TELKOM
NIKA
, Vol.14, No
.4, Dece
mbe
r
2016, pp. 12
63~126
8
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i4.3966
1263
Re
cei
v
ed Ma
y 10, 201
6; Revi
sed
No
ve
m
ber 5, 2016
; Accepte
d
Novem
b
e
r
23, 2016
Design of Single-Stage Flyback PFC Converter for LED
Driver
Wang Qi*
,
Wu Jie, Baohu
a-La
ng
Schoo
l of Elect
r
onic Informati
on Eng
i
n
eeri
n
g
,
Xi’a
n T
e
chnol
ogic
a
l Un
iversit
y
, Xi’ a
n
, Chin
a
*Corres
p
p
o
n
d
i
ng auth
o
r, e-mail: 10
07
161
09
7@q
q
.com
A
b
st
r
a
ct
A lig
ht e
m
ittin
g
di
od
e (LED)
driver
bas
ed
on si
ng
le-sta
ge p
o
w
e
r factor correcti
on (
P
F
C
) i
s
prese
n
ted
in t
h
is p
a
p
e
r. T
he des
ig
ned
L
E
D driv
er
usi
ng flyb
ack top
o
lo
gy can
ach
i
eve
pow
er fa
ctor
correctio
n a
nd
constant-curr
e
nt drive
LE
D i
n
bo
und
ary co
n
ductio
n
mo
de.
T
he circu
i
t pri
n
ciple
is
descri
b
ed
in
detai
l, the
fo
rmu
l
as f
o
r MO
S sw
itch-on ti
me, sw
it
ch
ing
frequ
ency
an
d t
he
main
i
m
pac
t factor of
pow
er
factor are
pr
op
osed. T
h
e
exp
e
ri
ment
resu
lts show
th
at the
des
ign
e
d
LE
D driv
er
has
h
i
gh
pow
er
factor
,
stable o
u
tput a
nd it can driv
e
the LED w
i
th hi
gh efficie
n
cy.
Ke
y
w
ords
: flyback, pow
er factor correction,
boun
dary co
n
ductio
n
mod
e
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Light Emittin
g
Di
ode
(LE
D
) called
“g
reen li
ghting
”
is th
e
solid
illumina
nt with many
advantag
es,
su
ch
as sm
al
l si
ze, hi
gh e
fficiency,
lo
n
g
lifetime a
n
d
no
poi
son
mercury
co
ntent
comp
ared wit
h
the co
nvent
ional fluo
re
scent lamp.
The
Powe
r Fa
cto
r
Co
rrectio
n
(PFC) h
a
s
be
en
widely
used t
o
a
c
hieve
lo
w Total
Ha
rmo
n
ic
Di
stor
tion
(THD) a
nd
high Po
we
r F
a
ctor (PF
)
in
L
E
D
driving po
we
r.
Many co
nvert
e
r topol
ogie
s
can b
e
u
s
ed
to
drive the
LED st
ring, such a
s
b
o
o
s
t, buck-
boost, SEPIC, flyback, half bridge
converter and forward converte
r [1-4]. The flyback convert
e
r
is the most
comm
only used topology for low p
o
we
r offline application
s
, espe
cially whe
n
the
isolatio
n is n
e
ce
ssary. LE
D lig
hts
drive
by a
co
n
s
ta
nt cu
rrent
ca
n be
con
s
ide
r
ed
as
a
con
s
tant
power loa
d
, and
can
wo
rk
steadily
at lo
wer b
and
wi
dt
h. So when
the o
u
tput po
wer is le
ss t
h
an
100
W, the flyback convert
e
r is a be
tter s
o
lution for the LED driver.
The flyback conve
r
ter
can
ope
rate
in contin
u
ous
co
ndu
ct
ion mod
e
(CCM
),
discontin
uou
s cond
uctio
n
mode (DCM) and
bou
nda
ry condu
ction
mode (B
CM
). The CCM a
n
d
DCM
op
erati
on mo
de
s for LED l
a
mp
a
pplication
s
h
a
ve be
en di
scu
s
sed i
n
se
veral p
ape
rs
[5-9].
