TELKOM
NIKA
, Vol.14, No
.4, Dece
mbe
r
2016, pp. 12
53~126
2
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i4.3871
1253
Re
cei
v
ed Ap
ril 21, 2016; Revi
sed O
c
tob
e
r
21, 201
6; Acce
pted No
vem
ber 6, 20
16
Optimal Modulation Algorithm for Hybrid Clamped
Three-Level Inverter
Yi Liu*
1
, Guo
j
un Tan
2
, Xia
oqun He
3
Schoo
l of Information a
nd El
e
c
trical Eng
i
ne
e
r
ing, Ch
ina U
n
i
v
ersit
y
of Min
i
n
g
and T
e
chno
l
o
g
y
,
No.1, Univ
ersit
y
Ro
ad, 22
10
0
8
, Xuz
hou, C
h
i
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: flamepe
arll
y@12
6.com
1
, gjtan@cumt.edu.cn
2
, flame_zkc
d@1
26.com
3
A
b
st
r
a
ct
T
he princi
pl
e o
f
a three phas
e hybrid cl
a
m
p
ed th
ree-
leve
l i
n
verter w
a
s presente
d
. T
a
kin
g
sixty-
four sw
itch states into co
nsid
erat
io
n, the o
p
e
ratio
nal stat
e
s
of hybr
i
d
cla
m
p
ed thr
ee-l
e
vel inv
e
rter a
n
d
different curre
n
t
circuits in different sw
itch states
w
e
re deta
iled
deriv
ed. Opti
mal
mo
dul
ati
on al
gorith
m
w
a
s
prop
osed
bas
e
d
on th
e n
eutr
a
l s
m
al
l vector
s by diffe
re
nt combi
natio
n, w
h
ich
can r
eal
i
z
e
the
auto
m
ati
c
bal
anci
ng
of the ne
utral-p
o
i
n
t voltag
e w
i
th few
sw
itching
cy
cles a
nd d
i
d
no
t need to
meas
ure the v
o
lta
g
e
of
the cla
m
p
ed c
apac
itors. T
h
e
propos
ed
mo
dul
ation
alg
o
rit
h
m w
a
s als
o
c
apa
ble
of restraini
ng th
e turn
-off
over-volt
age
o
f
the pow
er s
w
itching d
e
vic
e
s effectiv
ely.
Simulati
on r
e
sults w
e
re giv
en to ver
i
fy the
feasib
ility
and
correctness. E
x
peri
m
e
n
tal
re
sults o
b
ta
in
ed
by DSP-b
a
se
d
i
m
pl
e
m
ent
atio
n of th
e co
ntro
ller
on 1 MW
prototype show
go
od perfor
m
anc
e in terms of
DC-bus vo
ltag
es regu
latio
n
(sma
ll ne
utral p
o
in
t
potenti
a
l functi
on an
d low
DC
rippl
e coefficie
n
t) and go
od si
nuso
i
da
l curre
nt.
Ke
y
w
ords
: Optim
i
z
a
t
i
on method, Hybrid
cla
m
p
ed i
n
verter, Pulse w
i
dth
mo
dul
ation, DC-v
o
ltag
e ba
lanc
e
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
No
wad
a
ys, in
orde
r to me
et the dema
n
d
s of
the hig
h
-voltage gra
des and high
-po
w
e
r
inverter, an i
m
porta
nt tren
d in powe
r
el
ectro
n
ic
h
a
s
been the repl
acem
ent of the traditional t
w
o-
level inverter
by multilevel
inve
rter [1
-3].
With the
dev
elopme
n
t of
power
elect
r
o
n
ic te
chn
o
log
y
,
in [4-7], mult
ilevel tech
nol
ogy ha
s be
e
n
wid
e
ly stu
d
ied in th
e
high-volta
ge
and hi
gh-po
wer
system, g
r
id
-con
ne
cted
wind p
o
we
r
system, acti
v
e
po
we
r filters,
and
ma
ny other fiel
ds.
Curre
n
tly, there is a la
rg
e variety of su
ch
mult
ilevel topologie
s
availa
ble[8-9]. However, the thre
e
pha
se
diode
clamp
ed th
re
e-level i
n
vert
er i
s
the
mo
st wi
dely u
s
e
d
topol
ogy.
