TELKOMNI
KA
ISSN:
1693-6930
■
Inve
stigation
of Short Cha
nnel Effect on
Ve
rtical Stru
cture
s
in …
…
(Muna
wa
r A. Riya
di)
175
INVESTIGATION OF SHORT CHANNEL EFFECT ON
VERTICAL STRUCTURES IN NANOSCALE MOSFET
Muna
w
a
r A. Riy
a
di
1
, Ism
a
il Saad
2
, Raz
a
li Ismail
3
1
Depa
rtment
of Electrical Engine
erin
g, Di
pone
goro Un
iversity, Semaran
g
502
75,
Indone
sia
2
School of En
ginee
ring & IT, Universiti Malaysia Sa
b
ah, 8899
9, Kota Kinabalu,
Sabah, Malay
s
ia
3
Faculty of Electri
c
al Engi
n
eerin
g, Unive
r
siti
Te
knol
og
i Malaysia, 80
310 Sku
dai, Johor, Mal
a
ysi
a
*Co
rre
sp
ondi
ng autho
r: muna
war.
riyadi
@iee
e.org
A
b
st
r
a
k
Perkem
bang
an MOSFE
T
ya
ng te
rkini m
e
m
e
rl
uka
n
pe
nde
katan i
n
o
v
at
if untuk
m
e
m
pertahanka
n
tre
n
m
i
niaturi
s
a
s
i
ke
dim
ensi
nan
o. Ma
kalah
in
i m
e
m
f
okuskan p
ada
sifat
fisi
k
MOSFET ve
rtikal dalam
u
k
uran n
ano.
Struktu
r
ve
rti
k
al ad
alah
salah satu jen
i
s de
vai
s
ya
ng
m
enjanjika
n
untuk m
i
niat
urisasi l
ebih
lanjut, den
ga
n fitur ya
ng t
i
dak te
rikat d
enga
n lithog
rafi
dalam
pem
buatann
ya. Pe
rban
ding
an ki
nerja M
O
SFE
T
verti
k
al d
a
n
lateral u
n
tu
k panj
ang
ka
nal
Lch be
ru
krua
n nano ini ditunju
k
kan den
gan bantu
an
perhitu
nga
n num
erik. Eval
uasi pa
ram
e
ter-
param
eter ef
ek kanal pe
n
dek (sh
o
rt ch
annel
effe
ct-SCE), yaitu
penu
run
an te
gang
an am
bang
batas,
su
bth
r
eshold
swin
g (SS),
drai
n ind
u
c
ed
b
a
rri
er l
o
weri
ng (DIBL) d
an a
r
u
s
b
o
cor
m
enunjukka
n
keuntun
gan
yan
g
cu
kup b
e
sa
r,
se
rta beberapa p
e
rti
m
bangan dal
am
m
enerap
kan
stru
ktur te
rse
but, khu
s
u
s
n
y
a untu
k
u
k
uran nan
o.
Kata kunci
:
efek kanal p
e
nde
k, MOSF
ET verti
k
al, n
ano
scale de
vi
ce, pab
rikasi
A
b
st
r
a
ct
The re
cent
d
e
vel
opm
ent of
MOSFET dem
ands
inn
o
vati
ve
app
roach to m
a
i
n
tain the
scaling i
n
to
nano
scale
dim
ension. Thi
s
pa
per
fo
cuse
s o
n
the
physi
cal n
a
t
ure of
verti
c
al
MOSFET in
nano
scale
re
gim
e
. Vertica
l
stru
ctu
r
e i
s
one
of the
prom
isin
g de
vices in fu
rth
e
r
scaling, with
rela
xed
-
lithog
raph
y featu
r
e
in t
he m
anufacture. Th
e com
pari
s
o
n
of vertical an
d
lateral M
O
SF
ET perfo
rm
ance fo
r na
no
scale
chan
ne
l length (Lch) is dem
on
stra
ted with the h
e
lp
of num
eri
c
al
tools. T
he
eval
uation
of sh
ort
ch
annel effec
t
(SCE) parameters
, i.e. thres
h
old
voltage roll
-off, subthreshold
swing
(S
S), drain i
n
duced barri
er lowering (DI
B
L)
and
leakage
curre
n
t sh
ows the
co
nsi
d
erabl
e a
d
va
n
t
ages
as we
ll as it
s thre
ad-off in im
p
l
em
enting the
stru
cture, in particul
a
r for n
ano
scale re
gi
m
e
.