In the DCM
operation m
o
de, the
singl
e-sta
ge flyb
a
ck P
F
C
co
nverter
ca
n e
a
sily achieve
u
n
ity
power facto
r
, however, the con
d
u
c
tion lo
ss, current
stress, and voltage stress on
the switch
wi
ll
signifi
cantly i
n
crea
se. Th
e
r
efore, for hi
gh po
we
r a
p
p
licatio
ns, th
e co
ntinuo
us cu
rre
nt mo
de
(CCM) is sug
geste
d to
ach
i
eve high
er ef
ficien
cy
an
d h
i
gher po
we
r f
a
ctor,
but the
control i
s
m
o
re
compl
e
x, and sometim
e
s poor
stability. In the BC
M operation mode, the out
put
rectifier diode of
the flyback
conve
r
ter
wo
rks un
de
r th
e Zero
Cu
rre
n
t Switchin
g
(ZCS
), thus improvin
g the
conve
r
si
on
ef
ficien
cy of th
e conve
r
ter. Mean
while
, the power fact
or co
rrectio
n
can be a
c
hi
e
v
ed
easily d
ue to
the linea
r rel
a
tionship b
e
twee
n t
he ave
r
age i
nput
cu
rre
nt and th
e
input voltage.
A
large i
nput
filter use
d
for elimin
atin
g the
cu
rre
n
t harmo
nics in the DCM converte
r is
unne
ce
ssary.
This p
ape
r p
r
opo
se
s a si
n
g
le-stage
sin
g
le
LED
po
wer supply
circuit. It adopts
a flyback
conve
r
ter
whi
c
h o
perates i
n
bou
nda
ry condu
cti
on m
o
de (B
CM). Th
e pro
p
o
s
ed
ci
rcuit i
s
comp
act
and mini
mizes the
circui
t compo
nent
s. The
adva
n
tage
s of u
s
ing flyback
converte
r in t
he
prop
osed ci
rcuit topology will be discu
s
sed a
nd t
he operating pri
n
cipl
es
will be given in detail
s
.
The fea
s
ibilit
y and pe
rformance of the
prop
osed
ci
rcuit will al
so
be verified th
rough a l
abo
ratory
prototype.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1263 – 126
8
1264
2. Principle
analy
s
is
Figure 1
is
a flyback LE
D d
r
iver po
wer
su
pply
c
i
rc
uit. Ass
u
me that the input
line
voltage
is the
ideal
sin
u
soi
dal wave a
n
d
the re
ctif
ier bridg
e
is the
ideal
re
ctifier bridg
e
,
so
th
e
input voltage
after re
ctifier
bridg
e
ca
n be
expresse
d a
s
:
v(
)
s
i
n
(
2
)
in
pk
L
tv
f
t
(1)
Whe
r
e,
pk
V
is the peak valu
e o
f
the line voltage, and
L
f
is the freque
ncy o
f
the line voltage.
Figure 1. LED drive
r
ba
se
d on Si
ngle
-
Stage Flyback
PFC Co
nvert
e
r
By adjusting
the
para
m
ete
r
s of R5,
R11
and C4
in th
e cont
rol ci
rcuit,
the band
width of
the control loop is lower than the
freque
ncy of
the line voltage,
so
tha
t
in
half powe
r
freque
ncy
cy
cle,
the o
u
tpu
t
of the e
rro
r amplifie
r (E
A-out)
in th
e
controlle
r U1
is
con
s
tant.
The
pea
k cu
rre
nt
of the transform
er p
r
im
ary side i
s
prop
ortio
nal to the line voltage after
the
rectification, and the ori
g
in
al side p
e
a
k
cu
rrent is a si
n
e
curve[1
0
], expresse
d as:
()
s
i
n
(
2
)
pk
pk
L
it
i
f
t
(2)
Assu
ming
th
e
turns
ratio
of the tran
sfo
r
mer i
s
n
,
the efficien
cy
is 1
and the
wind
ing i
s
tightly couple
d
, so the pea
k cu
rrent
of the transf
o
rme
r
second
ary is:
()
(
)
pk
s
p
k
it
n
i
t
(3)
The turn
-on t
i
me of the swi
t
ch Q1 is give
n as:
()
s
i
n
(
2
)
()
s
i
n
(
2
)
p
p
k
p
pk
L
p
pk
on
in
p
k
L
p
k
Li
t
L
i
f
t
L
i
T
vt
v
f
t
v
(4)
Whe
r
e,
p
L
is the indu
ctan
ce
of the transfo
rmer p
r
ima
r
y side. It can b
e
see
n
from
Equation (4)
that the turn-on time of the switching i
s
fixed
unde
r the con
d
ition of
a certain in
p
u
t voltage an
d
load.
