T
E
L
KO
M
NI
K
A
,
V
ol
.
14,
N
o.
3,
S
ept
em
ber
20
16,
pp.
96
3~
9
73
I
S
S
N
:
1
693
-
6
930
,
ac
c
r
edi
t
ed
A
b
y
D
IK
T
I,
D
e
c
r
e
e
N
o
:
58/
D
I
K
T
I
/
K
ep/
2013
D
O
I
:
10.
12928/
T
E
LK
O
M
N
I
K
A
.
v
1
4
i
3
.
3748
96
3
R
ec
ei
v
ed
A
p
r
il 7
,
2
01
6
;
R
e
v
i
s
ed
J
une
19
,
20
1
6
;
A
c
c
e
pt
ed
Ju
l
y 5
,
201
6
H
-
INF
INIT
Y
C
o
n
tr
ol
f
or
P
i
tc
h
-
R
o
ll
A
R
.DR
O
NE
A
g
u
n
g
P
r
a
y
i
tn
o
*
1
,
V
e
r
o
n
i
c
a
I
n
d
r
a
w
a
ti
2
,
C
l
ar
k
A
r
r
o
n
3
E
l
ec
t
r
i
c
a
l
E
ng
i
ne
er
i
n
g D
epar
t
m
ent
,
U
ni
v
er
s
i
t
y
of
S
ur
abay
a (
U
B
A
Y
A
)
,
J
l
.
R
ay
a K
a
l
i
r
u
ng
k
ut
–
S
ur
ab
a
y
a 60293
,
E
as
t
J
av
a
–
I
n
don
e
s
i
a,
T
el
.
+
62
-
31
-
29
811
57
*
C
or
r
es
po
ndi
ng a
ut
hor
,
e
-
m
ai
l
:
pr
ay
i
t
no
_agu
ng@
s
t
af
f
.
ubay
a.
ac
.
i
d
1
, v
e
r
o
n
i
c
a
@
s
ta
ff.u
b
a
y
a
.a
c
.i
d
2
,
c
l
ar
k
ar
r
o
nk
e
s
i
3
19@
g
m
ai
l
.
c
om
3
A
b
st
r
act
T
hi
s
pa
per
d
es
c
r
i
b
es
t
he
d
es
i
g
n a
nd
i
m
pl
em
ent
at
i
o
n of
H
-
i
nf
i
ni
t
y
c
ont
r
ol
l
er
ap
pl
i
ed
t
o t
he
A
R
.
D
r
one t
o f
ol
l
ow
a
gi
v
en
t
r
aj
ec
t
or
y
.
T
h
e t
r
aj
e
c
t
or
y
w
i
l
l
b
e a
c
hi
e
v
e
d b
y
us
i
ng
t
w
o
c
ont
r
ol
s
i
g
nal
s
,
pi
t
c
h
and r
ol
l
.
P
i
t
c
h an
d r
ol
l
of
t
he
A
R
.
D
r
one m
odel
s
ar
e ob
t
ai
n
ed by
a
s
s
um
i
ng t
h
at
t
he t
r
an
s
f
er
f
u
nc
t
i
on o
f
i
nt
er
n
al
c
o
nt
r
ol
f
or
p
i
t
c
h
a
nd
r
o
l
l
i
s
t
he
s
ec
o
nd
or
der
s
y
s
t
em
.
T
w
o
s
c
hem
e
s
of
H
-
i
nf
i
n
i
t
y
c
on
t
r
ol
l
er
d
es
i
gne
d
f
or
p
i
t
c
h a
nd r
ol
l
.
H
-
i
nf
i
ni
t
y
c
ont
r
o
l
f
o
r
x
-
po
s
i
t
i
on
ha
s
ex
o
geno
us
i
npu
t
o
f
t
h
e x
-
r
ef
er
en
c
e,
x
r
ef
,
c
ont
r
ol
i
np
ut
of
pi
t
c
h
v
a
l
ue,
e
x
og
eno
us
ou
t
put
i
n
t
h
e
f
or
m
of
x
-
po
s
i
t
i
on
a
nd
pr
oc
es
s
out
p
ut
as
er
r
or
x
.
W
h
i
l
e
H
-
in
f
i
ni
t
y
c
ont
r
ol
f
or
y
-
pos
i
t
i
o
n
ha
s
e
x
o
genou
s
i
nput
of
y
-
r
ef
er
en
c
e,
y
r
ef
,
c
on
t
r
ol
i
np
ut
i
n
t
h
e
f
or
m
of
r
ol
l
v
a
l
ue
,
ex
og
enou
s
out
put
of
y
-
po
s
it
i
o
n
and
pr
oc
e
s
s
o
ut
put
a
s
er
r
or
y
.
T
he
r
e
s
ul
t
s
of
s
i
m
ul
at
i
on
an
d
i
m
pl
em
ent
at
i
on
s
h
ow
t
hat
dr
o
n
e c
a
n f
ol
l
ow
m
ul
t
i
pl
e r
ef
er
en
c
e
s
of
t
r
aj
e
c
t
or
i
es
gi
v
en.
Ke
y
w
o
rd
s
:
A
R.
Dr
o
n
e
c
on
t
r
ol
,
H
-
i
nf
i
n
i
t
y
c
on
t
r
ol
l
er
,
pi
t
c
h c
ont
r
ol
,
r
o
l
l
c
ont
r
ol
C
o
p
y
r
i
g
h
t
©
20
16
U
n
i
ver
si
t
a
s A
h
mad
D
ah
l
an
.
A
l
l
r
i
g
h
t
s r
eser
ved
.
1
.
I
n
tr
o
d
u
c
ti
o
n
V
ar
i
ous
app
l
i
c
at
i
ons
of
U
nm
anned A
er
i
al
V
eh
i
c
l
e (
U
A
V
)
ha
v
e bee
n
w
i
de
l
y
us
e
d t
oda
y
f
or
new
s
r
epor
t
i
ng
,
d
i
s
as
t
er
m
i
s
s
i
ons
,
ex
ped
i
t
i
ons
,
v
i
deo
gr
aph
y
f
or
t
o
ur
i
s
m
,
bus
i
nes
s
es
a
nd
ot
her
s
.
U
A
V
s
ar
e
m
os
t
l
y
s
t
i
l
l
c
ont
r
o
l
l
ed b
y
hum
ans
f
r
om
t
he gr
ound s
t
at
i
on.
T
he ex
i
s
t
enc
e of
aut
o
nom
ous
f
l
i
ght
f
eat
ur
e
w
i
l
l
be
v
er
y
hel
pf
ul
w
he
n
t
er
r
ai
n a
nd e
nv
i
r
onm
ent
r
es
t
r
i
c
t
hum
an
m
ov
e
m
ent
.
T
hi
s
paper
pr
es
ent
s
t
he de
v
el
opm
ent
of
an aut
om
at
ed a
l
gor
i
t
hm
s
c
hem
e on one
t
yp
e of
U
A
V
,
t
he
A
R
.
D
r
o
ne
quadr
ot
or
.
A
R
.
D
r
o
ne h
as
bec
om
e one of
t
he r
es
e
ar
c
h pl
at
f
or
m
s
t
hat
ar
e
w
i
de
l
y
us
ed b
y
r
es
ear
c
her
s
,
es
pec
i
a
l
l
y
f
or
t
hos
e
w
ho
f
oc
us
on
t
h
e
de
v
el
opm
ent
of
al
gor
i
t
h
m
s
.
A
l
gor
i
t
hm
dev
el
opm
ent
w
i
t
h
A
R
.
D
r
o
ne pl
at
f
or
m
i
s
f
as
t
er
bec
aus
e A
R
.
D
r
o
n
e
i
s
equ
i
pp
e
d w
i
t
h s
e
v
er
a
l
s
ens
or
s
:
3
ax
i
s
g
y
r
os
c
op
e,
3
ax
i
s
ac
c
e
l
er
om
et
er
,
a
s
onar
al
t
i
m
et
er
,
an
d
t
he f
r
o
nt
a
nd
bot
t
om
c
a
m
er
as
.
A
R
.
D
r
on
e i
s
a
l
s
o eq
ui
p
ped
w
i
t
h a
n on
boa
r
d c
om
put
er
t
hat
c
an
be
us
ed f
or
bas
i
c
c
ont
r
ol
s
,
s
uc
h
as
:
v
er
t
i
c
al
t
ak
e of
f
l
and
i
n
g,
ho
v
er
i
ng,
f
or
w
ar
d
-
r
ev
er
s
e,
r
i
ght
an
d l
e
f
t
m
an
eu
v
er
in
g
b
y
g
i
v
i
n
g
a
v
a
l
u
e
bet
w
ee
n
-
1
t
o
1
on
t
h
e
p
i
t
c
h,
r
o
l
l
,
y
a
w
r
at
e,
a
nd
v
er
t
i
c
al
r
at
e
i
np
ut
.
