TELKOM
NIKA
, Vol.14, No
.2, June 20
16
, pp. 423~4
3
0
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i1.2372
423
Re
cei
v
ed Au
gust 1, 201
5; Re
vised April
26, 2016; Accepte
d
May 1
0
, 2016
Using STATCOM with Energy Storage to Enhance AC-
DC System Stability
Zheng Xu*
1,2
, Ding Jian
y
o
ng
1
, Li Mei
3
, Zhao
Shuan
g
3
, Zeng Ni
3
, Zhu
Ruo
x
i
3
,
Zhang Buha
n
3
,Mao Chen
gxiong
3
1
School of Elec
trical Eng
i
ne
eri
ng W
uha
n Uni
v
ersit
y
. W
u
h
a
n
,
China
2
State Grid Hubei Eco
nomic
Rese
arch Institute, W
uhan, C
h
in
a
3
State Ke
y
La
b
o
rator
y
of Adva
nced El
ectr
om
agn
etic Eng
i
ne
erin
g and T
e
ch
nol
og
y,
Huaz
hon
g Un
i
v
ersit
y
of Sci
e
n
c
e and T
e
chno
log
y
, W
uha
n, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: hustzx987
@
163.com, hn
xn
meili
@16
3
.co
m
,
zhan
gb
uha
n@
mail.h
u
st.edu.c
n
A
b
st
r
a
ct
UHVDC
h
a
s b
een
rap
i
dly
d
e
v
elo
ped
for
its larg
e c
onv
eyi
ng c
apac
ity, s
m
a
ll
net
loss
and
eas
y
pow
er co
ntrol,
w
h
ich ca
n so
lve the
pro
b
l
e
m
of t
he
unev
en d
i
strib
u
tion
of lo
ad
and
ener
gy w
i
th gr
eat
econom
y. How
e
ver, with DC t
r
ans
m
i
ssion ac
cess, the
power system
m
u
st
have a str
ong
ability of r
eactive
pow
er su
pp
ort
to cop
e
w
i
th th
e p
o
ssib
ility
of
transie
nt
volt
a
ge
prob
le
m. At
the s
a
me ti
me
, regi
ona
l
pow
er
oscill
atio
n issu
e also ca
n
’
t b
e
ign
o
red. Co
nsid
er
in
g that the ST
AT
COM devic
e, as a
type of parall
e
l
FACTS, can only pr
ovide dy
nam
i
c
reactive power to sup
port the system
voltage
and cannot undert
a
ke
active regulation and cont
rol t
o
damp system
power os
c
illation problem
,
STATCOM with energy stor
age is
prese
n
ted i
n
th
is pa
per to so
l
v
e both
prob
le
m of tr
ans
ie
nt voltag
e an
d p
o
w
er oscillati
on
in AC-D
C hybr
id
system
. In view of
the central Chi
na pr
ovince power grid planning, pos
sible ser
i
ous faults of the system
w
e
re an
aly
z
e
d
. T
he si
mu
latio
n
resu
lts sh
ow
that
ST
AT
COM w
i
th ener
gy
storag
e ca
nn
ot only
effectiv
ely
supp
ort the sy
stem tra
n
sie
n
t
voltag
e a
nd
pr
omote v
o
lt
ag
e
of dc i
n
verter s
t
ation to
avo
i
d
DC b
l
ock c
aus
e
d
by commutatio
n
failure, b
u
t also can sign
ific
antly
en
hanc
e the system d
a
m
pin
g
and restra
in regi
on
al pow
er
oscillation in case
of system
failure.