The turn
-off time of the swi
t
ch Q1 is give
n as:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
De
sign of Sin
g
le-Stag
e
Flyback PFC
Co
nve
r
ter fo
r LED Dri
v
e
r
(Wa
ng Qi)
1265
2
()
(
/
)
(
)
si
n
(
2
)
()
sp
k
s
p
p
k
of
f
of
of
pp
k
L
of
L
it
L
n
n
i
t
T
vv
vv
Li
f
t
nv
v
(5)
Whe
r
e,
s
L
is the indu
ctan
ce
of the transfo
rmer
se
con
d
a
r
y side,
o
v
is the output voltage of the
conve
r
ter, an
d
f
v
is the positi
v
e voltage drop of the outp
u
t diode
4
D
.
If the circuit i
s
workin
g in
boun
dary
co
ndu
ction m
o
d
e
, then the
switchi
ng p
e
ri
od of th
e
s
w
it
c
h
is
the
s
u
m of the turn-on time and the turn-off time, i.e.
on
of
f
TT
T
, so the duty ratio is:
1
sin
(
2
)
1
()
on
pk
L
of
T
D
vf
t
T
nv
v
(6)
The switchi
n
g
frequen
cy is:
1
1s
i
n
(
2
)
()
pk
s
pk
pp
k
L
of
v
f
T
v
Li
f
t
nv
v
(7)
It is ob
se
rve
d
that the
switchi
ng freq
uen
cy chang
es
with the
i
nput voltage.
Wh
en
sin(
2
)
L
f
t
=0, the m
a
ximum switchi
ng freq
uen
cy
can
be o
b
tained
nea
rby
the ze
ro
cro
s
sing p
o
in
t of the line voltage.
(max
)
pk
s
pp
k
v
f
Li
(8)
Whe
n
sin(
2
)
L
f
t
=1, the
minimum
switching f
r
eq
ue
ncy can
be g
e
t at the pe
a
k
of the
line
voltage.
(m
in
)
1
()
pk
s
pk
pp
k
of
v
f
v
Li
nv
v
(9)
In the c
a
s
e
of high input voltage and light
load, the tur
n
-
o
n time
of the sw
itc
h
w
ill
become very sho
r
t from Equation (4
). Th
e minimum
tu
rn-on time is influen
ced by
the controll
e
r
U1
and
the
turn
-off del
ay
of the
switch.
Wh
en
t
he tu
rn-on tim
e
re
ach
e
s the
mi
nimum val
ue,
the
boun
dary
co
ndu
ction mo
de cannot m
a
intain anym
o
re
, that is,
the ene
rgy flowin
g into th
e
conve
r
ter in
each
work cy
cle i
s
greater than th
at th
e loa
d
n
eed
e
d
. The
controller
U1
skip
s
a
numbe
r of switching p
e
rio
d
s
by cont
rol loop to
make the input an
d output ene
rgy
balan
ced.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1263 – 126
8
1266
Figure 2. LED po
wer d
r
iv
er cu
rrent wa
vefo
rms in th
e boun
dary condu
ction o
p
e
ration m
ode
It is seen fro
m
Figure 2. t
hat in the bou
ndary cond
uction mode, th
e curre
n
t wav
e
form of
the pri
m
ary
side in
turn
-o
n
co
urse i
s
t
h
e trian
gula
r
wave
and
th
e average
cu
rre
nt value
of
the
prima
r
y side i
s
half of the peak
curre
n
t, so
the averag
e
current value
can be o
b
tai
ned a
s
:
si
n
(
2
)
1
()
(
)
22
1
s
i
n
(
2
)
pk
L
in
p
k
L
i
ft
it
i
t
D
K
ft
(10)
whe
r
e,
()
pk
of
v
k
nv
v
is the ratio of the pea
k voltage
to the reflected voltage of the
se
con
dary
si
de. Th
e
sma
ller
k
is, th
e
close
r
to
the i
deal
sin
u
soid
al wave
()
in
it
is
and th
e
highe
r the po
wer fa
ctor i
s
. So theoreti
c
al
ly, the
flyback topology ca
n
achieve hi
gh
powe
r
facto
r
.