P
r
o
v
i
di
ng
a
pos
i
t
i
v
e pi
t
c
h
v
al
ue (
+
)
m
eans
or
der
i
ng t
he dr
on
e t
o f
l
y
bac
k
w
ar
d
w
hi
l
e a n
egat
i
v
e
pi
t
c
h v
al
ue (
-
)
m
eans
or
der
i
ng
t
h
e
dr
on
e
t
o
f
l
y
f
or
w
ar
d
.
P
os
i
t
i
v
e
r
o
l
l
v
a
l
ue
(
+
)
m
eans
or
der
i
ng
t
he
dr
on
e
t
o
f
l
y
r
i
ght
s
i
d
e
w
ar
d,
a
nd
l
ef
t
s
i
d
e
w
ar
d
f
or
negat
i
v
e
r
o
l
l
v
al
ue
(
-
)
.
T
o
pi
v
ot
c
l
oc
k
w
i
s
e
m
ot
i
on,
pos
i
t
i
v
e
y
a
w
r
at
e
v
al
ue
m
us
t
be
gi
v
en
t
o
t
he
dr
o
ne
and
neg
at
i
v
e
(
-
)
f
or
t
he
opp
os
i
t
e
m
ot
i
on.
P
os
i
t
i
v
e
(
+
)
v
er
t
i
c
a
l
r
at
e v
al
ue i
s
gi
v
e
n t
o t
he dr
one t
o m
aneuv
er
v
er
t
i
c
a
l
l
y
up
w
ar
d and n
egat
i
v
e (
-
) f
o
r
r
ev
er
s
e m
aneuv
er
.
R
a
nge
v
a
l
ues
-
1 and 1 ar
e pr
op
ot
i
ona
l
t
o t
he m
i
ni
m
u
m
and
m
ax
i
m
u
m
r
ange
of
t
he
ac
t
ua
l
v
al
ue
of
eac
h
i
np
ut
t
h
at
i
s
s
e
t
on
t
h
e
c
onf
i
gur
at
i
o
n
of
i
t
s
i
n
ner
b
oar
d.
T
hr
ough
W
i
-
f
i
c
o
m
m
uni
c
at
i
on
,
c
ont
r
o
l
c
om
m
and
c
an
be s
ent
f
r
om
a
P
C
i
n
t
he
gr
ou
nd
s
y
s
t
em
t
o
t
he
i
nn
er
boar
d
of
t
h
e
A
R
.
D
r
o
n
e an
d
v
i
c
e
v
er
s
a
i
nn
er
boa
r
d c
an s
e
nd
na
v
i
gat
i
on
d
a
t
a t
o
t
h
e
P
C
.
N
av
i
ga
t
i
o
n
d
at
a
t
hat
c
an
b
e
t
a
k
en
i
nc
l
ud
e
ac
t
u
al
r
o
l
l
v
a
l
ue,
s
i
de
w
ar
d
s
p
eed,
ac
t
ual
pi
t
c
h
v
al
u
e,
f
or
w
ar
d
s
pe
ed,
ac
t
ua
l
y
a
w
r
at
e v
a
l
ue,
y
a
w
v
al
ue,
v
er
t
i
c
al
r
at
e
v
al
ue and al
t
i
t
u
de v
a
l
ue
.
Man
y
r
es
e
ar
c
her
s
ha
v
e
b
een c
o
nd
uc
t
i
n
g r
es
ear
c
h
us
i
ng
t
he
A
R
.
D
r
on
e.
P
i
e
rre
-
J
ean
B
r
is
t
e
a
u
,
e
t
a
l.
,
[
1
]
des
c
r
i
be
i
n
det
ai
l
t
h
e t
ec
hno
l
o
g
y
us
e
d
i
n
bot
h h
ar
d
w
ar
e
and
s
of
t
w
ar
e
A
R
.
D
r
o
ne
i
nc
l
u
di
ng
t
he
h
ar
d
w
ar
e
des
c
r
i
pt
i
on,
v
i
s
i
o
n
al
gor
i
t
hm
,
s
ens
or
c
al
i
br
at
i
o
n,
a
l
t
i
t
ud
e
es
t
i
m
at
i
on,
v
el
oc
i
t
y
es
t
i
m
at
i
o
n,
an
d
c
ont
r
ol
ar
c
hi
t
ec
t
ur
e.
K
r
aj
ni
k
,
et
al
.
,
[2
]
us
ed
t
he
m
eas
ur
e
m
ent
dat
a
t
o
m
odel
t
he
i
nt
er
n
al
c
ont
r
o
l
of
t
h
e A
R
.
D
r
on
e
i
nt
o f
our
m
odel
s
:
pi
t
c
h,
r
ol
l
,
y
a
w
r
a
t
e
a
nd
v
er
t
i
c
al
r
at
e.
Mi
c
ha
el
Mog
ens
on
[
3]
m
ak
es
t
he
A
R
.
D
r
o
ne
L
ab
V
I
E
W
t
ool
k
i
t
w
h
i
c
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
9
63
–
97
3
964
gener
al
l
y
c
o
ns
i
s
t
s
of
t
he m
ai
n
V
I
t
o ha
nd
l
e b
as
i
c
c
ont
r
ol
v
er
t
i
c
a
l
t
ak
e of
f
l
andi
ng
a
nd f
l
y
f
or
w
ar
d
-
r
ev
er
s
e,
r
i
ght
a
nd
l
ef
t
m
an
eu
ve
r
.
N
a
v
D
a
t
a
V
I
t
r
an
s
m
i
t
s
nav
i
gat
i
o
n
d
at
a
t
o
P
C
.
V
i
deo
V
I
t
r
ans
m
i
t
s
s
t
r
ea
m
i
ng
v
i
d
eo
f
r
o
m
t
w
o c
am
er
as
t
o
dr
on
e as
w
el
l
as
s
om
e s
uppor
t
i
ng
V
I
.
Man
y
c
ont
r
ol
s
c
hem
es
hav
e
be
e
n
de
v
e
l
op
ed
b
y
r
es
e
ar
c
her
s
.
E
m
ad
A
bbas
i
,
et
al
.
,
[
4
]
s
i
m
ul
at
ed
t
w
o
c
ont
r
ol
s
c
hem
es
,
P
I
D
c
o
nt
r
ol
l
er
a
nd
f
u
z
z
y
P
I
D
,
t
o
c
ont
r
ol
t
he
he
i
gh
t
of
t
h
e qu
adr
ot
or
i
n
t
ur
bul
enc
e
s
i
t
uat
i
o
n.
S
ant
o
s
,
et
al
.
,
[
5
]
pr
opos
e
d
f
u
z
z
y
l
ogi
c
t
o
c
ont
r
o
l
e
ac
h of
t
he f
our
r
ot
or
s
us
i
ng
t
he
he
i
g
ht
,
r
o
l
l
,
p
i
t
c
h an
d
y
a
w
v
al
ue
as
i
n
put
s
.
S
ar
a
h
Y
i
f
ang
[
6
]
ap
pl
i
e
d s
om
e c
ont
r
ol
al
g
or
i
t
hm
s
uc
h as
P
I
D
c
o
nt
r
ol
l
er
,
w
a
y
p
oi
nt
na
v
i
gat
i
on,
t
r
aj
ec
t
or
y
t
r
ac
k
i
ng
an
d
v
is
io
n
-
b
as
ed
c
ont
r
ol
l
er
f
or
a
v
ar
i
et
y
of
f
l
i
ght
f
or
m
at
i
on
.
R
ab
ah A
b
bas
,
e
t
a
l.
,
[
7
]
i
m
pl
em
ent
ed t
h
e
l
ea
der
-
f
ol
l
o
w
er
s
c
he
m
e us
i
ng P
I
D
c
ont
r
ol
l
er
and d
i
r
ec
t
e
d L
y
a
pun
ov
c
on
t
r
ol
l
er
at
f
or
m
at
i
on t
r
ac
k
i
ng
quadr
ot
or
.
A
gu
ng
,
e
t.a
l
.
,
[
8]
i
m
pl
em
ent
ed
t
he
al
gor
i
t
h
m
f
uz
z
y
l
og
i
c
c
ont
r
o
l
l
er
on
t
he
A
R
.