Ke
y
w
ords
: STATCOM with e
nergy storage,
AC-DC hybr
id
system
, voltage stabili
ty, power oscillation
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
With the
co
nstru
c
tion
of
UHVDC
projec
t, m
any
area
s
have f
o
rme
d
AC-DC hyb
r
id
transmissio
n
stru
cture [1
-2
]. Regio
nal i
n
terconn
ectio
n
of p
o
wer
grid
ca
n e
n
h
ance e
c
o
n
o
m
ic
operation, bu
t it is easy to
form wea
k
li
nks bet
wee
n
grou
ps of
tightly
coupl
ed gene
ration
s. On
the othe
r han
d, quick
re
sp
onse excitati
on sy
stem
h
a
s
be
en
widel
y used i
n
o
r
d
e
r to imp
r
ove
the
transi
ent
stability of power grid. These factor
s
will lead to insuffici
ent
damping of
the
interconn
ecte
d system
an
d increa
se th
e risk of
regi
onal po
we
r o
scill
ation [3-4
]. At
the sam
e
time, Acce
ss
of DC tran
sm
issi
on put forward high
er requireme
nts in voltage sup
porting a
b
ility to
the AC syste
m
. When the
r
e is an AC
system fault,
if not cleared i
mmediately, it will make th
e
DC
co
nverte
r voltage
con
s
tantly low a
n
d
ca
use a
l
o
ng time of
co
mmutation fai
l
ure,
whi
c
h m
a
y
cause DC bl
ock, thus affecting the st
ability of
the interconnected
system
[5]. According to the
plan, China
H p
r
ovin
ce
grad
ually form AC-DC h
y
brid p
o
wer
grid. T
h
ro
ug
h the
simul
a
tion,
voltage stabili
ty and low-fre
quen
cy oscill
ations w
ill b
e
the severe p
r
oble
m
s that impact securit
y
operation of receive
r
gri
d
in
the AC-DC
hybrid sy
ste
m
.
With the d
e
v
elopment of
AC-DC
hybrid sy
stem,
how to
en
su
re safe an
d
stable
operation of the power g
r
id has
cau
s
e
d
wide
sp
rea
d
con
c
e
r
n of
sch
olars bot
h at home a
n
d
abro
ad [6-7].
FACTS device
s
pre
s
e
n
te
d an effective method wit
h
new contro
l technolo
g
y to
achi
eve this
goal. Pape
r [8] verified that with
the same capa
city, the effect of STATCOM is
better than S
V
C in maintai
n
ing nod
e voltage, im
provi
ng tran
sient stability and enhan
cin
g
syst
em
dampin
g
. Pa
per [9
-10]
stu
d
ied the i
n
flu
ence of STA
T
COM
on
sin
g
le an
d do
ub
le infeed
HV
DC
system o
pera
t
ion cha
r
a
c
teristics thro
ugh
modelin
g an
d simul
a
tion. Paper [11] a
n
d
[12] analyzed
the interactio
n bet
wee
n
th
e FACTS de
vices an
d
HVDC
syste
m
s, an
d p
r
e
s
e
n
ted the
way of
FACTS co
nfiguratio
n to improve st
ati
c
voltage sta
b
ility level of AC
-DC hyb
r
id sy
stem. Paper [
13]
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 423 – 43
0
424
studied the
FACTS devices function t
o
the prom
ot
ion of
sy
stem transient
stability from
two
asp
e
ct
s: tran
smissio
n
ca
p
a
city and level of volt
age
recovery afte
r faults. Ho
wever, the ability o
f
FACTS for power oscillati
on dampi
ng is limited becaus
e it can’t conduct ac
tive power control.
Combi
n
ing e
nergy storag
e
and FACT
S
can reali
z
e those two
function
s. Pa
per [1
4] built
a
simulatio
n
model for the p
a
rallel FA
CT
S with ener
g
y
storage, an
d proved that
it can supp
ress
the swing
of gene
rato
r an
gle an
d imp
r
ove the sta
b
il
ity of powe
r
system.
Whil
e the role of
this
device i
n
im
proving voltage transient stability
of AC sy
stem near inve
rter
si
de and dam
ping
power o
scill
ation rem
a
in
s to be furthe
r
a
r
gum
ent in the AC-DC hyb
r
id syst
em.
This article in view of potential stability
probl
em
s in the planning
AC-DC hybri
d
system
of central Chi
na province, STATCOM
with energy
sto
r
age
wa
s stu
d
ied to en
ha
nce the
stabil
i
ty.
The pa
pe
r is
orga
nized a
s
follows. In se
ction 2,
the i
n
stability of AC-DC
sy
stem
is de
scri
bed.
In
se
ction 3
an
d
4, co
ntrol
pri
n
cipl
e an
d m
odelin
g
of sta
t
com with
e
n
ergy storage are pre
s
e
n
te
d.
Section 5 giv
e
s the divice functio
n
throu
gh simul
a
tion
. Section 6 co
nclu
de
s this p
aper.