Like
wi
se, accordin
g to the curre
n
t relatio
n
shi
p
betwee
n
the prima
r
y side a
nd seconda
ry
side, we ca
n derive the current of the se
con
dary si
de
as:
2
si
n
(
2
)
1
()
()
(
1
)
22
1
s
i
n
(
2
)
pk
s
L
op
k
s
L
i
ft
it
i
t
D
Kf
t
(11)
Whe
r
e,
pk
s
i
is the pea
k cu
rren
t of the secon
dary sid
e
.
3. Experimental Re
sults
Analy
s
is
The m
a
in
ind
i
cators of the
ci
rcuit a
r
e
a
s
follo
ws: in
p
u
t voltage
ra
nge: 9
0
~
27
0 VAC;
output voltag
e: 26V
~36V;
output
curre
n
t: 3.2A;
out
put po
we
r: 1
00W;
co
nversion
efficie
n
cy:
≥
86%.
The main p
a
rameters of the comp
one
nts are gi
ven as
follows
. The material is
P
C
40, the
magneti
c
co
re is PQ32/25,
the turns of the prim
ary wi
nding i
s
27, the turn
s of the second
ary
windi
ng is 10,
the switch is
17N80
C3, the output
re
ctifier diod
e is S
c
hottky dio
d
e
10CT
Q
150,
and the outp
u
t
capa
citor is
three capa
cit
o
rs of 1
000u
F in parall
e
l.
(a) Input c
u
rrent waveform
with 90V inpu
t voltage
(b) Input c
u
rrent waveform
with 220V inp
u
t voltage
(c) Input cu
rrent waveform
with 270V inp
u
t voltage
Figure 3.
Input current (2A/div, 4ms/div) and input vol
t
age(2
50V/di
v
, 4ms/div)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
De
sign of Sin
g
le-Stag
e
Flyback PFC
Co
nve
r
ter fo
r LED Dri
v
e
r
(Wa
ng Qi)
1267
60
80
1
0
0
1
20
1
4
0
1
60
1
8
0
2
00
2
2
0
2
4
0
26
0
2
8
0
0.
97
0
0.
97
5
0.
98
0
0.
98
5
0.
99
0
0.
99
5
1.
00
0
In
pu
t Vo
l
t
age (V
)
Power F
a
c
t
or
Figure 4.
Rel
a
tionship curve betwee
n
i
nput voltage
and po
we
r factor
Figure 3. is the input cu
rrent waveform meas
u
r
e
d
with different
input voltages (9
0 V,
220V a
nd
27
0V) a
nd the
output lo
ade
d with
100
W.
Cl
early, t
he inp
u
t current is clo
s
e
to the
stand
ard
si
nu
soid
al wave a
nd the
mea
s
u
r
ed
po
wer factor is g
r
eate
r
than 0.9
6
.
The relation
sh
i
p
betwe
en
the i
nput voltage
and
the mea
s
ured
p
o
wer f
a
ctor
i
s
sho
w
n in Figure 4. It can be se
en
that the power facto
r
dec
reases a
s
the
input voltage increa
se
s,
but the
value
is always la
rger
than 0.96. Th
is is
con
s
iste
nt with the co
nclu
sio
n
from
Equation (1
0
)
, the lowe
r the input volta
g
e
is, the smalle
r the coeffi
cie
n
t k of the Equation (1
0) i
s
, and then the
closer the po
wer fa
ctor i
s
to
1.
60
80
10
0
1
2
0
14
0
1
60
1
8
0
2
00
2
2
0
2
40
2
6
0
2
80
86
.5
87
.0
87
.5
88
.0
88
.5
89
.0
89
.5
90
.0
90
.5
I
npu
t
V
o
l
t
age
(V)
Eff
i
ciency
(%)
Figure 5.