D
r
o
ne
b
y
c
ont
r
o
l
l
i
n
g t
he
v
a
l
ue o
f
pi
t
c
h and
y
a
w
r
at
e
.
T
hi
s
al
gor
i
t
hm
i
s
s
uc
c
es
s
f
ul
l
y
app
l
i
e
d t
o t
h
e
A
R
.
D
r
o
ne
t
o t
he
c
as
e of
m
ul
t
i
pl
e
t
r
aj
ec
t
or
i
es
t
r
ac
k
i
ng i
n t
he x
-
y
g
i
v
en.
V
er
on
i
c
a
,
et
al
.
,
[
9]
s
uc
c
es
s
f
ul
l
y
i
m
pl
em
ent
ed
f
u
z
z
y
l
o
gi
c
c
on
t
r
ol
l
er
o
n
dr
o
nes
f
or
w
a
y
p
oi
nt
n
av
i
g
at
i
on
i
n
t
he
f
i
e
l
d
of
x
-
y
-
z
.
S
om
e f
uz
z
y
l
o
gi
c
c
ont
r
ol
s
c
hem
es
w
er
e t
es
t
e
d i
n
t
h
i
s
r
es
ear
c
h us
i
ng a
c
ont
r
ol
s
i
gn
al
pi
t
c
h,
r
o
l
l
,
a
nd
v
er
t
i
c
al
r
a
t
e
.
V
er
o
ni
c
a
al
s
o
c
om
par
ed
t
hi
s
m
et
hod
w
i
t
h
c
o
nt
r
ol
s
c
hem
e
us
ed
b
y
A
gu
ng [
10
].
P
r
ob
l
em
s
ex
per
i
enc
ed
b
y
[
8
-
1
0]
i
s
w
h
en
t
he
dr
one
i
m
pr
ov
e
t
h
e
p
os
i
t
i
on
x
w
i
t
h
a
p
i
t
c
h
r
es
ul
t
ed
i
n a
w
or
s
eni
ng of
t
he pos
i
t
i
o
n
y
,
a
nd
v
i
c
e
v
er
s
a.
I
n t
hi
s
pa
per
,
H
-
i
nf
i
ni
t
y
c
ont
r
ol
s
c
hem
e
w
i
l
l
be
i
m
pl
em
ent
ed
on
t
h
e
A
R
.
dr
o
ne
t
o
f
ol
l
o
w
a
pr
ed
et
er
m
i
ned
r
ef
er
enc
e
i
n
t
he
f
i
el
d
of
x
-
y.
B
y
us
i
ng
t
h
i
s
s
c
hem
e
i
s
ex
pec
t
ed
t
o
obt
ai
n
t
he
b
e
s
t
c
om
pr
o
m
i
s
e
bet
w
ee
n
x
and
y
pos
i
t
i
o
n
of
t
he
dr
one.
T
he
m
ai
n
c
ont
r
i
but
i
on
of
t
h
i
s
pa
per
i
s
t
o
s
ho
w
t
hat
t
he
H
-
i
nf
i
ni
t
y
c
o
nt
r
ol
s
c
hem
e
c
an
be
us
ed t
o
c
ont
r
o
l
t
h
e p
os
i
t
i
on
of
t
he A
R
.
D
r
on
e qu
adr
ot
or
.
S
t
ud
y
l
i
t
er
at
ur
e of
H
-
i
nf
i
n
i
t
y
c
o
nt
r
ol
s
c
hem
e i
s
obt
ai
n
ed
f
r
om
s
o
m
e r
es
ear
c
her
s
.
K
r
uc
z
ek
,
et
al
.,
[
11
]
i
m
pl
e
m
ent
ed t
he H
-
i
nf
i
n
i
t
y
c
ont
r
ol
t
o t
he ac
t
i
v
e s
us
pens
i
o
n us
i
n
g l
i
near
el
ec
t
r
i
c
m
ot
or
.
T
he r
es
ul
t
s
ho
w
ed b
et
t
er
r
es
ul
t
s
t
han
t
he pas
s
i
v
e s
us
pens
i
on.
G
ui
l
her
m
e et
.
al
c
o
m
bi
ne
d
pr
e
di
c
t
i
v
e
i
nt
e
gr
al
m
et
hod
ol
o
g
y
t
o
ha
nd
l
e
t
he
r
ef
er
enc
e
t
r
aj
ec
t
or
y
and non
l
i
ne
ar
H
in
f
in
it
y
c
o
n
t
r
o
l
to
s
t
a
b
i
liz
e
t
he
r
o
t
at
i
on
al
m
ov
em
ent
o
f
quadr
ot
or
.
T
he
y
a
l
s
o
us
e
a
no
nl
i
ne
ar
H
-
i
nf
i
ni
t
y
c
o
nt
r
o
l
s
c
hem
e
on
qua
dr
ot
or
h
el
i
c
opt
er
t
ha
t
has
be
en
m
odi
f
i
ed
i
n
or
der
t
o
obt
a
i
n
c
oupl
i
ng
bet
w
een
l
on
g
i
t
ud
i
nal
a
nd
l
at
er
a
l
m
ov
em
ent
w
i
t
h
t
h
e
r
ol
l
an
d
pi
t
c
h
m
ot
i
ons
t
o
f
ol
l
o
w
a
gi
v
en
r
ef
er
enc
e
p
at
h
[
1
2,
1
3]
.
K
e
i
t
a
Mor
i
,
et
al
.,
[
14]
u
s
i
ng
s
t
an
dar
d
H
-
I
nf
i
n
i
t
y
c
o
nt
r
ol
t
o
r
e
duc
e
di
s
t
ur
ba
nc
e
s
e
ns
i
t
i
v
i
t
y
of
t
he
qua
d
-
r
ot
or
h
el
i
c
opt
er
.
T
he
y
c
ont
r
o
l
b
ot
h
t
he
p
o
s
i
t
i
o
n
a
nd
t
he
al
t
i
t
ud
e of
t
he qua
dr
ot
or
m
ode
l
us
i
n
g a ne
w
i
npu
t
-
out
put
l
i
ne
ar
i
z
at
i
on m
et
hod.
T
aes
am
K
ang
,
et
al
.,
[
1
5]
des
i
gn
ed
a
r
ob
us
t
H
-
I
nf
i
ni
t
y
at
t
i
t
u
de
c
ont
r
o
l
l
er
of
l
i
near
m
odel
s
qua
dr
ot
or
obt
a
i
ne
d
f
r
o
m
t
he es
t
i
m
at
ed i
n
put
–
o
ut
pu
t
dat
a us
i
ng
P
r
ed
i
c
t
i
o
n E
r
r
o
r
Mi
n
i
m
at
i
on.
Met
h
odo
l
o
g
y
of
w
r
i
t
i
n
g
t
hi
s
paper
has
bee
n
pr
ec
ede
d
b
y
a
s
um
m
ar
y
of
t
he
aut
h
or
s
on
t
he
v
ar
i
ous
r
es
e
ar
c
hs
t
hat
hav
e b
een
do
ne
i
n
t
he
f
i
el
d
of
t
he
A
R
.
D
r
o
ne.
N
ex
t
w
i
l
l
be ex
p
l
a
i
ne
d a
r
es
ear
c
h
m
et
hod
t
hat
i
s
di
v
i
ded
i
nt
o
f
our
s
ec
t
i
o
ns
w
h
i
c
h
i
nc
l
u
de:
(
1)
t
he
au
gm
e
nt
ed
p
l
an
t
t
hat
ex
pl
a
i
ns
t
h
e H
-
i
nf
i
ni
t
y
s
c
he
m
e
t
o be
ap
pl
i
ed;
(2
) p
i
t
c
h
m
odel
t
hat
ex
pl
ai
n h
o
w
t
o
get
t
he pi
t
c
h
m
odel
;
(
3)
r
ol
l
m
odel
t
hat
des
c
r
i
bes
r
o
l
l
m
odel
of
d
r
one;
(
4)
K
v
a
l
u
e t
h
at
i
s
c
al
c
ul
a
t
ed
an
d
s
i
m
ul
at
i
on t
h
at
ex
p
l
ai
ns
ho
w
t
o
des
i
g
n a c
ont
r
o
l
l
er
.
A
t
t
he en
d of
t
hi
s
paper
w
i
l
l
be
pr
es
ent
ed t
he
r
es
ul
t
of
i
m
pl
em
ent
at
i
o
n i
n
a gr
ap
h
t
h
e
n
w
il
l b
e
a
nal
y
z
ed a
nd s
um
m
ar
i
z
ed
.
2.
R
e
sea
r
ch
M
et
h
o
d
2.