2. The Instabilit
y
of AC-DC S
y
stem
Accordi
ng to the plan, Chi
na will gradually fo
rm AC-DC hybrid power grid [15]. Through
the sim
u
latio
n
of
central
Chin
a H p
r
o
v
ince
planni
n
g
gri
d
, voltag
e sta
b
ility an
d lo
w-freque
ncy
oscillations were the
severe proble
m
s
that impact securi
ty operati
on of receiv
er grid in the AC-
DC hy
b
r
id sy
st
em.
As sh
own in Figure 1, the
r
e are five UHVAC line a
nd one p
a
rall
el UHV
DC li
n
e
in the
transmissio
n
se
ction afte
r
UHV
DC li
ne
EG acce
ssed
to H p
r
ovin
ces. Th
e tran
smissi
on p
o
we
r of
UHVA
C
line
s
is 100
00 MW
and UHVDC tran
smi
ssi
on capa
city is 500
0MW.
Figure 1. Dia
g
ram of H p
r
o
v
ince with
UHVDC an
d UHVAC con
n
e
c
tion
500
kV M sta
t
ion near the
UHVDC inv
e
rter i
s
foun
d to be the wea
k
n
e
ss po
int of H
provin
ce
po
wer g
r
id th
rou
g
h
to N-1
and
N-2 fault
scan. The
r
e
are two li
ne
s b
e
twee
n M
an
d N
station
usin
g
the same to
wer. When
the
most
se
ve
re
three
-
ph
ase
perm
ane
nt short-circuit fa
ult
occurs, tho
s
e
two li
nes wil
l
be
remove
d
from
th
e
system. M
stati
on voltag
e a
nd
UHVA
C
li
nk
power a
r
e sh
own in Fig
u
re
2 and Figu
re
3.
Figure 2. M station Voltage
after the fault
Figur
e 3. Active powe
r
of DG after the f
ault
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Usi
ng STATCOM with Ene
r
gy Stora
ge to
Enhance AC-DC System
Stability (ZHE
NG Xu)
425
Voltage in
sta
b
ility pheno
m
enon
o
c
curs i
n
M
site
a
nd
the voltage
o
n
ly re
stores to ab
out
0.8pu after the fault clea
red. At the same time
, fault of M-N line
inspires a lo
ng time power
oscillation in
UHVA
C
transmissi
on line,
with fr
equency of 0.5Hz, dampi
ng ratio of 3.23% and
maximum oscillation am
pli
t
ude of 336M
W.
Here a
r
e the
rea
s
o
n
s
wh
y voltage instability oc
curs in M
statio
n. DC invert
er
statio
n
con
s
um
es a l
o
t of re
active
power
duri
ng
norm
a
l op
era
t
ion, rea
c
hi
ng
abo
ut 40%
o
f
the rate
d
DC
transmissio
n cap
a
city.
Wh
en
the re
ceiv
er system
li
n
e
M-N fault i
s
clea
red, th
e inverte
r
sta
t
ion
requi
re
s a
sh
arp in
crea
se
in rea
c
tive p
o
we
r in
the
recove
ry process
(a
bout 1.
5 times of th
e
norm
a
l req
u
i
r
eme
n
t), but
at the sam
e
time, the
voltage of the inverter
station is not
fully
recovered, a
nd o
n
ly abo
u
t
90 p
e
rcent
of rea
c
ti
ve p
o
we
r i
s
p
r
ovi
ded
by shunt
ca
pa
citors,
as
sho
w
n in Fig
u
re 4 an
d Figure 5. Th
us, there appe
ars
seve
re reactive po
we
r deficie
ncy
nea
r
UHV
DC
inve
rter station, whi
c
h
fu
rther exace
r
b
a
tes the fault, an
d tran
sie
n
t voltage in
stabi
lity
oc
cur
s
in r
e
c
e
iv
er sy
st
e
m
.
Figure 4. Rea
c
tive power required by the
inverter statio
n
Figure 5. Rea
c
tive power p
r
ovided by pa
rallel
cap
a
cito
r gro
up in DC inve
rter statio
n
3. Contr
o
l Principle of STATCOM
w
i
th
Energ
y
Storage
The
comm
onl
y used methods to improve the
sy
stem
stability are i
n
stallation of parallel
c
a
pac
i
tor
or
reac
tor, PSS
and STATCOM[16], t
hei
r functio
n
co
mpari
s
o
n
s sh
own
in
Tabl
e
1.