As an
effecti
v
e
multilevel implementation,
besi
d
e
s
the chara
c
te
rs
of fewe
r po
wer
switchi
ng devi
c
e
s
, lowe
r in
put
curre
n
t ha
rm
onics, bette
r
sinu
soi
dal a
n
d
high
adj
ust
able p
o
wer f
a
ctor,
diod
e
clamp
ed th
re
e-
level inverter also h
a
s t
he advanta
g
e
s of bi-d
ire
c
tional e
nerg
y
transfer, l
o
we
r switchi
n
g
freque
ncy
an
d hig
her sy
stem efficie
n
cy
, whi
c
h
ca
n
satisfy the
re
quire
ment
s o
f
highe
r volta
g
e
grad
es, hi
ghe
r po
we
r and l
o
we
r ha
rmo
n
i
c
poll
u
tion tre
nd of inverte
r
[10]. The op
eration
and t
h
e
control of th
ree p
h
a
s
e di
o
de
clamp
ed t
h
ree
-
level
i
n
verter have
be
en resea
r
che
d
du
ring
the l
a
st
decade a
nd b
o
th cont
rol an
d modulatio
n method
s hav
e been p
r
e
s
e
n
ted in [11-1
2
]
.
Ho
wever,
large-scale
appl
ication
of m
u
ltileve
l topolo
g
y is
su
bje
c
ted to
the
un
balan
ce
voltages of capa
citors in DC-bu
s
an
d the turn
-off over-volta
ge for powe
r
swit
ching devices
[13-
15], and diod
e clamp
ed three-level inve
rter is no
ex
ce
ption [16]. To solve the ab
ove probl
em
s, a
variety of ideas have b
e
e
n
put forward in m
any re
sea
r
ch pa
pers [17-19]. Among the
s
e,
the
topology pro
posed by Ko
rean
schola
r
Young-Se
ok
Kim in 1993, called the
hybrid cl
am
ped
three
-
level in
verter
(HCTL
I
) ha
s the a
d
d
itional b
enef
its of incre
a
sed controll
ed
swit
ch
state
s
in
addition to th
e gen
eral th
e
benefits
of diode
clam
pe
d thre
e-level
inverter.
Co
mpared to th
re
e
pha
sed
diod
e cla
m
ped
three
-
level i
n
verter, three
clam
ped
ca
pacito
r
s are
adde
d to t
h
ree
clamp
ed leg
s
. Thus, it ca
n re
strain th
e fluct
uation
s
of DC-bu
s neutral p
o
ten
t
ial, realize t
h
e
bidire
ction
a
l curre
n
t
flow and
rest
rain the
over
-voltage
s of the
power
swit
ch
ing devi
c
e
s
by
cha
r
gin
g
or
d
i
scharging
cl
amped
ca
pa
citors a
nd fea
s
ible m
odul
ation algo
rithm
s
. The
r
eby, d
ue
to the oppo
rt
unities of
co
mpetit
ive advantage
s, HCTLI is ge
nerally con
s
ide
r
ed attra
c
tive and
applie
d a
s
an
inverter fo
r t
he DC-A
C
co
nverter. T
he
resea
r
ch of
HCT
LI ha
s fo
cu
sed
so fa
r
on
control sche
mes, fewer o
n
the pulse width modul
ati
on (PWM) al
gorithm
s. Tra
d
itionally, in ord
e
r
to restrain th
e probl
em of DC-bu
s ca
p
a
citor voltag
e
s
unb
alan
ce,
these mod
u
l
a
tion algo
rith
ms
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1253 – 126
2
1254
were propo
se
d usu
a
lly via the mea
s
u
r
e o
f
DC-b
u
s
cap
a
citor voltag
e
s
and
clamp
e
d
cap
a
cito
rs.
The pu
rpo
s
e
of this pap
er is to
anal
yz
e the op
eration of the
HCT
LI, base
d
on a
n
analytical a
n
a
lysis of
cu
rrent circuit a
n
d
clam
ped
ca
pacito
r
state
s
, and to determine if a suit
able
modulatio
n al
gorithm
can i
m
pleme
n
ted. Con
c
e
n
trated
on the three pha
sed HCT
L
I, a new PWM
control algo
rit
h
m is propo
sed by differe
nt optim
al co
mbination of
neutra
l
small
vectors with
out
the u
s
e
of three
cl
amp
e
d
capa
citor
voltages me
asu
r
ed
in thi
s
p
ape
r. It can
re
du
ce
the
fluctuation
s
o
f
DC b
u
s
ne
utral voltage
and rest
ra
in
the over-voltage
s of
the power swit
ch
in
g
device
s
. Th
e
s
e fu
nction
alities of th
e p
r
o
posed P
W
M
control al
gorit
hm are d
e
mo
nstrate
d
by
b
o
th
simulatio
n
s a
nd experi
m
en
tal result
s fro
m
a DSP con
t
rolled, the 1 MW rate
d inverter p
r
ototyp
e.