1.
T
h
e
A
u
g
m
en
t
ed
P
l
an
t
T
o des
i
gn t
h
e
H
-
i
nf
i
ni
t
y
c
o
nt
r
ol
l
er
,
t
h
e A
R
.
D
r
on
e c
ont
r
ol
bl
oc
k
m
us
t
be c
onv
er
t
e
d i
nt
o
augm
ent
ed pl
ant
.
T
he
au
g
m
ent
ed pl
ant
us
es
t
w
o H
-
i
n
f
i
ni
t
y
c
ont
r
o
l
s
c
hem
e
s
t
o c
o
nt
r
ol
x
-
pos
i
t
i
on
and
y
-
pos
i
t
i
on
of
t
he
A
R
.
D
r
one s
e
par
at
el
y
.
T
he d
es
i
g
n
of
t
he H
-
i
nf
i
ni
t
y
c
o
nt
r
o
l
f
or
x
-
pos
i
t
i
o
n h
as
ex
ogen
ous
i
np
ut
of
t
he
x
-
r
ef
er
enc
e,
x
r
e
f
,
a
nd
m
eas
ur
em
ent
di
s
t
ur
ba
nc
e,
f
x
,
c
ont
r
ol
i
n
put
of
pi
t
c
h
v
a
l
ue,
ex
o
ge
nous
out
put
i
n
t
he f
or
m
of
x
-
pos
i
t
i
o
n and
pr
oc
es
s
out
put
as
er
r
or
x
.
W
hi
l
e H
-
in
f
in
it
y
c
ont
r
ol
f
or
y
-
pos
i
t
i
o
n has
ex
ogen
ous
i
n
put
of
y
-
r
ef
er
enc
e,
y
r
e
f
,
and m
eas
ur
em
ent
di
s
t
ur
banc
e,
f
y
,
c
ont
r
ol
i
n
put
i
n t
he
f
or
m
of
r
ol
l
v
al
u
e,
ex
oge
nous
out
p
ut
of
y
-
pos
i
t
i
o
n a
nd pr
oc
es
s
out
put
as
er
r
or
y
.
I
n
t
h
i
s
r
es
ear
c
h,
i
t
i
s
as
s
um
ed
t
hat
t
he
m
eas
ur
em
e
nt
d
i
s
t
ur
ba
nc
e
o
n
t
h
e
p
i
t
c
h
and
r
o
l
l
m
odel
i
s
z
er
o
w
h
i
l
e
w
e
i
g
ht
i
ng f
i
l
t
er
and
s
hap
i
ng
f
i
l
t
er
i
s
a c
o
ns
t
ant
1.
T
he a
ugm
ent
ed
pl
a
nt
i
s
s
how
n
i
n
F
ig
ur
e
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KO
M
NI
K
A
I
S
S
N
:
1
693
-
6
930
H
-
IN
F
IN
IT
Y
C
o
n
tr
o
l
f
o
r
P
i
tc
h
-
Ro
l
l
A
R.
DRO
N
E
(
A
gun
g P
r
ay
i
t
n
o
)
965
F
i
gur
e 1.
T
he a
u
gm
ent
ed
p
l
ant
H
-
in
f
in
it
y
c
o
n
t
r
o
l
of
A
R
.
D
r
one
2.
2.
Pi
t
c
h
M
o
d
e
l
T
he nex
t
s
t
ep
f
or
t
he i
m
pl
em
ent
at
i
on of
H
-
i
nf
i
ni
t
y
c
o
nt
r
ol
l
er
on
t
he
A
R
.
D
r
o
ne i
s
t
o get
t
he m
at
hem
at
i
c
al
m
odel
of
t
he A
R
.
D
r
on
e.
T
he f
l
y
i
n
g
m
aneuv
er
s
of
t
he A
R
.
D
r
o
ne i
n
t
he x
-
y
pl
a
ne c
a
n b
e d
on
e b
y
pr
ov
i
di
n
g c
ont
r
ol
s
i
gn
al
s
t
o t
he
pi
t
c
h
and
r
ol
l
.
H
enc
e
t
h
e m
ode
l
of
i
nt
er
n
a
l
c
ont
r
ol
pi
t
c
h
an
d r
ol
l
s
ho
ul
d
be k
no
w
n t
o des
i
gn
t
he c
o
nt
r
ol
l
er
T
he
m
odel
of
i
nt
er
nal
c
o
nt
r
ol
p
i
t
c
h
and
r
o
l
l
of
t
he
A
R
.
D
r
on
e
w
as
appr
oac
h
ed
b
y
as
s
u
m
i
ng t
h
at
t
h
e t
r
a
ns
f
er
f
unc
t
i
on
of
i
nt
er
n
al
c
o
nt
r
o
l
l
er
i
s
a s
ec
on
d or
d
er
s
y
s
t
em
,
as
S
ar
ah
Y
i
f
ang [
9
]
has
do
ne,
w
her
e
t
he g
ener
al
f
or
m
i
s
as
f
ol
l
ow
s
:
2
2
2
2
)
(
)
(
)
(
o
o
o
d
es
s
s
k
s
s
s
G
ω
ς
ω
ω
θ
θ
+
+
=
=
(
1
)
k
,
o
ω
,
an
d
ς
par
am
et
er
s
c
an be
f
ound b
y
i
de
nt
i
f
y
i
ng
t
he
c
h
ar
ac
t
er
i
s
t
i
c
of
t
r
ans
i
en
t
r
es
pons
e
and s
t
e
ad
y
s
t
at
e
s
ec
o
nd
o
r
der
s
y
s
t
em
t
hat
i
nc
l
udes
ov
er
s
ho
ot
,
r
i
s
e
t
i
m
e,
s
t
ead
y
s
t
at
e
v
a
l
u
e.
T
he equat
i
o
n us
ed
t
o
obt
a
i
n t
he
pr
of
i
c
i
e
nc
y
p
ar
am
et
er
s
i
s
as
f
ol
l
o
w
s
:
O
v
er
s
hoot
=
%
100
2
1
x
e
M
p
ς
πς
−
−
=
(
2)
R
is
e
t
im
e
=
φ
ω
φ
t
an
1
e
t
o
p
≈
p
o
t
e
φ
ω
φ
tan
=
(
3
)
D
C
ga
i
n
=
v
al
ue
i
nput
v
al
ue
ss
k
o
G
_
_
)
(
=
=
(
4
)
D
at
a f
or
m
odel
i
n
g p
i
t
c
h
and
r
ol
l
obt
ai
ned
b
y
ex
per
i
m
ent
al
pr
oc
edur
e
i
s
as
f
ol
l
o
w
s
:
P
it
c
h
:
g
i
v
e t
h
e des
i
r
e
d s
et
poi
nt
p
i
t
c
h (
eg.
–
0.
1 e
qua
l
w
i
t
h
-
1
o
)
an
d t
ak
e of
f
t
he dr
on
e
w
i
t
h
ho
v
er
-
o
n m
ode.
A
f
t
er
t
he
A
R
.
D
r
o
ne
al
t
i
t
u
de
i
s
s
t
e
ad
y
at
1 m
et
r
e,
s
w
i
t
c
h of
f
hov
er
m
enu s
o
t
hat
t
he
dr
ones
w
i
l
l
m
ov
e
a
head
w
i
t
h
a
par
t
i
c
ul
ar
pi
t
c
h
ang
l
e f
or
a f
e
w
s
ec
o
nds
.
T
hen s
w
i
t
c
h o
n
hov
er
an
d
l
an
d
t
he
dr
one.
T
he
dat
a
r
ec
or
ded
dur
i
ng
t
he
f
l
i
ght
ar
e
p
i
t
c
h
s
e
t
p
oi
nt
(
i
n
r
an
ge
of
-
1
t
o 1)
,
t
h
e m
eas
ur
ed
pi
t
c
h
(
θ
)
[
i
n
d
egr
ees
]
,
f
or
w
ar
d
s
peed
(
)
[m
/
s
],
and
es
t
i
m
at
ed x
-
pos
i
t
i
o
n
[
m
et
r
e]
R
ol
l
:
gi
v
e t
h
e des
i
r
e
d s
et
p
oi
nt
r
o
l
l
(
eg.
0
.
1 eq
ual
t
o
1
o
)
and t
ak
e of
f
t
he dr
one
w
i
t
h hov
er
m
ode
on.
A
f
t
er
t
h
e
A
R
.