Table
1
sho
w
s that p
a
ra
llel capa
citor or re
acto
r
and STAT
COM d
e
vice
s
can
en
han
ce
th
e
voltage stabil
i
ty but their effects in power
os
cillation suppression are
not obvious; PSS can
damp p
o
wer
oscillation, bu
t need to con
s
ide
r
coo
r
din
a
tion control
betwe
en nu
m
e
rou
s
u
n
its a
n
d
not apply to
all oscillato
r
mode
s. STA
T
COM
with
e
nergy
storag
e have i
ndep
ende
nt co
ntrol of
active an
d reactive p
o
we
r, whi
c
h
ca
n
play a
role
in improvin
g the AC-DC hyb
r
id
system
transi
ent voltage sta
b
ility and po
wer o
scillation dampi
ng at the sam
e
time.
Table 1. The
compari
s
on table of com
m
only
used devices to enha
nce system stability
Methods
Effect of improving voltage stabili
t
y
Power oscillation
damping
Parallel capacitor or reacto
r
modest
none
STATC
O
M
good
poor
PSS none
a certain range
o
f
oscillation frequenc
y
,
but not appl
y
to a
ll osc
illat
i
on modes
STATCOM
with ene
rgy st
orag
e
can
provide o
r
ab
sorb
po
wer from the
syste
m
, usin
g
electroni
cs o
r
other type
contro
lle
rs to i
ndep
ende
ntly adju
s
t a
c
tive
and
re
active
po
wer.
The
s
e
energy sto
r
a
ge d
e
vice
s i
n
clu
de
battery, flyw
heel, superco
ndu
cti
ng ma
gnet
i
c
energy
sto
r
a
ge,
power sto
r
a
g
e
cap
a
cito
r a
nd po
wer
sp
ri
ngs, etc., [17].
By controllin
g
powe
r
ele
c
tronic
conve
r
te
rs, STATCO
M with ene
rg
y storag
e hav
e active
and rea
c
tive powe
r
fou
r
-quad
rant qui
ck a
d
ju
stmen
t
ability to a
c
hieve the g
oal of impro
v
in
g
power system
stability.The
controll
er i
n
cludes two
parts-outer
l
o
op loop
cont
roller( al
so
called
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 423 – 43
0
426
power
sy
ste
m
sta
b
le
co
n
t
roller) a
n
d
in
ner loop
cont
rolle
r( also called po
wer
regulato
r). Ou
ter
loop
controll
er i
s
the ma
ster
co
ntrolle
r devi
c
e, whi
c
h
can
se
nd
active an
d
rea
c
tive po
wer
referen
c
e val
ue to the inner loo
p
co
n
t
roller a
c
cord
ing to the system dema
nd; inner lo
o
p
controlle
r
will cal
c
ul
ate ma
gnitude
and
pha
se
of
con
v
erter
output
voltage a
c
cording to
the
o
u
ter
controlle
r ref
e
ren
c
e valu
e, and then ge
nerate
switch
trigger
sign
a
l
s for c
onvert
s
. Therefore, it
can
co
ndu
ct
active an
d
re
active po
we
r
quad
rant
adj
ustment i
n
re
al time throu
gh a
clo
s
e
d
l
oop
feedba
ck co
ntrol by mea
s
uri
ng the vo
ltage, cu
rr
ent
or othe
r po
wer
sy
ste
m
para
m
eters
[
18].
Control struct
ure of STATCOM with ene
rgy storag
e is
sho
w
n in Fig
u
re 6.
P
Q
Figure 6. Con
t
rol of STATCOM with ene
rgy storag
e
4. Modeling of STAT
CO
M
w
i
th Ener
g
y
Storage
Powe
r sy
ste
m
stability controlle
r u
s
u
a
lly adopt
s
PI close
d
lo
op co
ntrol. T
he sy
stem
freque
ncy i
s
mainly rel
a
te
d to a
c
tive po
wer,
and
the
voltage is ma
inly relate
d to
rea
c
tive p
o
wer.