Output curre
n
t (1
A/div, 4ms/div)
Figur
e 6. Rel
a
tionship curve betwee
n
input
voltage and e
fficiency
Figure 5 sho
w
s th
e outpu
t current waveform
when t
he input volt
age i
s
220V
and th
e
output i
s
full-l
oad. It can b
e
seen th
at the o
u
tput
current i
s
con
s
ta
nt at 3.2 A, t
he ri
pple
current
pea
k is 150
mA, the outp
u
t cu
rre
nt rip
p
le is 4.
7%,
and the
outp
u
t cu
rre
nt is
sup
e
rim
p
o
s
e
d
with
the rip
p
le
cu
rrent
who
s
e
freque
ncy i
s
2
times of th
e
mains fre
que
ncy (abo
ut 1
00HZ
)
. Imp
r
o
v
ing
the
wo
rking speed of
the control
l
oop
a
nd in
crea
sing
the capa
cita
nce
of the i
n
p
u
t ca
pacito
r
can
redu
ce
the
o
u
tput ri
pple,
but would
re
duce the
p
o
w
er fa
ctor of
the ci
rcuit. O
n
the
othe
r
h
and,
increa
sing
th
e capa
citan
c
e of the
outp
u
t ca
pa
citor
(su
c
h
as multi
p
le
capa
cito
rs in
pa
rallel
)
can
also redu
ce
the output ri
pple, but
wo
uld increa
se
the cost of
the circuit. Therefore,
it is
necessa
ry to balan
ce the o
u
tput
ripple, the po
wer fa
ctor and the
co
st whe
n
de
sig
n
ing a ci
rcuit.
Figure 6.
is the m
e
a
s
u
r
ed
relation
sh
ip
curve
bet
wee
n
the
in
put voltage
and th
e
efficien
cy. It is cle
a
r that in the input voltage of
90-270V, the efficien
cy with full-loa
d
outpu
t is
over 88%. When the input voltage is
22
0 V, the efficiency is mo
re
than 90%, so the circuit wo
rks
with high efficiency.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1263 – 126
8
1268
4. Conclusio
n
A high
po
wer factor si
ngle
-
stage
flyback co
nverte
r for LED li
ghting
appli
c
ation
h
a
s
bee
n
studied in thi
s
paper. The stability of t
he fl
yback topology
operat
ing
in boundary
conducti
on
mode
wa
s a
nalyze
d
in d
e
tails. Ba
sed
on the
s
e
an
alyse
s
, a p
r
o
t
otype of 10
0W flyba
c
k L
E
D
driving po
we
r has bee
n de
sign
ed and te
sted. The ex
p
e
rime
ntal re
sults sh
ow tha
t
the LED drive
power
su
pply
with fe
we
r
compon
ents a
nd lo
we
r di
ssi
pation
ca
n a
c
hieve p
o
we
r f
a
ctor
corre
c
tion
and
con
s
tant
curre
n
t co
ntrol of LED. When the in
put
voltage
is 22
0V, the powe
r
factor i
s
g
r
e
a
ter
than 0.97 an
d the conve
r
sion efficien
cy
is more
than 90%,
thus it has great pra
c
tical appli
c
ati
o
n
values.
Ackn
o
w
l
e
dg
ements
The wo
rk de
scrib
ed in this
pape
r is supp
ort
ed in pa
rt by the key industry p
r
obl
e
m
plan
of Shaanxi Province Ind
u
st
ry Scien
c
e an
d Tech
nolo
g
y under g
r
a
n
t 2016
GY-0
74.
Referen
ces
[1]
M Orabi, T
Ninomiy
a.
A un
ified desi
gn of
singl
e-stag
e a
nd tw
o-stage
PF
C converter
. IEEE 34t
h
Annu
al Po
w
e
r
Electron
ics Sp
ecial
i
st C
onfer
ence (PESC '0
3). 2003; 4: 17
20-1
725.
[2]
SY Chae, BC
Hy
un, P A
gar
w
a
l, WS Kim,
BH Cho.
Di
gita
l Pred
ictive F
e
ed-F
o
rw
ard C
o
ntroll
er for a
DC-DC C
onv
er
ter in Plas
ma Displ
ay Pa
nel
.