D
r
o
ne
al
t
i
t
u
de
i
s
s
t
e
ad
y
a
t
1
m
et
r
e,
s
w
i
t
c
h
of
f
hov
er
m
enu
s
o
t
h
at
t
he
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
9
63
–
97
3
966
dr
ones
w
i
l
l
m
ov
e
s
i
d
e
w
a
y
s
w
i
t
h
a
p
ar
t
i
c
u
l
ar
r
o
l
l
a
ngl
e
f
or
a
f
e
w
s
ec
o
nd.
T
hen
s
w
i
t
c
h
on
ho
v
er
and
l
a
nd
t
he
dr
one
.
T
he
d
at
as
r
ec
or
de
d
d
ur
i
n
g
t
h
e
f
l
i
ght
ar
e
r
o
l
l
s
et
po
i
nt
(
i
n
r
a
nge
of
-
1
t
o
1)
,
t
he m
eas
ur
ed r
ol
l
(
θ
)
[
i
n d
eg
r
ees
]
,
s
i
de
w
ar
d s
p
eed
(
)
[m
/
s
],
and es
t
i
m
at
ed y
-
pos
i
t
i
on
[
m
et
r
e]
.
T
hi
s
s
ec
t
i
on
w
i
l
l
ex
pl
a
i
n
t
h
e s
t
eps
t
o g
et
t
he
pi
t
c
h
m
ode
l
a
nd t
he s
t
at
e s
p
ac
e
of
t
he
augm
ent
ed p
l
an
t
f
or
p
it
c
h
c
ont
r
ol
s
c
hem
e.
H
-
i
nf
i
n
i
t
y
c
o
nt
r
ol
s
c
hem
e t
o r
ol
l
h
av
e t
h
e s
am
e s
t
eps
and
w
i
l
l
d
i
s
pl
a
y
t
h
e r
es
ul
t
s
l
at
er
.
F
r
o
m
t
he ex
per
i
m
ent
al
r
es
ul
t
of
t
he s
t
ep r
es
po
n
s
e
pi
t
c
h
w
i
t
h
a ne
gat
i
v
e
v
a
l
ue,
A
R
.
D
r
o
ne
pr
o
v
i
d
es
a
r
es
p
ons
e
as
s
ho
w
n
i
n F
i
g
ur
e
2
.
T
he r
es
p
ons
e
w
as
a
pp
r
oac
hed
w
i
t
h
s
ec
ond
or
der
or
d
er
s
y
s
t
em
s
and
c
an
be
c
a
l
c
ul
at
ed
t
r
ans
i
e
nt
r
es
pons
e
s
p
ec
i
f
i
c
at
i
ons
,
c
o
v
er
i
ng
%
O
S
,
p
eak
t
i
m
e,
s
t
ead
y
s
t
at
e
a
nd
D
C
ga
i
n.
•
%
O
S
=
55.
146
3%
•
P
eak
t
i
m
e =
0.
6
s
•
S
t
ea
d
y
s
t
at
e
=
-
1
.
96
14
o
•
1862
.
0
=
ς
•
3265
.
5
=
n
ω
•
k
=
1.
961
4
F
i
gur
e
2.
S
t
e
p r
es
po
ns
e of
pi
t
c
h
T
her
ef
or
e,
t
he t
r
ans
f
er
f
unc
t
i
on
of
pi
t
c
h m
odel
ac
c
or
di
n
g t
o t
he
equ
at
i
on (
1)
i
s
:
37
.
28
984
.
1
65
.
55
2
)
(
)
(
2
2
2
2
+
+
=
+
+
=
s
s
s
s
k
s
s
n
n
n
d
es
ω
ζω
ω
θ
θ
(
5)
R
epr
es
en
t
at
i
on
of
equa
t
i
o
n
(
5
)
i
n
a c
ont
i
nu
ous
-
t
i
m
e s
t
at
e s
pac
e
i
s
:
d
es
θ
θ
θ
θ
θ
+
−
−
=
65
.
55
0
984
.
1
37
.
28
1
0
(
6)
[
]
=
θ
θ
0
1
y
(
7)
R
epr
es
en
t
at
i
on i
n t
he di
s
c
r
et
e
-
t
i
m
e s
t
at
e s
pac
e
w
i
t
h 0.
2s
s
am
pl
i
ng t
i
m
e i
s
:
d
es
t
t
θ
θ
θ
θ
θ
+
−
=
+
55
.
7
8925
.
0
2758
.
0
849
.
3
1357
.
0
545
.
0
1
(
8)
[
]
t
y
=
θ
θ
0
1
(
9)
A
f
t
er
get
t
i
ng
s
t
at
e s
p
ac
e p
i
t
c
h,
s
t
at
e s
p
ac
e of
f
or
w
ar
d
v
el
oc
i
t
y
,
w
i
l
l
be c
a
l
c
ul
at
e
d
1
1
+
+
+
=
t
t
t
f
c
u
u
e
d
b
a
u
u
θ
(
10)
0
1
2
3
4
5
-3
.
5
-3
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
R
es
pons
e of
P
i
t
c
h
P
i
t
c
h [
degr
ee]
T
i
m
e [
s
ec
onds
]
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KO
M
NI
K
A
I
S
S
N
:
1
693
-
6
930
H
-
IN
F
IN
IT
Y
C
o
n
tr
o
l
f
o
r
P
i
tc
h
-
Ro
l
l
A
R.
DRO
N
E
(
A
gun
g P
r
ay
i
t
n
o
)
967
[
]
t
u
u
y
=
1
1
(
11)
V
al
ue
of
,
,
,
,
a
nd
ar
e
c
al
c
u
l
at
e
d b
y
l
eas
t
s
quar
e
es
t
i
m
at
i
on (
1
2
)
and
(
1
3
)
bas
ed
o
n d
at
a
obt
a
i
ne
d f
r
om
t
he ex
per
i
m
ent
A
R
.
D
r
on
e.
1
=
(
)
−
1
1
(
12
)
2
=
(
)
−
1
2
(
13
)
1
=
+
1
⋮
+
1
+
(
14
)
2
=
̇
+
1
⋮
̇
+
1
+
(
15
)
=
̇
+
1
⋮
⋮
⋮
+
̇
+
+
1
+
(
16
)
W
h
er
e
:
f
or
w
ar
d v
e
l
oc
i
t
y
(
m
et
r
e/
s
ec
ond)
̇
:
f
or
w
ar
d ac
c
el
er
a
t
i
o
n
(
m
et
r
e/
s
ec
ond
2
)
:
a
c
t
u
a
l p
it
c
h
(
de
gr
ee)
R
es
ul
t
s
of
t
h
e l
eas
t
s
qu
ar
e
es
t
i
m
at
i
on o
bt
a
i
ne
d s
t
at
e s
pac
e ar
e
as
f
o
l
l
o
ws
:
1
1
1499
.
0
0197
.
0
3052
.
0
4639
.
0
1142
.
0
9397
.
0
+
+
−
−
+
−
=
t
t
t
u
u
u
u
θ
(
17)
[
]
t
u
u
y
=
1
1
(
18)
F
ur
t
her
m
or
e,
i
t
i
s
k
no
w
n a
l
s
o equ
at
i
on f
or
x
-
pos
i
t
i
on
a
nd er
r
or
x
bas
e
d o
n d
at
a f
r
om
t
he
A
R
.
D
r
o
ne.
t
u
x
x
t
t
t
∆
+
=
+
1
(
19)
t
r
ef
x
x
e
rro
rx
−
=
(
20)
N
ex
t
,
t
he
e
qu
at
i
on
8
,
9
,
17
,
18
,
19
,
an
d
20
w
i
l
l
be
c
o
m
bi
ned
t
o
f
or
m
a
s
t
at
e
s
pac
e
t
ha
t
r
epr
es
ent
s
t
h
e p
i
t
c
h
A
R
.
D
r
one s
y
s
t
em
i
nt
o t
h
e e
quat
i
o
ns
(
2
1
)
an
d (
2
2
).
d
es
x
r
ef
t
t
f
x
e
rro
rx
x
u
u
e
rro
rx
x
u
u
θ
θ
θ
θ
θ
−
−
+
+
−
−
−
−
−
−
−
−
=
+
0
0
1338
.
0
0176
.
0
55
.
7
8925
.
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
2
.
0
0
0
0
1
0
2
.
0
0
0
0
0
3052
.
0
4639
.
0
0203
.
0
0817
.
0
0
0
1142
.
0
9397
.
0
0027
.
0
0107
.
0
0
0
0
0
2758
.
0
849
.
3
0
0
0
0
1357
.
0
545
.