2. Contr
o
l Principle of HCTLI
HCT
LI u
s
in
g
insul
a
ted
gat
e bip
o
lar tra
n
s
isto
r
(I
GBT)
swit
che
s
i
s
prese
n
ted i
n
Fi
gure
1.
The m
a
in to
pology
of the
HCTLI
co
nsi
s
ts
of tw
elve po
we
r
swit
ches with
anti
-
pa
rallel
dio
d
e
s,
each having
voltage stre
ss of U
d
/2. There a
r
e
six clamp
ed dio
d
e
s with three
parallel
clam
ped
cap
a
cito
rs o
n
phase le
gs
and two DC-bus capa
cito
rs (C
1
,C
2
) in seri
es o
n
the DC sid
e
. The
neutral p
o
int O of DC-bu
s
i
s
co
nne
cted
dire
ctly to three clam
ped
midpoint
s.
To illu
strate
o
peratio
n
cond
ition of HCTL
I, phase A is set a
s
a
n
ex
ample to
anal
yze. It
is compo
s
e
d
of clamp
ed
diode
s (D
1a
~D
2a
), clam
pe
d ca
pa
citor
C
a
and fo
ur
swit
che
s
(S
1a
~S
4a
)
with anti-pa
ralleled di
ode
s(D
3a
~D
6a
). Bidire
ctional
curre
n
t path
s
from l
oad
to the DC-bu
s
potential
s
are achi
eved
via switche
s
(S
1a
~S
4a
) and diod
es (D
1a
~D
6a
). Du
e to the cla
m
ped
cap
a
cit
o
r (
C
a
) of HCTLI, switc
h
es
S
2a
and S
3a
can not work at the same time.
(a)
curre
n
t flow path
s
(b)
cha
r
ge/di
scha
rge p
a
ths
of
C
a
Figure 1. Main topology of the
hybrid cl
amp
ed three level
inverter
Figure 2. Dia
g
ram
s
of cu
rrent circuit an
d clamp
ed ca
pacito
r
state wh
en S
A
=1
+
The p
o
we
r
switch
es
state
s
of ph
ase A
coul
d be
re
prese
n
ted by S
A
. S
A
=1
+
indicates
the
on state of p
o
we
r switche
s
S
1a
,S
2a
with S
3a
, S
4a
of
f. S
A
=0
+
indicate
s the on
state of po
we
r
swit
che
s
S
1a
, S
3a
with S
2a
, S
4a
off. S
A
=0
−
indicates t
he on
state
o
f
powe
r
swit
ches S
2a
, S
4a
with
S
1a
, S
3a
off.
S
A
=1
−
indicates the o
n
sta
t
e of powe
r
switch
es S
3a
, S
4a
with S
1a
, S
2a
off.
Thus
,
the
output voltag
e coul
d be co
ntrolled by th
e swit
ch state
s
de
scribe
d a
bove.
1) S
A
=1
+
stat
e
In
S
A
=1
+
, the
S
1a
, S
2a
a
r
e
tu
r
n
ed
on
an
d S
3a
, S
4a
off as
sho
w
n
in Fi
gure
2
(
a). In
steady-
state co
nditi
ons, if the phase cu
rrent
i
a
is positive, the curre
n
t flow alon
g with the path:
P
→
S
1a
→
S
2a
→
A.
On
the contrary,
the current
path will
becom
e
A
→
D
4a
→
D
3a
→
P. Whatev
er the
dire
ction
of i
a
, the pol
e A
is
con
n
e
c
ted
to the
p
o
siti
ve point P of
DC-b
us,
hav
ing the foll
owing
equatio
ns: U
AO
=U
PO
=0.5U
d
.