Therefore,
a
c
tive and
re
act
i
ve po
we
r referen
c
e
value
s
can
b
e
resp
ectively calcu
l
ated a
c
co
rdi
ng
to the deviation of freque
n
c
y and voltag
e sign
al. Its structu
r
e i
s
sh
o
w
n in Figu
re
7.
V
s
et
P
s
et
Q
iv
pv
K
K
s
i
p
K
K
s
Figure 7. Power
system
stability contro
ll
er of STATCOM with energy storage
The po
we
r re
gulator
can b
e
descri
bed b
y
using first
-
o
r
de
r inertia m
odel [19]
:
11
11
s
et
s
et
PP
P
TT
QQ
Q
TT
(1)
Whe
r
e, T is the time con
s
tant, usually rang
e from 0
.
02s to 0.05s. P, Q is the output
active an
d re
active po
we
r
of inner
co
ntroller. Ps
et, Qset is
output
referen
c
e val
ue of the o
u
ter
loop controll
e
r
.
Tran
sie
n
t sim
u
lation p
r
o
c
e
ss
of STATCOM with
ene
rgy sto
r
ag
e i
s
sho
w
n in
F
i
gure
8.
Modelling of the device is given in Figure 9.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Usi
ng STATCOM with Ene
r
gy Stora
ge to
Enhance AC-DC System
Stability (ZHE
NG Xu)
427
re
f
r
e
f
PQ
P
Q
Figure 8. Tra
n
sie
n
t simulat
i
on flow-process of STATCOM
with en
ergy sto
r
ag
e
1
K
D
S
K
D
S
+
1
K
D
S
+
K
s
et
P
1
K
D
S
K
D
S
+
1
K
D
S
+
K
V
s
et
Q
Q
re
f
ref
V
P
Figure 9. Tra
n
sie
n
t model
of STATCOM
with energy stora
g
e
5. The Simulation of
AC-DC
H
y
brid Sy
stem Stabilit
y
Build the
mo
del of
STAT
COM
with
en
ergy
storage
and
co
nne
ct i
t
to the
220
kV bu
s of
wea
k
station
(M site
) in
H
provin
ce p
o
wer g
r
id. M
sta
t
ion ha
s two t
h
ree
-
p
h
a
s
e transfo
rme
r
s with
rated po
we
r of 1000M
W. The device storage
cap
a
ci
ty is set to
3000M
J, and
the capa
city of
power ele
c
tro
n
ic co
nverte
rs is 600MVA,
account
ing f
o
r 30% of the transfo
rme
r
capa
city. When
DC o
r
re
ceiv
er AC syste
m
failure occurs, the sim
u
lation re
sults were ob
se
rv
ed and re
co
rded
unde
r seve
ral
different device
s
install
ed
near
DC inve
rter statio
n.
Mark the
scene of none device
installat
i
on for
CASE1, and t
he
scene of install
a
tion with
STATCOM f
o
r CASE2 and STATCOM
with energy
storage for CASE3. Ma
in generators
that
partici
pate in the regional
oscillation of AC-D
C interconnected sy
stem
are equipped with the
power sy
stem stabilizer(P
SS).
5.1. DC Faul
t Simulation
DC line
fault
occurs at 1
s
,
and
DC lin
e
will b
e
lo
ckou
t at 1.1s.
The
voltage of
ma
in site
in
H province is
given in Figure
10 and the
UHVA
C
line
power osc
illat
i
on is
shown
Figure 11. From
Figure 10,
we ca
n
see th
at after the
HVDC li
ne
bi
p
o
lar blo
ckin
g
,
the
sy
stem have
la
rge p
o
we
r
shortage, and the voltage of UHVAC li
nes and
recei
v
er system
remains l
o
w in
CASE1. CASE2
and
CASE3 show that after installing S
T
ATCOM
or
STATCOM
with energy storage, m
a
in
sites
voltage of
H province is impr
oved in DC bipolar blocking
conditions. In
CASE3, voltage
prom
otion
of
UHV
DC line
1000
kV a
c
ce
ss site
re
ach
e
s 6.23%
a
n
d
50
0kV access site
rea
c
hes
8.52%. Its voltage
supporti
ng effect
is better than the CASE2( re
spectively 5.16% and 7.36%),
this is be
cau
s
e STAT
CO
M with e
nerg
y
stora
ge
can
provid
e a
c
tive and
re
activ
e
po
we
r re
qu
ired
by the syste
m
. The balan
ce of active p
o
we
r
will indi
rectly affect the system volt
age.