0
1
(
21)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
9
63
–
97
3
968
d
es
x
r
ef
t
f
x
e
rro
rx
x
u
u
y
θ
θ
θ
+
+
=
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
(
22)
A
nd
t
he
n i
t
i
s
c
on
v
er
t
ed b
a
c
k
i
nt
o
c
on
t
i
n
uous
-
t
i
m
e s
t
at
e s
pac
e f
or
m
.
⎣
⎢
⎢
⎢
⎢
⎡
̇
̈
̇
̈
̇
̇
⎦
⎥
⎥
⎥
⎥
⎤
=
⎣
⎢
⎢
⎢
⎢
⎡
0
.
0
0
0
6
5
4
6
1
0
0
0
0
−
2
8
.
3
7
−
1
.
9
8
4
0
0
0
0
−
0
.
0
0
2
7
0
9
−
0
.
0
0
4
5
2
−
0
.
0
3
7
3
1
0
.
9
5
8
0
0
−
1
.
1
9
1
−
0
.
0
9
9
5
4
−
3
.
8
9
2
−
5
.
3
6
0
0
−
0
.
0
0
3
0
5
9
0
.
0
0
0
1
4
0
3
0
.
9
9
1
5
−
0
.
1
1
2
8
0
0
0
.
0
0
3
0
5
9
−
0
.
0
0
0
1
4
0
3
−
0
.
9
9
1
5
0
.
1
1
2
8
−
8
0
.
5
9
−
8
0
.
5
9
⎦
⎥
⎥
⎥
⎥
⎤
⎣
⎢
⎢
⎢
⎢
⎡
̇
̇
⎦
⎥
⎥
⎥
⎥
⎤
+
⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0
0
0
8
0
.
5
9
0
⎦
⎥
⎥
⎥
⎥
⎤
+
⎣
⎢
⎢
⎢
⎢
⎡
−
0
.
0
0
1
3
0
5
5
5
.
6
5
−
0
.
0
2
0
1
5
−
0
.
1
3
1
8
0
.
0
0
0
8
0
0
7
−
0
.
0
0
0
8
0
0
7
⎦
⎥
⎥
⎥
⎥
⎤
(
23)
d
es
x
r
ef
f
x
e
rro
rx
x
u
u
y
θ
θ
θ
+
+
=
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
(
24)
2.
3.
R
o
l
l
M
o
d
e
l
I
n a s
i
m
i
l
ar
w
a
y
,
t
h
e r
ol
l
m
odel
i
s
obt
ai
ned
i
n t
h
e f
or
m
of
t
r
ans
f
er
f
unc
t
i
on an
d s
t
at
e
s
pac
e as
f
ol
l
o
w
s
:
30
235
.
3
28
.
68
2
)
(
)
(
2
2
2
2
+
+
=
+
+
=
s
s
s
s
k
s
s
n
n
n
d
es
ω
ζω
ω
ϕ
ϕ
(
25)
W
he
r
e
:
ac
t
ua
l
r
ol
l
(
d
egr
ee)
:
r
ol
l
i
n
put
v
a
l
u
e t
o
t
he
dr
on
e
(
degr
e
e)
F
ur
t
her
m
or
e,
i
t
i
s
c
onv
er
t
ed
i
n
t
o
c
ont
i
n
uous
-
t
i
m
e
s
t
at
e
s
pac
e
f
or
m
(
2
6
),
(2
7
)
a
nd
di
s
c
r
et
e
-
t
i
m
e s
t
at
e s
pac
e
w
i
t
h s
am
pl
i
n
g t
i
m
e (
∆
t
)
0.
2 s
(
28
)
, (
29
).
d
es
ϕ
ϕ
ϕ
ϕ
ϕ
+
−
−
=
28
.
68
0
235
.
3
30
1
0
(
26)
[
]
=
ϕ
ϕ
0
1
y
(
27)
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KO
M
NI
K
A
I
S
S
N
:
1
693
-
6
930
H
-
IN
F
IN
IT
Y
C
o
n
tr
o
l
f
o
r
P
i
tc
h
-
Ro
l
l
A
R.
DRO
N
E
(
A
gun
g P
r
ay
i
t
n
o
)
969
d
es
t
t
ϕ
ϕ
ϕ
ϕ
ϕ
+
−
=
+
174
.
8
011
.
1
1686
.
0
591
.
3
1197
.
0
558
.
0
1
(
28)
[
]
t
y
=
ϕ
ϕ
0
1
(
29)
W
he
r
e
:
ac
t
ua
l
r
ol
l
(
d
egr
ee)
̇
:
s
i
de
w
ar
d s
pe
ed
(
d
egr
ee
/
s
ec
ond)
A
nd
i
t
w
i
l
l
be o
bt
a
i
ne
d t
h
e s
t
at
e s
p
ac
e s
i
d
e
w
ar
d
v
e
l
oc
i
t
y
a
nd s
i
de
w
ar
d ac
c
el
er
at
i
o
n as
f
ol
l
o
w
s
:
1
1
1082
.
0
0245
.
0
5123
.
0
394
.
0
0814
.
0
9195
.
0
+
+
+
−
=
t
t
t
v
v
v
v
ϕ
(
30)
[
]
t
v
v
y
=
1
1
(
31)
W
he
r
e
:
s
i
de
w
ar
d v
e
l
oc
i
t
y
(m
e
t
re
/
s
ec
ond)
̇
:
s
i
de
w
ar
d ac
c
el
er
at
i
on
(
m
et
r
e/
s
ec
ond
2
)
E
qu
at
i
on f
or
y
-
p
os
i
t
i
on and
er
r
or
y
b
as
ed on
d
at
a
f
r
om
t
he A
R
.
D
r
o
ne
.
t
v
y
y
t
t
t
∆
+
=
+
1
(
32)
t
r
ef
y
y
e
rro
ry
−
=
(
33)
F
ur
t
her
m
or
e,
equa
t
i
o
ns
(
28
)
, (
29
)
, (
30
),
(3
1
),
(3
2
)
,
a
nd (
3
3
)
ar
e c
om
bi
ne
d t
o
f
or
m
a
s
t
at
e s
pac
e
w
hi
c
h
r
epr
es
e
n
t
s
a m
odel
of
t
he
A
R
.
D
r
one
r
ol
l
s
y
s
t
em
.
d
es
y
r
ef
t
t
f
y
e
rro
ry
y
v
v
e
rro
ry
y
v
v
ϕ
ϕ
ϕ
ϕ
ϕ
+
+
−
−
−
−
=
+
0
0
1094
.
0
0248
.
0
174
.
8
011
.
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
2
.
0
0
0
0
1
0
2
.
0
0
0
0
0
5123
.
0
394
.
0
013
.
0
0601
.
0
0
0
0814
.
0
9195
.
0
0029
.
0
0136
.
0
0
0
0
0
1686
.
0
591
.
3
0
0
0
0
1197
.
0
5558
.
0
1
(
34)
d
es
y
r
ef
t
f
y
e
rro
ry
y
v
v
y
ϕ
ϕ
ϕ
+
+
=
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
(
35)
A
nd
t
he
n i
t
i
s
c
on
v
er
t
ed b
a
c
k
i
nt
o c
on
t
i
n
uous
-
t
i
m
e s
t
at
e s
pac
e f
or
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
9
63
–
97
3
970
⎣
⎢
⎢
⎢
⎢
⎡
̇
̈
̇
̈
̇
̇
⎦
⎥
⎥
⎥
⎥
⎤
=
⎣
⎢
⎢
⎢
⎢
⎡
−
0
.
0
0
0
5
2
4
2
0
.
9
9
9
9
0
0
0
0
−
3
0
−
3
.
2
3
5
0
0
0
0
0
.
0
7
7
5
3
0
.
0
0
8
7
5
9
−
0
.
2
8
6
5
0
.
5
7
2
0
0
0
.
7
1
0
4
0
.
0
6
2
5
5
−
2
.
7
6
9
−
3
.
1
4
8
0
0
−
0
.
0
0
7
3
7
8
−
0
.
0
0
0
5
9
5
1
1
.
0
2
4
−
0
.
0
6
3
7
2
0
0
0
.
0
0
7
3
7
8
0
.
0
0
0
5
9
5
1
−
1
.
0
2
4
0
.
0
6
3
7
2
−
8
0
.
5
9
−
8
0
.
5
9
⎦
⎥
⎥
⎥
⎥
⎤
⎣
⎢
⎢
⎢
⎢
⎡
̇
̇
⎦
⎥
⎥
⎥
⎥
⎤
+
⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0
0
0
8
0
.
5
9
0
⎦
⎥
⎥
⎥
⎥
⎤
+
⎣
⎢
⎢
⎢
⎢
⎡
0
.