On this o
c
ca
sion, the n
eut
ral poi
nt of the DC-b
us
sh
ould be
rem
a
in
clamped
at one half of the comp
lete
DC-bus voltage. The possib
ility of influencing the neutral
point p
o
tenti
a
l is ba
se
d
on the
cl
am
ped
ca
pa
cito
r voltage
U
Ca
. If the voltage
U
Ca
>U
PO
, the
clamp
ed
ca
p
a
citor voltag
e U
Ca
remai
n
s co
nsta
nt,
and
the cl
amped
capa
citor C
a
will
be
discha
rge
d
in
the next swi
t
ch
state. Ot
herwise the
voltage U
Ca
<U
PO
, the ca
pacito
r
C
a
wil
l
be
cha
r
ge
d alon
g with the p
a
th: P
→
S
1a
→
C
a
→
D
2a
→
O, as sh
own
in Figure 2
(
b), until the two
voltages
mee
t
the equ
atio
n U
Ca
=U
PO
. T
he ne
utral
po
int potential
o
f
DC-bu
s
i
s
t
here
b
y ri
sing
in
S
A
=1
+
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Optim
a
l Modulation Algo
rithm
for Hyb
r
id
Clam
ped Three-L
e
vel Inve
rter (Yi Liu
)
1255
2) S
A
=0
+
stat
e
In Figu
re 3
(
a
)
, if the ph
ase current i
a
i
s
p
o
sitive in
steady-state
con
d
ition, the
cu
rrent
flow alo
ng
wi
th the path:
P
→
S
1a
→
C
a
→
D
5a
→
A. On t
he contrary, the current path will become
A
→
S
3a
→
D
2a
→
C
1
→
P. Wh
atever the
direction
of i
a
, the pol
e A is
con
n
e
c
ted to
belo
w
poi
nt o
f
C
a
.
Thre
e-level i
n
verter h
a
s a
proble
m
that exce
ssive hi
gh voltage
s may be appli
ed to the po
we
r
swit
che
s
, wh
en the floatin
g mid-p
o
tenti
a
l varie
s
from
the neutral p
o
int potential.
In this state,
the
neutral
point
potential i
s
cha
nge
d consta
ntly
alo
ng with
cla
m
ped
cap
a
ci
tor charged
an
d
discha
rge
d
. If the voltag
e
U
Ca
>U
PO
, the
positive
point
P is conn
ect
ed to
up
point
of the
C
a
at
t
h
is
moment. An
d the C
a
wo
uld be di
sch
a
rge
d
alo
ng
with the path
:
A
→
S
3a
→
C
a
→
D
3a
, while
the
pha
se cur
r
e
n
t
i
a
is neg
ative. On the othe
r han
d if the
voltage U
Ca
<U
PO
, the C
a
would b
e
ch
arg
e
d
along
with th
e path: P
→
S
1a
→
C
a
→
D
2a
→
O, until the
two voltage
s meet the e
q
uation: U
Ca
=U
PO
.
The path of
clamped capacitor
charged and di
sc
harged i
s
illustrat
ed in
Figure
3(b). The out
put
voltage U
AO
is zero in S
A
=0
+
.
(a)
curre
n
t flow path
s
(b)
cha
r
ge/di
scha
rge
paths of C
a
(a)
curre
n
t flow path
s
(b)
cha
r
ge/di
scha
rge
paths of C
a
Figure 3. Dia
g
ram
s
of cu
rrent circuit an
d
clamp
ed cap
a
citor
state when S
A
=0
+
Figure 4. Dia
g
ram
s
of cu
rrent circuit an
d
clamp
ed cap
a
citor
state when S
A
=0
3) S
A
=0
-
st
at
e
In cont
ra
st to
the state
of S
A
=0
+
, the po
wer
swit
che
s
S
1a
, S
3a
are turned off
with S
2a
, S
4a
on. Whe
n
the
phase curre
n
t i
a
is positive in stea
dy-st
a
te con
d
ition,
the curre
n
t flow alo
ng wit
h
the path: Q
→
C
2
→
O
→
D
1a
→
S
2a
→
A. On the contrary, t
he current path will become
A
→
D
4a
→
C
a
→
S
4a
. The condu
ction
pa
th of current
is illu
strated
in Fig
u
re
4(a). Simila
rly, the
voltage a
c
ross the
cla
m
pe
d capa
citor U
Ca
is
a
n
a
l
yz
ed
. As
s
h
ow
n
in
F
i
g
u
r
e
4
(
b)
, if th
e
vo
ltage
U
Ca
>U
OQ
, the
C
a
would
be
discha
rge
d
al
ong
with th
e
path: D
6a
→
C
a
→
S
2a
→
A. On
the oth
e
r
ha
nd,
if the voltage
U
Ca
<U
OQ
, the C
a
will
be
cha
r
ge
d al
on
g with
the
pa
th: O
→
D
1a
→
C
a
→
S
4a
→
Q, until
the voltage of the U
Ca
has the sam
e
value as the voltage U
OQ
. The output voltage U
AO
betwee
n
the inverter p
o
le A and the
neutral poi
nt O of DC-bu
s
i
s
also ze
ro in
S
A
=0
−
.