Keywords: ve
rtical MOSFE
T
, devai
s u
k
u
r
an
na
no, sh
o
r
t chan
nel effect, fabri
c
atio
n
1. INTRODUCT
I
ON
The re
ce
nt d
e
velopme
n
t of MOSFET has re
a
c
hed t
he progress that
the ch
an
nel length
goe
s sho
r
ter into
na
nomet
er scale. Whi
l
e
the MOSF
ET
und
ergoe
s scaling
do
wn of
the
si
ze
in
orde
r to imp
r
ove integ
r
at
ed ci
rcuit pe
rforma
nc
e such a
s
spee
d, powe
r
co
nsum
ption, a
n
d
packin
g
d
e
n
s
ity, a numb
e
r of
challe
nge
s n
eed
to
be
overcom
e
.
This imp
r
ove
m
ent in
devi
c
e
spe
ed an
d the sh
rin
k
ing
of dimensi
o
ns ha
s
c
onti
nued su
ccessfully
fo
r over 30 yea
r
s,
as
predi
cted
by Moore's
La
w
more th
an 4
0
years
ago[1]
.
While th
e pe
rforma
nce an
d den
sity of the
device i
s
exp
e
cted to b
e
h
i
gher
with th
e sh
rin
k
i
ng
o
f
the gate len
g
th, some
ch
alleng
es o
n
the
ordin
a
ry, late
ral MOS d
e
vice a
r
o
s
e [2]. This di
men
s
ion re
du
ction
has th
e big
gest imp
a
ct
on
lithogra
phy, as the
key e
quipme
n
t for transfe
rri
ng
desi
gn featu
r
es onto
su
bstrate. Whe
n
the
device
re
sol
u
tion go
es sm
aller, it give
s the
co
n
s
e
q
u
ences for th
e u
s
e
of lith
ogra
phy
sou
r
ce
wavele
ngth. As a rule of thumb, the re
solutio
n
of lithography is a
bout half of the wavel
engt
h of
its so
urce [3].
Thu
s
, with
chann
el length
goe
s into
su
b-10
0 nm i
n
l
ength, the lith
ogra
phy ha
d
to
be into
de
ep
UV
or even
in the
x-ray
re
gion,
whi
c
h eventu
a
lly
lead to
mo
re
expen
sive
a
n
d
sop
h
isti
cate
equipm
ent in
stallment. Wi
th it, the cost
of manufa
c
turing
and
also its co
mplex
i
ty
tend to incre
a
se d
r
amati
c
ally. Other ch
alleng
es
ove
r
the chann
el scaling a
r
e th
e sho
r
t cha
n
n
e
l
effects. T
he
sho
r
t chan
ne
l effect in
clu
des th
re
sh
ol
d voltage
re
ductio
n
, in
creasi
ng di
ssip
ation
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 1
693-693
0
TELKOM
NIKA
Vol. 7, No. 3, Desem
b
e
r
2009 : 175
- 180
176
power, I
off
roll-off an
d d
r
ain i
ndu
ce
d
barrie
r
lo
wering
(DIBL) [4]. As a
result, alte
rna
t
ive
techn
o
logie
s
are
esse
ntial
as
well a
s
a
d
v
ance
d
devi
c
e physi
cs ap
proa
ch
for ov
ercomin
g
the
s
e
chall
enge
s.
A numbe
r of
re
sea
r
ch ha
ve been
co
n
ducte
d exten
s
ively to ove
r
co
me the
problem in
further scali
n
g, incl
udin
g
t
he
resea
r
ch i
n
ne
w
materi
als
(hig
h-k fo
r g
a
te diel
ect
r
ic, fo
r in
stan
ce)
and new dev
ice stru
ctu
r
e
s
[5-10].
The vertical
tran
si
stors have been re
cog
n
ized as potenti
a
l
solutio
n
in overcomin
g
the scaling
probl
ems
due to litho
grap
hy re
sol
u
tion in wh
ich
decana
nomet
er chan
nel
s can b
e
re
alized with the
accuracy of i
on impla
n
tation or e
p
itaxial
gro
w
th[11, 1
2
].
A vertical
MOSFET structu
r
e h
a
s i
t
s sou
r
ce, chann
el and
drain a
r
rang
ed
vertically, usually using a
silicon
pillar. Its channel re
gion locates at the si
dewall surface of the
pillar. By thi
s
stru
cture, the
gate l
ength
d
e
fini
tion i
s
in
d
epen
dent
of li
thogra
phy b
u
t only d
epe
nd
s
on the ve
ry well co
ntrolle
d
vertical p
r
o
c
e
ssi
ng, e.g.
pil
l
ar et
ching, th
in film depo
si
tion or
gro
w
t
h
.