Figure 11
sh
ows that whe
n
the DC faul
t occu
rs, po
wer is t
r
an
sferred to UHVA
C line
s
,
causing a long time of power oscillation, whos
e m
a
ximum amplitude is in CASE1
of 233M
W and
damping ratio is
6.35%.
CASE2 shows that powe
r oscillation
suppression of STATOM is not
obviou
s
with the maximum powe
r
oscillation amplit
ude of 230M
W and da
mp
ing ratio slig
htly
improved to 6.40%. CASE3 s
h
ows
that the ins
t
allation of STATCOM
with energy s
t
orage
c
an
signifi
cantly improve
syst
em dampi
ng
to
8.78% and redu
ce
maximum p
o
we
r o
scillat
i
on
amplitude to
132M
W, whil
e sup
port sy
stem voltage at the same time.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 423 – 43
0
428
(a) Bu
s voltage of UHV
DC access site
s
(b) Bu
s voltage of other im
portant
sites
Figure 10. Main bu
s voltage of H provi
n
ce’
s
po
we
r grid after the
DC fault
Figure 11. Power oscillation of UHVAC l
i
ne after the
DC fault
5.2. AC Faul
t Simulation
From th
e ab
o
v
e analysi
s
we kn
ow th
at 5
00k
V M
statio
n and
M-N lin
e is the
we
ak link of
H province. Set M-N lin
e
N-2 fa
ult as follows: o
n
e
single li
ne t
h
ree
-
p
h
a
s
e short ci
rcuit fault
occurs at 1
s
and then t
w
o
lines a
r
e
cut out at 1.
1s. T
he voltage flu
c
tuation
s
afte
r the failure a
r
e
shown in Figure 12, and UHVAC line power
oscillation is shown in Figure 13.
(a) Bu
s voltage of UHV
DC access site
s
(b) Bu
s voltage of other im
portant
sites
Figure 12. Main bu
s voltage of H provi
n
ce a
s
thre
e perm
ane
nt fault occurred i
n
M-N lin
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Usi
ng STATCOM with Ene
r
gy Stora
ge to
Enhance AC-DC System
Stability (ZHE
NG Xu)
429
Seen from
Figure
12,
CAS
E
1 is the
mo
st se
riou
s
co
n
d
ition at volta
ge di
p, with
M statio
n
voltage only
recovered to
0.8 p.u.
after the fa
ult cl
eared.
CASE2 and
CASE3 show that
after
mounting ST
ATCOM o
r
STATCOM
wit
h
ene
rgy storage, M statio
n voltage ca
n
be re
covere
d to
norm
a
l value
after failure.
The pl
aceme
n
t of thos
e d
e
vice
s play
s
an imp
o
rtant
role i
n
supp
orting
DC inve
rter v
o
ltage an
d improving t
he
ru
nning
stability of the DC sy
stem.
Figure 13. Power oscillation of UHVAC l
i
ne as
the three permanent fault occurred in M-N line
The maximum power os
c
i
llation
amplitude
in CASE1 is
336M
W and the damping ratio is
3.23% (weak
damp
s
t
atus), as
sh
own in
Figure 13. And in CASE2
they are 330MW and 3.28%,
indicating that STATCOM
is
ineffec
t
ive in po
wer os
c
i
llation suppres
s
i
on. However, in
CASE3,
the installatio
n
of STATCOM with ene
rgy stor
ag
e can obviou
s
ly sup
p
re
ss UHVAC lines p
o
w
er
oscillation, wi
th damping
ratio increased
to 9.87%.
6. Conclusio
n
This
pap
er
propo
se
s the
method
of u
s
ing STAT
CO
M with
ene
rg
y stora
ge to
solve th
e
voltage sta
b
il
ity and re
gio
nal po
we
r o
scill
ation
p
r
o
b
lems cau
s
e
d
by the
sy
stem fault
s
.