0
0
0
7
0
5
5
6
8
.
2
8
0
.
0
3
0
4
6
0
.
1
2
1
4
−
0
.
0
0
0
8
0
6
1
0
.
0
0
0
8
0
6
1
⎦
⎥
⎥
⎥
⎥
⎤
(3
6
)
d
es
y
r
ef
f
y
e
rro
ry
y
v
v
y
ϕ
ϕ
ϕ
+
+
=
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
(
37)
2.
4.
C
al
cu
l
at
i
n
g
K
v
al
u
e
W
i
t
h t
he p
i
t
c
h a
nd r
o
l
l
m
ode
l
ob
t
ai
ned
,
t
h
e nex
t
s
t
ep i
s
t
o c
al
c
u
l
at
e t
h
e
v
al
ue of
c
ont
r
ol
l
er
K
f
or
eac
h
s
c
he
m
e,
pi
t
c
h
and
r
ol
l
.
T
hes
e
c
al
c
ul
at
i
ons
us
e
f
unc
t
i
on
hi
n
f
s
y
n
i
n
Mat
l
ab.
I
n ge
ner
a
l
,
m
at
l
ab c
a
l
c
ul
at
i
on i
s
per
f
or
m
ed w
i
t
h
t
he
f
ol
l
o
w
i
n
g c
om
m
and:
nc
ont
=
1;
%
num
ber
of
c
on
t
r
ol
l
ed
v
ar
i
ab
l
e
nm
eas
=
1;
%
n
um
ber
of
m
eas
ur
ed
v
ar
i
ab
l
e
[
K
,
C
L
,
G
A
M
]
=
hi
nf
s
y
n(
S
y
s
t
em
P
i
t
c
h,
nm
eas
,
nc
ont
)
%
c
al
c
ul
a
t
i
n
g
K
[a
,b
,c
,d
]
=
s
s
d
at
a(
K
)
;
%
m
at
r
i
x
s
of
A
,
B
,
C
,
D
f
r
om
K
[
num
P
i
t
c
hK
,
den
P
i
t
c
hK
]
=
s
s
2t
f
(
a,
b,
c
,
d)
;
%
c
on
v
er
t
s
t
at
e s
pac
e t
o t
r
ans
f
er
f
unc
t
i
on
s
y
s
t
em
ppi
t
c
hK
=
t
f
(
num
P
i
t
c
hK
,
d
en
P
i
t
c
h
K
)
;
%
t
r
ans
f
er
f
unc
t
i
o
n of
K
T
he v
al
ue of
K
f
or
pi
t
c
h
i
s
o
bt
ai
ned
.
07
469
.
6
08
782
.
2
08
91
.
2
07
388
.
5
05
587
.
5
1063
07
708
.
3
08
669
.
1
08
76
.
1
07
135
.
3
04
076
.
5
2
3
4
5
6
2
3
4
e
s
e
s
e
s
e
s
e
s
s
e
s
e
s
e
s
e
s
e
K
P
itc
h
+
+
+
+
+
+
−
−
−
−
−
=
(
38)
U
s
i
ng t
he s
am
e pr
oc
edur
e
,
t
he
v
a
l
ue
of
K
f
or
r
ol
l
i
s
o
bt
ai
n
ed.
07
503
.
4
08
118
.
2
08
32
.
2
07
471
.
6
05
696
.
6
1163
07
27
.
2
08
059
.
1
08
151
.
1
07
137
.
3
04
897
.
6
2
3
4
5
6
2
3
4
e
s
e
s
e
s
e
s
e
s
s
e
s
e
s
e
s
e
s
e
K
R
o
ll
+
+
+
+
+
+
+
+
+
+
=
(
39)
2
.
5
.
I
m
p
l
e
m
e
n
ta
ti
o
n
T
o i
m
pl
em
ent
t
he H
-
i
nf
i
n
i
t
y
c
ont
r
ol
l
er
,
t
h
e t
r
ans
f
er
f
unc
t
i
on
K
f
or
eac
h pi
t
c
h
and
r
ol
l
i
s
c
onv
er
t
ed i
nt
o d
i
s
c
r
et
e
-
t
i
m
e t
r
ans
f
er
f
unc
t
i
on w
i
t
h t
h
e s
am
pl
i
ng t
i
m
e
(
∆
t
)
0.
2
s
w
h
i
c
h i
s
t
h
en
c
onv
er
t
ed
i
nt
o d
i
s
c
r
et
e
-
t
i
m
e eq
uat
i
on
w
i
t
h t
h
e f
ol
l
o
w
i
n
g s
t
ep:
ex
e
z
e
z
e
z
z
z
z
e
z
e
z
z
z
z
K
θ
θ
=
+
−
+
−
+
−
+
+
+
−
+
−
=
−
−
−
−
−
44
27
2
11
3
4
5
6
29
13
2
3
4
5
468
.
1
48
.
1
051
.
4
3214
.
0
517
.
1
189
.
2
928
.
3
233
.
8
1968
.
0
9279
.
0
338
.
1
6101
.
0
(
40)
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KO
M
NI
K
A
I
S
S
N
:
1
693
-
6
930
H
-
IN
F
IN
IT
Y
C
o
n
tr
o
l
f
o
r
P
i
tc
h
-
Ro
l
l
A
R.
DRO
N
E
(
A
gun
g P
r
ay
i
t
n
o
)
971
6
44
5
27
4
11
3
2
1
6
29
5
13
4
3
2
1
468
.
1
48
.
1
051
.
4
3214
.
0
517
.
1
189
.
2
928
.
3
233
.
8
1968
.
0
9279
.
0
338
.
1
6101
.
0
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
−
+
−
+
+
+
+
−
+
−
=
t
t
t
t
t
t
t
t
t
t
t
t
t
e
e
e
ex
e
ex
e
ex
ex
ex
ex
θ
θ
θ
θ
θ
θ
θ
(
41)
ey
e
z
e
z
e
z
z
z
z
e
z
e
z
z
z
z
K
ϕ
ϕ
=
−
+
+
−
+
−
−
+
−
+
−
=
−
−
−
−
−
45
28
2
11
3
4
5
6
29
12
2
3
4
5
792
.
2
88
.
9
027
.
6
4781
.
0
863
.
1
381
.
2
889
.
3
18
.
2
239
.
0
9313
.
0
19
.
1
5
.
0
(
42)
6
45
5
28
4
11
3
2
1
6
29
5
12
4
3
2
1
792
.
2
88
.
9
027
.
6
4781
.
0
863
.
1
381
.
2
899
.
3
18
.
2
239
.
0
9313
.
0
19
.
1
5
.
0
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
−
−
+
−
+
−
+
−
+
−
=
t
t
t
t
t
t
t
t
t
t
t
t
t
e
e
e
ey
e
ey
e
ey
ey
ey
ey
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
(
43)
W
h
er
e:
θ
K
:
di
s
c
r
eat
e
-
t
i
m
e t
r
a
ns
f
er
f
u
nc
t
i
on
K
f
or
p
it
c
h
ϕ
K
:
di
s
c
r
eat
e
-
t
i
m
e t
r
ans
f
er
f
un
c
t
i
on
K
f
or
r
o
ll
i
ex
:
e
rro
r x
f
o
r
t
im
e
-
i
i
ey
:
e
rro
r y
f
o
r
t
im
e
-
i
i
θ
:
c
ont
r
o
l
s
i
gna
l
p
it
c
h
f
or
t
i
m
e
-
i
i
ϕ
:
c
ont
r
o
l
s
i
gna
l
r
o
ll
f
o
r
t
im
e
-
i
T
he i
m
pl
e
m
ent
at
i
on b
ec
om
es
eas
i
er
w
i
t
h La
bV
I
E
W
j
us
t
as
s
ho
w
n
i
n
s
ub
V
I
F
i
g
ur
e
3
:
F
i
gur
e
3.
S
ub
V
I
pi
t
c
h c
o
nt
r
ol
a
nd r
o
l
l
c
ont
r
o
l
3.
R
e
su
l
t
s
a
n
d
D
i
scu
s
si
o
n
T
he al
gor
i
t
hm
s
ar
e i
m
pl
em
ent
ed on t
he
A
R
.
D
r
o
ne,
t
hen
t
es
t
ed t
o f
l
y
aut
om
at
i
c
a
l
l
y
f
ol
l
o
w
i
ng t
he r
ef
er
enc
e g
i
v
en i
n
door
.