Another
po
ssible adva
n
ta
ge is th
e in
crea
sed
pa
cki
ng de
nsity a
s
the
cha
n
n
e
l width i
s
la
rge
becau
se of the usa
ge of all side
wall
s as chann
el region [13]. With the nee
d to redu
ce the
cha
nnel l
eng
th, advance
m
ent in fab
r
i
c
ation te
ch
ni
que
s was
essential fo
r th
e su
ppressio
n
of
unwanted p
h
enome
na.
In this pap
er, the compa
r
ison of late
ra
l and vertical
MOSFET's
perfo
rman
ce
will be
pre
s
ente
d
. This pa
pe
r will
con
c
ent
rate
on sin
g
le gat
e vertical
structure comp
ared to its l
a
teral
cou
n
terp
art,
different than
the app
roa
c
h of verticall
y
double g
a
te tran
sisto
r
[14]. The soli
d
sou
r
ce diffu
sion techniq
u
e
wa
s
sel
e
cted in thi
s
review fo
r its simpli
city in
stru
ctu
r
e a
nd
pro
c
e
ssi
ng. In addition, its behaviou
r
ov
er sch
o
rt
cha
nnel effect
wil
l
be discu
s
se
d extensively
b
y
the help of
nume
r
ical an
alysis u
s
in
g
Silv
aco technolo
g
y com
puter-aid
ed
desi
gn (T
CA
D)
s
o
ftware.
2.
DEVICE STRUCTURE AND PHYSICAL MODELS
Figs. 1
(
a)
an
d (b
) sho
w
th
e ba
sic
stru
ct
ure of ve
rtical
and late
ral M
O
SFET, re
sp
ectively.
Only on
e
sid
e
of th
e ve
rtical Si pill
ar is
simu
late
d,
while u
s
u
a
lly b
o
th si
de
are
use
d
, for the
one-
to-one
com
p
arison bet
we
en the lateral
and vertical
stru
cture. Fro
m
this pictu
r
e
it is obvious
that
the chan
nel i
s
located vert
ically betwe
e
n
drain an
d source (Fi
g
. 1(b)), an
d that the definition o
f
cha
nnel regio
n
for vertical
MOSFET is li
thogra
phy-i
nd
epen
dent.
(
a
)
(
b
)
Fig. 1 The co
nce
p
t of (a) la
teral and
(b)
vertical MOS
F
ET
Silicon wafer with
uniform
boron doping of 10
18
cm
-3
i
s
u
s
ed
a
s
ba
se
sub
s
trate for b
o
th
stru
ctures. T
h
e use of relatively high sub
s
trate
dopin
g
is a
con
s
e
q
u
ence of devi
c
e scalin
g whi
c
h
requi
re
s hi
gh
er
sub
s
trate
dopin
g
for
sh
orter
gate le
n
g
th. In additio
n
, it also give
s be
nefit for t
he
suppression
of short channel effe
ct [4].
A 5-nm Silicon oxide (SiO
2
) is grown o
n
the sub
s
trate
as
a gate diele
c
tric, whil
e polysilicon whi
c
h
is heavily do
ped with arse
nic of 10
19
cm
-3
is applied for
gate ele
c
tro
d
e
. The p
o
lysil
i
con
gate
wa
s al
so u
s
e
d
a
s
ma
sker fo
r
self-ali
gne
d source a
nd
drain
regio
n
fo
r lat
e
ral
structu
r
e
,
while
no
sel
f
-aligne
d p
r
o
c
ess i
s
i
n
the
vertical. T
h
e
sou
r
ce
and
d
r
ain
regio
n
was constructe
d by
dopin
g
of
ph
osp
horus wit
h
co
ncentration of 10
20
cm
-3
. Aluminum
wa
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOMNI
KA
ISSN:
1693-6930
■
Inve
stigation
of Short Cha
nnel Effect on
Ve
rtical Stru
cture
s
in …
…
(Muna
wa
r A. Riya
di)
177
use
d
as met
a
l conta
c
t, and ohmi
c
co
ntact wa
s a
s
sume
d betwe
en metal and
semicond
uct
o
r.