Its
modellin
g is
pre
s
ente
d
. And its fun
c
tio
n
is
a
nalyzed
unde
r the
condition
s of
UHV
DC
blo
c
king
fault and rece
iver AC syste
m
three-pha
se circuit
sho
r
t
through si
mu
lation. The re
sults
sho
w
that
STATCOM
with energy
storag
e ca
n en
han
ce the DC
hybrid
syst
em tran
sient
voltage stabil
i
ty
and effectivel
y suppress UHVAC line
s
p
o
we
r oscillati
on, whi
c
h ha
s a sig
n
ifica
n
t role in re
alizi
n
g
multi-obj
ectiv
e
stability con
t
rol and imp
r
o
v
ing
operatio
n se
curity in
AC-DC hyb
r
i
d
system.
Referen
ces
[1]
Yoge
ndr
a Ar
ya, Naredra Ku
mar, Hitesh Dutt Mat
hur. Automatic Gener
ation Co
ntrol i
n
Multi Are
a
Interconn
ected
Po
w
e
r S
y
ste
m
b
y
us
ing HV
DC Li
nks.
Internatio
nal J
ourn
a
l of Pow
e
r El
ectronics a
n
d
Drive System
(IJPEDS).
2012
; 2(1): 67-75.
[2]
W
ang Ju
an
jua
n
, Z
han
g Ya
o, XIA C
hen
gj
un,
et al.
Surv
e
y
of
Studies
on
T
r
ansi
ent Vo
ltag
e Stabi
lit
y o
f
AC/DC Po
w
e
r S
y
stem.
Power
System
Technology
, 200
8; 32(12): 30-
34.
[3]
Z
hu F
a
n
g
, Z
H
AO Hon
ggu
an
g, Li
u Z
e
n
g
h
u
a
ng. T
he Influ
e
n
c
e of
Larg
e
P
o
w
e
r Grid
Interc
onn
ected
on
Po
w
e
r S
y
stem
D
y
namic Sta
b
il
it
y
.
Chi
nes
e C
SEE
. 2007; 27(
1): 1-7.
[4]
D Naras
i
mh
a
Rao, V Sar
i
tha. Po
w
e
r S
y
stem
Oscil
l
at
ion
Damp
ing
Using
Ne
w
F
a
cts Devic
e
.
Internatio
na
l Journ
a
l of Electr
ical
a
nd Co
mp
uter Engi
ne
erin
g (IJECE)
. 201
5; 5(2): 198-2
0
4
.
[5]
Yang
Xio
ngp
in
g, Luo
Xia
n
g
d
o
ng, Li Y
a
n
g
x
u,
Yang
Y
i
n
guo.
Voltag
e stab
ilit
y a
n
a
l
ysis of r
e
ceivin
g-e
n
d
s
y
stem in C
h
in
a South Po
w
e
r
Grid under th
e DC block fa
ults.
Pow
e
r system protecti
o
n
and co
ntrol
system
. 20
08; 36(2
2
): 40-4
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 423 – 43
0
430
[6]
Qi Xu, Z
e
n
g
D
e
w
e
n, Shi
D
a
j
un, F
a
n
g
Xiao
song,
Li La
n, Su
H
ongti
an, W
u
W
e
i. Stud
y on
Impacts
of
UHVDC T
r
ansmission
on Po
w
e
r S
y
stem St
abil
i
t
y
.
Power System
Technology.
200
6; 30(2): 1-6.
[7]
M Zakir Hossain, Md Ka
mal Hossain, Md Alamgir Ho
ssa
in,
Md Maid
ul Isla
m. Performanc
e Anal
ys
is of
a Hi
gh
Volta
g
e
DC
(HVD
C)
T
r
ansmission
S
y
stem
u
nde
r Stead
y
State a
nd F
a
ulte
d
Con
d
iti
ons.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2014; 1
2
(8): 5
854-
586
0.
[8]
Ding
Lij
i
e, Du
Xi
n
w
e
i
, Z
hou
W
e
i Jing. Co
mpar
iso
n
of a
pplic
atio
n of SVC and ST
AT
COM to large
capac
it
y
tra
n
s
m
ission
path
of po
w
e
r s
y
stem.
Pow
e
r System Protection
and
Control
. 20
10
; 3
8
(
24
): 7
7
-
87.
[9]
Li
Dan.
Res
e
a
r
ch o
n
Imp
a
ct
of ST
AT
COM
on
Op
erati
o
n
Performanc
es
of HVD
C
. Dis
e
r
tation. N
o
rth
Chin
a Electric
Po
w
e
r U
n
ivers
i
t
y
: 201
4.