T
w
e
n
t
y
S
e
co
n
d
Ann
ual IEEE
Appli
ed Po
w
e
r Electronics
Confer
ence (A
PEC 200
7). 20
07: 894-
89
8.
[3]
Mallis
etti Rajes
h
Kumar, Durais
a
m
y
L
eni
n
e
, Ch
Sai
Babu.
A variab
le s
w
it
chin
g frequ
enc
y
w
i
th
boost p
o
w
e
r
factor
correctio
n
conv
erter.
TELKOMNIKA
T
e
leco
mmunic
a
tion C
o
mputi
n
g Electron
ics a
nd Co
ntrol
. 20
11; 9(1): 47-5
4
.
[4]
M Derkao
ui, A Hamid, T
Lebe
y, R Melati. De
sign
a
nd mo
de
ling
of an inte
g
r
ated micro-tra
n
sformer in
a fl
yback c
onv
erter.
TELKOMNIKA Teleco
mmu
n
icati
on
Co
mp
uting E
l
e
c
tronics a
nd C
ontrol
. 20
13;
11(4): 66
9-6
8
2
.
[5]
L Yu-Kan
g, L Jing-Y
uan, W
Cha
o
-F
u, L Chie
n-Yu.
Analy
s
is and d
e
sig
n
of a dual-
m
ode flyb
ac
k
converter
. 2010 IEEE International Conference on Sust
ainable Energy
T
e
chnologies. 2010: 1-3.
[6]
T
z
uen-Lih
Che
r
n, Li-Hs
i
an
g L
i
u, Su-H
on
g Y
eh, Yu-
Lun
Ch
ern, Der-M
in T
s
a
y
.
S
i
ng
le-sta
ge flyb
ac
k
converter
for
LED
driver
w
i
th i
nductor
vo
ltage
det
ection
pow
er factor c
o
rrectio
n
. 2
010
5
t
h IEEE
Confer
ence
on
Industrial El
ec
tronics an
d Ap
plicati
ons
is. 20
10: 208
2-2
087.
[7]
Hao Ma, Y
ue
Ji, Ye Xu. Des
i
gn
and A
nal
ysis of Sing
le-S
tage Po
w
e
r F
a
ctor Correcti
o
n Conv
erter
W
i
th a F
eedba
ck W
i
ndin
g
.
IEEE Transactions on power electronics
. 20
10
; 25(1): 146
0-1
470.
[8]
Sang
Che
o
l M
oon, G
w
a
n
-Bo
n
Koo, Gun-W
oo Mo
on.
An
interl
eave
d
si
n
g
le-sta
ge flyb
a
ck AC-DC
converter w
i
th
w
i
de outp
u
t po
w
e
r
range f
o
r outdo
or LE
D li
ghtin
g syste
m
. Appl
ied
Po
w
e
r Electron
ic
s
Confer
ence
an
d Expositi
on (A
PEC), 2012 T
w
ent
y
-
Seve
nth
Annu
al IEEE. 2012: 82
3-8
30.
[9]
Sang
Ch
eo
l M
oon, G
w
a
n
-B
o
n
Ko
o, Gun-W
oo M
oon.
A N
e
w
Contro
l M
e
thod
of Interl
e
a
ved
Sin
g
l
e
-
Stage F
l
yb
ack
AC–DC
Co
nve
r
ter for Outdoo
r LED L
i
g
h
ting
S
y
stems.
IEE
E
T
r
ansactio
n
s
on
Po
we
r
Electron
ics
. 20
13; 28: 40
51-4
062.
[10]
Z
uen-L
i
h C
her
n, Hua
ng T
s
un
g-Mou, W
en-Y
uen W
u
, W
h
ei-
M
in L
i
n, Gua
n
-
Sh
yon
g
H
w
a
n
g
.
Desi
gn of
LED driv
er circuits w
i
th single
-
stage PF
C in
CCM an
d DC
M
. Industrial El
ectronics a
nd
Appl
icatio
ns
(ICIEA). 2011 6th IEEE Conf
erenc
e on. 20
1
1
: 2358-
23
63.
Evaluation Warning : The document was created with Spire.PDF for Python.