The late
ral
structu
r
e
wa
s
desi
gne
d u
s
i
ng sta
nda
rd
MOSFET p
r
o
c
e
ssi
ng
seq
u
ence. In oth
e
r
hand, th
e ve
rtical
structu
r
e ha
s
additio
nal p
r
o
c
e
ssi
n
g
ste
p
s
to standa
rd se
qu
ences, with
t
he
requi
rem
ent
of the tren
ch
(pilla
r)
definition. In or
de
r to obtain
cle
a
r cut pill
ar, i
s
o
t
ropic etch was
applie
d for this purpo
se. T
he heig
h
t of the pillar is
a
d
juste
d
with the targete
d
chann
el length
,
and al
so by d
e
termini
ng th
e requi
re
d sp
ace for
drai
n impurity diffusion jun
c
tion.
The devi
c
e structu
r
e was
then sim
u
late
d usin
g SILVACO'
s ATLA
S software p
a
ckag
e
[15].
Several cha
nnel
l
engt
hs we
re simu
lated
to
u
nde
rstan
d
the
pe
rforma
nce a
n
d
characte
ri
stic
of the device
s
. For th
e pu
rpose of comp
arison
study
based o
n
ide
n
tical mo
del
s for both d
e
vice
s
the an
alysi
s
on I-V
ch
ara
c
teristics and
se
con
dary
effects a
r
e to
b
e
captured
well. The
Lom
b
a
rdi
model [1
6] was
applie
d a
s
it h
a
s ta
ke
n into a
c
cou
n
t the mo
bility degradatio
n o
c
curs in
si
d
e
inversi
on lay
e
rs th
rou
gh t
r
an
sverse a
n
d
longitudi
nal
field. In a low ele
c
tri
c
fi
eld, the ca
rri
er
mobility is given usi
ng
Matthiessen’s rule as
(
1
)
μ
AC
is the surface mobility limited by scat
t
ering with acousti
c phonons given by
(
2
)
whe
r
e B=4.7
5
x10
7
cm/s,
C=1.74x10
5
, N is total dopi
ng co
ncentrat
i
on, E
┴
transv
e
rse field and
T
L
is lattice tem
perature in K
e
lvin.
μ
b
is th
e mobility limited by scatt
ering
with optical intervall
e
y
phon
on
s give
n by
(
3
)
(
4
)
whe
r
e
μ
o
= 5
2
.
2
cm
2
/(V.
s
)
,
μ
m
=141
7 cm
2
/(V.s
)
,
μ
1
= 43.4
cm
2
/(V.s
)
, C
r
=
9.
8
6
x
1
0
16
cm
-3
, C
s
=
3.43x10
20
cm
-3
, N
A
is the total densi
t
y of impuriti
e
s,
μ
sr
th
e
surfa
c
e
roug
hne
ss facto
r
for
electron
s a
n
d
=5.8
2
x10
14
cm
2
/(V.s).
The m
obility
degradatio
n
due to
p
r
e
s
e
n
t of ele
c
tri
c
f
i
eld
is given by the relation
(
5
)
whe
r
e
μ
n0
is the electrons l
o
w-electri
c
-fi
e
ld mobility and
E||
is the longitudi
nal el
ectri
c
field in
the
dire
ction of
current.
V
SATN
is the
satu
rat
ed d
r
ift veloci
ty calcul
ated
from temp
era
t
ure-dep
end
e
n
t
model[17].
The re
combi
nation beh
aviors
bet
wee
n
electr
on
s a
n
d
hole
s
are
de
scribe
d by S
hockley-
Rea
d
-Hall eq
uation with fixed ca
rri
er lifetimes
. An inte
rface fixed ox
ide ch
arg
e
of 3x10
10
C/m
2
is
assumed
with the presence of
n-type pol
y
silicon gate.
The
com
b
inat
ion of
Gumm
el and
Newton
nume
r
ical me
thods
wa
s e
m
ployed for
a better init
ial
guess in
sol
v
ing quantitie
s for obtai
nin
g
a
conve
r
ge
nce of the
device stru
cture.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 1
693-693
0
TELKOM
NIKA
Vol. 7, No. 3, Desem
b
e
r
2009 : 175
- 180
178
3.
