
a
d
o
.
"
Op
ti
m
a
l
p
l
a
c
e
me
n
t
o
f
FA
CT
S
c
o
n
tr
o
ll
e
rs
in
p
o
we
r
sy
ste
ms
v
ia
e
v
o
lu
ti
o
n
stra
teg
ies
.
"
T
ra
n
s
m
issi
o
n
&
Dis
tri
b
u
ti
o
n
Co
n
f
e
re
n
c
e
a
n
d
Ex
p
o
sit
io
n
:
L
a
ti
n
Am
e
ric
a
,
2
0
0
6
.
T
DC'
0
6
.
IEE
E/
P
ES
.
IEE
E,
2
0
0
6
.
[3
5
]
S
re
e
ji
th
,
S
.
,
S
ish
a
j
P
sim
o
n
,
a
n
d
M
.
P
.
S
e
lv
a
n
.
"
Op
ti
m
a
l
lo
c
a
ti
o
n
o
f
in
terlin
e
p
o
w
e
r
f
lo
w
c
o
n
tro
ll
e
r
in
a
p
o
w
e
r
s
y
ste
m
n
e
t
w
o
rk
u
sin
g
A
BC al
g
o
rit
h
m
.
"
A
rc
h
iv
e
s o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
6
2
.
1
(
2
0
1
3
)
:
9
1
-
1
1
0
.
[3
6
]
M
o
h
a
m
e
d
,
Kh
a
li
d
H.,
KS
Ra
m
a
Ra
o
,
a
n
d
Kh
a
ir
u
l
Nisa
k
Bt
M
d
Ha
sa
n
.
"
Op
ti
ma
l
p
a
r
a
me
ter
s
o
f
in
ter
li
n
e
p
o
we
r
fl
o
w
c
o
n
tr
o
ll
e
r
u
sin
g
p
a
rticle
swa
rm
o
p
ti
miza
ti
o
n
.
"
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
l
o
g
y
(IT
S
i
m
),
2
0
1
0
In
tern
a
ti
o
n
a
l
S
y
m
p
o
siu
m
in
.
V
o
l
.
2
.
IEE
E,
2
0
1
0
.
[3
7
]
A
ra
,
A
.
Las
h
k
a
r,
A
.
Ka
z
e
m
i,
a
n
d
S
.
Nia
k
i.
"
M
u
l
ti
o
b
jec
ti
v
e
o
p
ti
m
a
l
lo
c
a
ti
o
n
o
f
F
A
C
T
S
sh
u
n
t
-
se
ries
c
o
n
tr
o
ll
e
rs
f
o
r
p
o
w
e
r
s
y
ste
m
o
p
e
ra
ti
o
n
p
la
n
n
i
n
g
.
"
P
o
w
e
r
De
li
v
e
r
y
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
2
7
.
2
(
2
0
1
2
):
4
8
1
-
4
9
0
.
[3
8
]
S
a
i
Ra
m
In
k
o
ll
u
a
n
d
V
e
n
k
a
ta
Re
d
d
y
Ko
ta,
“
Op
ti
m
a
l
se
tt
in
g
o
f
F
A
C
T
S
d
e
v
i
c
e
s
f
o
r
v
o
lt
a
g
e
sta
b
il
it
y
i
m
p
ro
v
e
m
e
n
t
u
sin
g
P
S
O
a
d
a
p
ti
v
e
G
S
A
h
y
b
rid
a
lg
o
rit
h
m
,
”
En
g
in
e
e
rin
g
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
a
n
In
tern
a
ti
o
n
a
l
Jo
u
r
n
a
l,
Av
a
il
a
b
le o
n
li
n
e
1
7
M
a
rc
h
2
0
1
6
.
[3
9
]
L
.
Ip
p
o
li
t
o
a
n
d
P
.
S
ia
n
o
,
"
S
e
lec
t
io
n
o
f
o
p
t
ima
l
n
u
mb
e
r
a
n
d
lo
c
a
t
io
n
o
f
th
y
risto
r
-
c
o
n
tro
ll
e
d
p
h
a
se
sh
if
ter
s
u
sin
g
g
e
n
e
ti
c
b
a
se
d
a
l
g
o
ri
th
ms
,
"
i
n
IE
E
Pro
c
e
e
d
in
g
s
-
Ge
n
e
ra
ti
o
n
,
T
ra
n
sm
issio
n
a
n
d
Distrib
u
ti
o
n
,
v
o
l.
1
5
1
,
n
o
.
5
,
p
p
.
630
-
6
3
7
,
1
3
S
e
p
t
.
2
0
0
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.