D
u
e t
o t
h
e l
i
m
i
t
at
i
on
of
l
engt
h
w
i
d
t
h an
d
hei
g
ht
of
t
he
r
oom
,
pi
t
c
h
and
r
ol
l
c
on
t
r
ol
s
i
gnal
ar
e
r
es
t
r
i
c
t
ed
i
n
t
he
r
ange
±
0.
05
a
nd
us
e
30
%
of
gener
at
e
d
s
i
gna
l
c
ont
r
ol
.
F
l
y
i
ng
aut
om
at
i
c
t
e
s
t
pr
oc
e
dur
es
ar
e
as
f
ol
l
w
o
s:
1.
T
r
ac
k
i
s
us
ed as
r
ef
er
enc
e i
ns
er
t
ed
t
hr
o
ugh
a f
r
ont
p
a
nel
t
hat
has
b
een
c
r
eat
e
d
2.
D
r
one f
l
o
w
n t
o
ho
v
er
a
t
1
m
et
r
e hei
ght
w
i
t
h ho
v
er
m
enu o
n t
h
e f
r
ont
pa
ne
l
3.
W
h
en
hov
er
m
ode
i
s
s
w
i
t
c
h
of
f
,
t
he
dr
ones
w
i
l
l
f
l
y
a
u
t
om
at
i
c
al
l
y
f
ol
l
o
w
i
n
g
r
ef
er
enc
e
gi
v
en
4.
D
ur
i
n
g
f
l
y
i
n
g
a
ut
om
at
i
c
al
l
y
,
x
-
pos
i
t
i
on
y
-
p
os
i
t
i
on
da
t
a
and
ot
h
er
n
ec
es
s
ar
y
dat
a
ar
e
r
ec
or
ded
5.
A
f
t
er
c
om
pl
et
i
ng
i
t
s
w
or
k
,
dr
one
w
i
l
l
b
e ho
v
er
s
w
i
t
c
he
d
bac
k
and l
a
nde
d
6.
T
he dat
a o
bt
a
i
n
ed
w
i
l
l
b
e p
l
ot
t
ed
an
d an
al
y
z
ed
T
he f
i
r
s
t
t
es
t
w
as
c
ar
r
i
ed o
ut
on a s
t
r
ai
ght
p
at
h f
or
w
ar
d.
T
es
t
s
ar
e c
ar
r
i
ed out
f
i
v
e
t
i
m
es
,
and t
he r
es
u
l
t
s
ar
e s
h
o
w
n
i
n F
i
g
ur
e
4
b
el
ow
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
9
63
–
97
3
972
F
i
gur
e 4.
E
x
per
i
m
ent
w
i
t
h S
t
r
a
i
ght
t
r
aj
ec
t
or
y
T
he
t
es
t
r
es
ul
t
s
s
how
t
hat
i
n
ge
ner
a
l
,
t
he
c
ont
r
o
l
l
er
c
an
do
t
h
e
t
as
k
w
el
l
,
b
ut
i
t
c
an
be
s
een t
h
at
t
he dr
o
ne
i
s
os
c
i
l
l
at
ed
ar
ou
nd t
he
y
-
ax
i
s
.
F
r
om
t
he anal
y
s
i
s
of
er
r
or
y
,
s
i
de
w
ar
d
v
e
l
oc
i
t
y
a
nd r
ol
l
c
ont
r
ol
s
i
gna
l
i
s
al
w
a
y
s
s
e
en t
o
be
l
at
e
i
n a
nt
i
c
i
pat
i
n
g
er
r
or
y
t
ha
t
r
es
ul
t
i
n
os
c
i
l
l
at
i
on.
W
hen t
he er
r
or
-
y
c
l
os
e t
o
z
er
o t
he
n t
he c
ont
r
ol
s
i
g
nal
g
ener
a
t
ed i
s
al
s
o c
l
os
e t
o
z
er
o,
but
t
he
c
ont
r
o
l
s
i
g
na
l
i
s
not
s
uf
f
i
c
i
ent
t
o r
e
duc
e
t
he
s
pe
ed
of
t
he
A
R
.
D
r
o
ne
s
i
de
w
ar
d
s
o
A
R
.
D
r
o
ne
w
i
l
l
de
v
i
at
e
f
r
om
t
he
r
ef
er
enc
e
y
.
T
hi
s
pr
obl
em
c
aus
es
t
he
dr
one
t
o
os
c
i
l
l
at
e
ar
ou
nd
t
he r
ef
er
enc
e
y.
T
he
nex
t
t
es
t
i
s
t
o
pr
o
v
i
de
a
r
ef
er
enc
e
i
n
t
he
c
ur
v
e
t
r
aj
ec
t
or
y
.
I
t
i
s
al
s
o
c
ar
r
i
ed
o
ut
f
i
v
e
t
i
m
es
and t
he r
es
ul
t
s
ar
e s
ho
w
n
i
n F
i
g
ur
e
5
.
T
he t
es
t
r
es
ul
t
s
s
ho
w
t
h
at
t
he
dr
ones
c
an appr
o
ac
h
t
he r
ef
er
enc
e gi
v
en
y
e
t
ar
e
l
at
e
w
hen t
r
y
i
ng t
o t
ur
n f
ol
l
o
w
i
n
g t
he c
ur
v
e.
T
he c
ont
r
ol
s
i
g
nal
i
s
l
at
e
i
n r
es
po
nd
i
ng
t
he
s
ens
i
t
i
v
e
dr
one m
ov
em
ent
.
F
i
gur
e 5.
E
x
per
i
m
ent
w
i
t
h
C
u
r
ve
T
r
aj
ec
t
or
y
T
he
l
as
t
t
es
t
i
s
c
on
duc
t
ed
on
t
r
ac
k
s
w
i
t
h
s
har
p
t
ur
ns
and
a
b
ox
s
hap
e
t
r
aj
ec
t
or
y
.
T
es
t
s
w
er
e a
l
s
o d
one f
i
v
e t
i
m
es
and t
h
e r
es
ul
t
s
ar
e s
ho
w
n
i
n
F
i
gur
e
6
.
I
t
i
s
s
een t
hat
t
he
dr
o
ne
h
ad t
r
ou
bl
e
t
ur
n
i
ng
on t
h
e
t
r
ac
k
t
hat
has
s
har
p
c
ur
v
es
and a
box
s
hape
t
r
aj
ec
t
or
y
.
D
r
on
e
al
w
a
y
s
s
eem
t
o
hav
e
os
c
i
l
l
at
ed
i
n
eac
h
i
nf
l
ec
t
i
on
p
oi
nt
t
o
w
ar
d
t
he
nex
t
t
r
ac
k
.
-2
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
2
-0
.
5
0
0.
5
1
1.
5
2
2.
5
y
-
pos
i
t
i
on [
m
]
x
-
pos
i
t
i
on [
m
]
S
t
r
ai
ght
R
ef
er
enc
e T
r
aj
ec
t
or
y
R
ef
er
enc
e
T
r
ia
l 1
T
r
ia
l 2
T
r
ia
l 3
T
r
ia
l 4
T
r
ia
l 5
0
2
4
6
8
10
12
-0
.
2
-0
.
1
0
0.
1
0.
2
E
r
r
or
y
,
V
el
oc
i
t
y
and C
ont
r
ol
S
i
gnal
R
ol
l
f
or
T
r
i
al
5
T
i
m
e [
s
ec
onds
]
E
rro
r y
[
m
]
S
i
dew
ar
d V
el
oc
i
t
y
[
m
/
s
]
C
ont
r
ol
S
i
gnal
R
ol
l
-2
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
2
-0
.
5
0
0.
5
1
1.
5
y
-
pos
i
t
i
on [
m
]
x
-
pos
i
t
i
on [
m
]
C
ur
v
e T
r
aj
ec
t
or
y
R
ef
er
enc
e
f
l
i
ght
1
f
l
i
ght
2
f
l
i
ght
3
f
l
i
ght
4
f
l
i
ght
5
0
5
10
15
-0
.
4
-0
.
2
0
0.
2
0.
4
E
r
r
or
x
and c
ont
r
ol
s
i
gnal
pi
t
c
h f
or
T
r
i
al
5
T
i
m
e [
s
ec
onds
]
E
rro
r x
[
m
]
C
ont
r
ol
S
i
gnal
P
i
t
c
h
0
5
10
15
-0
.
2
0
0.
2
0.
4
0.
6
E
r
r
or
y
and c
ont
r
ol
s
i
gnal
r
ol
l
f
or
T
r
i
al
5
T
i
m
e [
s
ec
onds
]
E
rro
r y
[
m
]
C
ont
r
ol
S
i
gnal
R
ol
l
Evaluation Warning : The document was created with Spire.PDF for Python.