RESULTS A
ND DISCUS
SION
The
device’s ele
c
tri
c
al
propertie
s
we
re extr
a
c
ted
prima
r
ily
for the
an
alysi
s
of
sh
ort
cha
nnel
effect. The effe
ct
of structu
r
e
o
n
the th
re
sh
o
l
d voltage
is
sho
w
n
in
Fig
u
re
2. Th
e
re
sult
sho
w
s ten
d
e
n
cy of
de
cre
a
se
in th
re
shold vo
lta
g
e
for de
crea
sing cha
nnel
length
fo
r b
o
th
st
ru
ct
ur
e,
wh
ile V
th
decre
ase
s
more d
r
amati
c
ally below 10
0 n
m
. The threshold voltage
s o
f
vertical
struct
ure
are g
ene
rally high
er th
an that
of lat
e
ral,
however the
roll-off te
nden
cy (i.e.
the
rate of th
re
shold d
e
crea
se in lo
we
r chann
el le
n
g
th) for both
grap
hs indi
cate that verti
c
al
s
t
ruc
t
ures are more lik
e
ly
to
have
bett
e
r c
o
ntrol of
t
h
res
hold ro
ll-off. Wors
e roll-off is a
s
i
gn o
f
less co
ntrol f
o
r chann
el, and eventually
it can l
ead to
negative thre
shol
d voltage
, which
req
u
ires
compli
cate
d bias
setup for its operatio
n.
The value of
V
th
is critical
for switchin
g operati
on, and e
s
pe
ciall
y
for determi
ning the
operating
reg
i
on of tran
sistor's
OFF
-
sta
t
e, whi
c
h
obv
iously lie
s
be
low th
re
shol
d
voltage.
Whi
l
e
V
th
goes hig
h
e
r, the
co
rrespondi
ng off-v
o
ltage
coul
d
be
set mo
re f
l
exible, and
e
v
entually the
off
cur
r
e
n
t
(I
off
)
will be
lo
wer.
But if the thresh
old voltag
e tend
s to
be
low, the
off-voltage woul
d be
force
d
to go l
o
we
r, and te
n
d
to increa
se
the insta
b
ility of swit
chin
g o
peratio
n. Late
r
, this will l
e
a
d
to high
er I
off
, and co
nsid
erably
the high
er
p
o
wer co
n
s
umpt
io
n at
off state. Ho
wever,
high
er V
th
coul
d set the
ope
rating vo
ltage at hi
gh
er bi
as, thu
s
it can
pull the
power
high
e
r
in o
n
-state.
By
comp
ari
ng th
e re
sult
with
recent IC m
a
nufactu
ri
ng t
e
chn
o
logy p
r
o
v
ided by ITRS [18], it can
be
see
n
that the
threshold vo
ltage of su
b-100 nm i
s
m
a
intaine
d
in the order
of 0
.
5 V. Thus, the
obtaine
d valu
e of V
th
for ve
rtical st
ru
cture (Fig. 1) i
s
a
c
ceptabl
e.
In the pre
s
en
ce of high el
ectri
c
field i.e. V
d
between
sou
r
ce
and
drain, its respective
potential ba
rrier can b
e
a
ffected which
lead
s
to an
increa
sed
d
r
ain
cu
rre
nt, and eventu
a
l
l
y
cha
nge
s its t
h
re
shol
d voltage. Thi
s
p
a
rasitic
effe
ct i
s
kno
w
n a
s
drain
indu
ce
d
barrie
r
lo
wering
(DIBL),
which
is cal
c
ulate
d
by:
(
6
)
The
DIBL
cal
c
ulatio
n i
s
ta
ken fo
r V
th
at
V
D
=
0.1 V
and
V
D
=
1.0 V, a
s
i
s
pre
s
e
n
te
d in
Fig.
3. It is shown
that the lateral
stru
cture h
a
s the ten
den
cy of lo
we
r DIBL for cha
n
n
e
l length ab
o
v
e
100 nm, whil
e the vertical offers bette
r trend of DI
BL
for sub
-
1
00 n
m
length. This mean
s that the
vertical st
ru
cture co
uld st
and for hig
h
e
r drain
cu
rrent in sho
r
te
r cha
nnel
wi
th less
curre
n
t
con
s
um
ption
and thre
sh
old
voltage than the lateral.
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
50
100
150
Vt
h
(V)
c
han
nel lengt
h
(
n
m
)
V
e
rt
i
c
a
l
M
O
SF
ET
Lat
er
a
l
M
O
S
F
E
T
Fig. 2 Comp
a
r
iso
n
of thre
shold voltage (V
th
)
betwe
en lateral and vertica
l
stru
cture
0
50
100
150
200
250
300
50
10
0
1
50
DI
B
L
(
m
V
)
C
h
anne
l l
engt
h
(
n
m
)
Ve
rt
i
c
a
l
M
O
SF
ET
La
t
e
r
a
l M
O
S
F
E
T
Fig. 3 Tren
d of DIBL for lateral an
d verti
c
al
MOSFET
The subtresh
old swing
(S) of both lateral and ve
rtical stru
ctu
r
e
s
is sho
w
n in F
i
g.4 (a
).