[10]
Guo C
hun
yi,
Z
han
g Ya
np
o, Z
hao
Ch
en
g
y
on
g, Ni J
u
n
q
ia
ng
, Z
hang
Yi. Impact of ST
AT
COM on t
h
e
Operatin
g Ch
a
r
acteristics of
Dou
b
le-
i
nfe
ed
HVDC S
y
stem.
Chin
ese CSE
E
.
2013; 33(
25
): 99-106.
[11]
Li Haic
he
n. Researc
h
on
An
al
ysis of Intera
ction bet
w
e
e
n
F
A
CT
S and HVDC S
y
stem
and C
ontr
o
l
Strateg
y
. D
i
ser
t
ation. South C
h
in
a Univ
ersit
y
of
T
e
chnolo
g
y
: 2012.
[12]
Hu Yanm
ei. A
nal
ysis
of Stat
ic Voltag
e Stab
ilit
y
Ch
aracteri
stics and Opti
mal All
o
catio
n
of FACT
S for
AC/DC H
y
bri
d
Po
w
e
r S
y
stem.
Disertatio
n
. Beiji
ng Ji
aoto
ng
Univers
i
t
y
: 2
0
1
4
.
[13]
Z
uo Yu
xi, W
a
n
g
Yating,
Xin
g
Lin, She
n
Ho
n
g
, Z
heng Bin,
Li Jin
g
, Ban Li
ang
en
g, Z
hou Qin
y
on
g, Li
Run
q
iu, Z
hen
g Nan, F
an Keqi
ang. Ap
pli
e
d Rese
arch o
n
Ne
w
T
y
pes
of High Cap
a
cit
y
F
A
CT
S
Devices in Nort
h
w
est 750 kV Po
w
e
r Grid.
Po
w
e
r System T
e
chno
logy.
2
013
; 37(8): 234
9-2
354.
[14]
Z
hang Bu
ha
n, Ma Z
h
iqu
an,
Xie Guan
glo
ng, Z
eng Jie, Li
Xi
aop
ing, Mao C
hen
g
x
io
ng, Ch
eng Sh
iji
e
.
Mode
lli
ng an
d Simulati
on of P
a
rall
el F
A
CT
S
w
i
t
h
Ener
g
y
St
orag
e in Po
w
e
r
S
y
stem Anal
ysis Soft
w
a
r
e
Package.
Pow
e
r System T
e
c
hno
logy
. 2
010;
34(3): 31-3
6
.
[15]
Xu
Z
hen
g. D
y
namic
beh
avi
o
r of AC an
d
DC p
o
w
e
r s
ystem ana
l
y
sis.
Secon
d
Ed
iti
on. Bei
jin
g:
Mechanical Industr
y
Press. 2004.
[16]
Han-Ki
K
.
Dy
na
mic c
oor
din
a
tion
strategi
e
s
betw
een
H
V
DC a
nd ST
AT
COM
. Asia an
d Pac
i
fic
T
r
ansmission &
Distrib
ution
Confer
ence
& Ex
p
o
siti
on.
Se
oul, IEEE Po
wer & En
erg
y
S
o
ciet
y
.
2
009:
1
-
9
.
[17]
Che
ng M
i
n
g
,
W
ang Qi
ngs
o
ng, Z
h
a
n
g
Ji
a
n
zho
ng.
T
heor
etical
An
al
ysis
an
d
Contro
ll
e
r
Desi
gn
of
Electric Springs.
Chines
e CS
EE
. 2015; 35(
1
0
): 2436-
24
44.
[18]
Yao T
ao. T
h
e
Stud
y
on th
e
Control
of Superc
ond
uctin
g
Mag
net
ic E
nerg
y
Stor
age
. Disertatio
n
.
Huaz
hon
g Un
i
v
ersit
y
of Sci
e
n
c
e and T
e
chno
log
y
a
nd Strate
g
y
: 2
006.
[19]
HU Sho
u
son
g
. Automatic Co
n
t
rol T
heor
y
.
F
ourth Editio
n. Beiji
ng: Scie
nce
Press. 2007.
Evaluation Warning : The document was created with Spire.PDF for Python.