The
swin
g is
use
d
to refle
c
t the tran
sitio
n
sp
eed
of
d
e
vice fro
m
weak to
strong
inversi
on
reg
i
on,
as sho
w
n bel
ow:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOMNI
KA
ISSN:
1693-6930
■
Inve
stigation
of Short Cha
nnel Effect on
Ve
rtical Stru
cture
s
in …
…
(Muna
wa
r A. Riya
di)
179
(
7
)
whe
r
e k i
s
Boltzman
n'
s consta
nt, T is temperatu
r
e
,
and C
d,
C
it
and C
ox
, ar
e the depleti
on,
interface tra
p
and oxide
capa
citan
c
e
s
, respe
c
tively
. The inte
rface
trap capa
cit
ance is e
qual
to
qD
it
., wh
ere
D
it
is the i
n
terface trap
den
sity. Low swi
ng reflect
s
a
good
tran
sitio
n
time, thu
s
l
o
we
r
S value is preferabl
e. Du
e to the bulk effect
the sub-th
re
shol
d swi
ng of a convention
a
l MOS
transi
s
to
r in b
u
lk technol
og
y will always
be high
er
tha
n
a ce
rtain op
timum value
whi
c
h is
rou
g
h
ly
60 mV/dec at
room tempe
r
ature.
The vertical stru
cture gives lo
wer
sub
t
hr
eshold
swi
ng for overall simulated
chann
el
length
s
at a
r
ound
90 mV/
dec. O
n
the
other
hand, l
a
teral
stru
ctu
r
e ha
s it
s swing ro
se
sh
arply
belo
w
80
n
m
, although
both st
ru
cture
s
have
si
milar oxid
e
cap
a
cita
nce
.
The de
ple
t
ion
cap
a
cita
nce is co
nsi
dered
as the influe
n
t
ial part fo
r th
e increa
sed
swing, a
s
the lateral lo
cate i
t
s
depletio
n regi
on over all ju
nction
s in the
bulk, incl
udi
ng som
e
pa
rt of chann
el, whil
st in vertical
stru
cture, the
na
rro
w
pillar be
come
a
constraint fo
r
depletio
n regi
on.
In a
dditio
n
, the '
depth'
of
junctio
n
in ve
rtical
structu
r
e (see
Fig.1
(b)) is
e
s
senti
a
lly sh
allower than th
at of t
he late
ral. T
h
us,
the transition to inversion region
will be faster in vertical case.
Fig. 4(b
)
de
monst
r
ate
s
the lea
k
a
ge curr
ent of bot
h stru
ctu
r
e
s
. The value
o
f
I
off
was
tak
e
n for V
g
= 0V
an
d mi
n
i
mum d
r
ai
n v
o
ltage to
sup
p
re
ss a
n
y hig
h
ele
c
tri
c
fiel
d. It ca
n b
e
seen
that the vertical st
ru
cture have lowe
r I
off
than that of lateral for all
chann
el length
by some ord
e
r
of magnitude.
The off-cu
rre
n
t incre
a
ses f
o
r de
crea
sing
chan
nel len
g
t
h, with the lateral structu
r
e
rise
s m
o
re
st
eeply in sho
r
ter ch
ann
el. This
confi
r
ms the phen
om
ena of de
cre
a
sin
g
thre
sh
old
voltage, a
s
n
o
ted b
e
fore.
Physically, i
n
sh
ort-ch
ann
el devi
c
e
s
th
e sou
r
ce a
n
d
drain
will
al
so
control of the
depletio
n ch
a
r
ge
s a
s
well
as the
gate. The
sha
r
ed charg
e
s
affect
ed by source
and
drain
will o
ccupy a
large f
r
action
of total
depl
etion
ch
arge,
an
d lat
e
r m
a
ke
a
shi
ft in V
th
when
the
gate length i
s
de
cre
a
sed.
While the tenden
cy of
Vth decrea
s
in
g
in reduced chann
el length
is
inevitable [4], the degre
e
of reductio
n
is the matter of
con
c
e
r
n, as it
will reflect
s
the immunity of
sho
r
ter chan
nel effe
ct, a
nd thu
s
pre
v
ent the d
r
a
m
atically in
creasi
ng
po
we
r
con
s
um
ptio
n,
esp
e
ci
ally in off-state re
gio
n
.
50
100
150
85
90
95
100
105
110
115
G
a
te
le
n
g
th
(
n
m
)
S
ubt
hr
es
hol
d S
w
i
ng
(
m
V
/
dec
ade
)
Ve
r
t
i
c
a
l
M
O
S
F
ET
Lat
er
al
M
O
S
F
E
T
50
10
0
15
0
10
-1
3
10
-1
2
10
-1
1
10
-1
0
10
-9
10
-8
Ga
te
le
n
g
th
(n
m
)
I
o
ff
(
A
/u
m
)
Ver
t
i
c
a
l
M
O
S
F
ET
Lat
er
al
M
O
S
F
E
T
dat
a3
dat
a4
(
a
)
(
b
)
Fig. 4 (a) Sub
t
hreshold
swi
ng (SS) of vertical an
d late
ral MOSFET for ch
ann
el le
ngth= 5
0
-1
50
nm, and (b
) the lea
k
ag
e current (I
off
) of both structu
r
e
s
(ta
k
en at V
g
=0V
)
4. CO
NCL
USIO
N
The pe
rform
ances of M
O
SFET for d
i
fferent
stru
ct
ure
s
and
ch
annel dim
e
n
s
ion
s
have b
een
demon
strated
usin
g the T
C
AD tool
s. T
he vertical
structure of MO
SFET is foun
d to have b
e
tter
perfo
rman
ce
than that of the lateral, esp
e
ci
ally for its excellent
thresh
old voltage and l
o
w
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 1
693-693
0
TELKOM
NIKA
Vol. 7, No. 3, Desem
b
e
r
2009 : 175
- 180
180
leakage
curre
n
t, by several
orde
rs of ma
gnitude.
Whil
e the subtreshold swing fo
r both structu
r
es
were fou
nd t
o
be
gre
a
ter than the
ide
a
l value
(i.e. 60 mV/de
c
a
de), the
tend
ency of ve
rti
c
al
stru
cture
sho
w
ed th
at it would give
sm
aller va
riat
ion
than that
of lateral fo
r
cha
nnel le
ngth
b
e
lo
w
100 n
m
. The
value of DIBL
for verti
c
al
structu
r
e i
s
lo
wer for chann
el
length b
e
lo
w 100 n
m
, whi
c
h
sho
w
e
d
the
ability to stan
d in hi
ghe
r d
r
ain
cu
rrent
t
han that
of la
teral. As
a
re
sult, the ve
rtical
stru
cture offers bette
r pe
rforma
nce in shorte
r
ch
ann
el. It would also redu
ce po
wer
con
s
u
m
p
t
ion
and provide
s
a good
contro
l of SCE than the late
ral, espe
cially for n
ano
scale devi
c
e
s
.
REFERE
NC
ES
[1]
A. Khakifiroo
z and D. A. Antoniadis, "MOS
FET Perform
a
n
c
e
Scaling
--P
art
I: Histori
c
al
Tren
ds,"
IEEE Trans
a
c
t
ions
on Elec
tron Dev
i
ces
,
vo
l. 55, p. 1391, 2008.
[2]
P. M. Zeitz
o
ff, "Trends
and c
h
allenges
in MOSFET
s
c
aling,"
Soli
d State Tech
nolog
y,
vol.
49, pp. 42-4
4
,
Feb 2006.
[3]
L. R. Harriott, "Limits of lithography,"
Proc
eedings
of the IEEE,
vol.
89, pp. 366-3
74, 2001.
[4]
D. J. F
r
an
k,
R. H. Denn
ar
d, E. Nowak,
P. M. Solomon, Y. Taur, an
d Ho
n-Sum
Philip Wong,
"Device
scali
ng limits
of Si MOSFETs a
nd thei
r ap
pli
c
ation
dep
en
den
cie
s
,"
Pro
c
ee
ding
s of
the IEEE,
vol. 89, pp. 259-288, 200
1.
[5]
Y. T. Hou, M. F. Li, T. Lo
w, and D. L.
Kwong, "Met
al gate wo
rk function e
ngi
neeri
ng on
gate le
akage
of MOSFET
s,"
IEEE Trans
a
c
t
ions
on Elec
tron
Dev
i
ces
,
vol.
51
, pp. 17
83
-
1789, Nov 20
04.
[6]
H. Wo
ng a
n
d
H. Iwai, "
O
n the
scali
ng issu
es
an
d high
-k re
pl
acem
ent of
ultrathin g
a
te
diele
c
trics fo
r nano
scale
M
O
S tran
si
stors,"
Microel
ect
r
oni
c Engi
ne
ering,
vol.
83,
pp. 18
67-
1904, 20
06.
[7]
P. Batude, X. Garros, L. Clavelier, C. L
e
Royer,
J. M. Hartma
nn
, V. Loup, P. Besson, L.
Vandroux, Y. Campid
elli, S. Deleonib
u
s
,
and F. Boulan
ger, "Insight
s on fundame
n
tal
mech
ani
sm
s
impactin
g
Ge
metal oxide
semi
con
d
u
c
tor
capa
cito
rs with hig
h
-k/
m
etal gate
s
t
acks
,"
Jou
r
nal of Applied
Physi
cs,
vol.
102, pp. -, Aug 1 2007.
[8]
E. Gili,
V. D. Kunz, C. H. de Groot, T. Uc
hino, P.
Ashburn, D. C. Donaghy, S. Hall,
Y.
Wan
g
, an
d P
.
L. F. Hemm
ent, "Single,
doubl
e an
d
surroun
d g
a
te
vertical
MO
SFETs
with
redu
ce
d pa
ra
sitic capa
cita
nce,"
Solid State Elec
tronics
,
vol. 48, pp. 511-5
19, 20
04.
[9]
Y. Nishi, "Scaling
Limits of Silicon
CM
OS and
Non-Silicon
Opportunities," in
F
u
ture
Trend
s
in Microele
c
tronics
, S. Luryi, J. Xu, and A. Zaslavsky,
Eds.: John
Wiley & Sons, Inc., 2007.
[10]
K. J. Kuhn, "CMOS scali
n
g beyond 3
2
n
m
: challen
g
e
s
and o
ppo
rtunities," in
Proce
edin
g
s of
the 46th Ann
ual De
sig
n
Autom
a
tion Co
nferen
ce
, Sa
n Fran
ci
sco, California, 20
09.
[11]
J. Moe
r
s, "T
urnin
g
the
world ve
rtical:
MO
SFETs
wi
th cu
rre
nt flow pe
rpe
ndi
cular to th
e
w
a
fe
r su
r
f
ac
e,"
Applied Ph
ysi
cs A: Mat
e
rial
s Sci
e
n
c
e & Pro
c
e
s
si
ng,
vol. 87, p
p
. 531
-53
7
,
2007.
[12]
M. Masaha
ra
, Y. Liu, K. Endo, T. Ma
ts
ukawa, an
d E. Suzu
ki,
"Vertical
Do
uble-Gate
MOSFET De
vice
T
e
chnol
ogy,"
Electro
n
ics a
nd
Co
mm
unication
s in
Japa
n,
vo
l. 9
1
,
pp
. 46
-
51, 2008.
[13]
T. Schulz,
W. Ro
sne
r
, L. Risch, A.
Korbel, and
U. Langma
nn, "Short-ch
annel verti
c
a
l
s
i
dewall MOSFETs
,
"
IEEE Trans
a
c
t
ions
on Elec
tron Dev
i
c
e
s
,
vol. 48, pp. 1783
-17
88,
2001.
[14]
I. Saad and
R. Ismail, "Scal
i
ng of Verti
c
al
and L
a
teral
NMOSFET i
n
Nan
o
mete
r
Regim
e
," in
Proceedi
ngs ISESCO Internati
onal Workshop
and Conference
on Nanotechnol
ogy, (I
WCN
2007
)
, Kuala
Lumpu
r, 200
7.
[15] Silvaco,
"Prod
u
ct
De
scription
s
- Virtual
Wafe
r Fab,
http://www.sil
v
aco.com/pr
o
duct
s
/d
e
s
crip
tions/de
s
cripti
on_vwf.html,
" Silvaco Int
e
rnatio
nal,
1995.
[16]
C. Lo
mba
r
di,
S. Manzi
n
i, A
.
Saporito,
an
d M. Va
nzi, "
A
physi
cally
based
mobilit
y model
for
nume
r
ical si
mulation ofn
o
nplan
ar d
e
vices,"
IEEE Transactions on Com
puter-Aided Desi
gn
of Integrated
Circuits a
nd
System
s,
vol. 7, pp. 1164-1171, 19
88.
[17]
S. A. Schwarz and S. E. Russe
k
, "Semi-empi
ri
cal eq
uation
s
for el
ectro
n
velo
city in silico
n
:
Part I—Bulk
,"
IEEE Trans
ac
tions
on Elec
tron
Dev
i
ces,
vol. 30, pp.
1629
-16
33, 1
983.
[18]
P. M. Zeitzoff, "2007 International T
e
chnol
ogy Roadmap: MOSF
ET scaling
challenges,"
Solid State Tech
nolo
g
y,
vol. 51, pp. 35-37, Feb 200
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.