4) S
A
=1
-
st
at
e
The cond
ucti
on path of current is p
r
e
s
en
ted in Figu
re
5(a
)
, and the
swit
che
s
S
1a
, S
2a
are
turned
off an
d S
3a
, S
4a
turned
on.
Unde
r ste
ady-state
co
ndition, if t
he p
h
a
s
e
cu
rrent i
a
is pos
i
tive,
the current flo
w
along
with the path: Q
→
D
6a
→
D
5a
→
A. Instead, the current flow pa
th will becom
e
A
→
S
3a
→
S
4a
→
Q, when i
a
is n
egative.
Whateve
r
the
dire
ction
of i
a
, the pole A
is
con
n
e
c
ted
to
negative p
o
in
t Q of the DC-b
us, h
a
vin
g
the follo
win
g
equ
ation
s
: U
AO
=U
QO
=-0.
5U
d
. In the same
way, if the
vo
ltage
U
Ca
>U
OQ
, the U
Ca
remains c
o
ns
tant.
And
the C
a
woul
d
be
di
scharged
in
the
next switch state. Otherwi
se, the voltage U
Ca
<U
OQ
, as sho
w
n in Figure 5(b
)
, the C
a
wo
uld be
cha
r
ge
d al
on
g with th
e p
a
t
h: O
→
D
1a
→
C
a
→
S
4a
→
Q,
until the two
voltages
mee
t
the equ
atio
n:
U
Ca
=U
OQ
. Th
e neutral p
o
in
t potential of the DC-b
us i
s
drop
ped
seq
u
entially in S
A
=1
−
.
(a)
c
u
rrent flow paths
(b) cha
r
ge/di
scha
rge
p
a
ths of
C
a
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1253 – 126
2
1256
Figure 5. Dia
g
ram
s
of cu
rrent circui
t an
d clamp
ed ca
pacito
r
state
whe
n
S
A
=1
-
Table 1. Swit
ch state
s
for
pha
se A of HCTLI
S
A
S
1a
S
2a
S
3a
S
4a
U
AO
1
+
ON
ON
OF
F
OF
F
0.5Ud
0
+
ON
OF
F
ON
OF
F
0
0
-
O
FF O
N
O
FF
O
N
0
1
-
O
FF
O
FF
O
N
O
N
-
0
.
5
U
d
To sum up, t
he switch sta
t
es of ph
ase
A
could
be
d
e
rived, an
d p
r
esented
in T
able 1.
Similarly, this operatin
g pri
n
cipl
e also a
pplie
s to
pha
se B and C.
Becau
s
e of four ki
nd
s of switch
states fo
r ea
ch p
h
a
s
e, th
e HCTLI cont
ains
4
3
=6
4 ki
nds
of switch
state combin
ations. It make
s
control compl
i
cated, but the cont
rol accuracy will be i
m
proved wi
th switch states increased.
3. DC-Bu
s Voltage
Balan
ce Analy
s
is
HCT
LI topolo
g
y has be
en
applie
d in me
dium and hi
g
h
voltage po
wer
appli
c
ati
ons d
ue
to the in
here
n
t advanta
g
e
s
[20]. However, it al
so
ha
s the p
r
obl
em
that the n
eutral poi
nt poten
tial
floated. It may lead to the issue that the powe
r
switch
es b
ear excessive hi
gh voltage. The
HCT
LI topolo
g
y sho
w
s th
at stable n
eutra
l point
potenti
a
l determi
ne
s whethe
r the
voltages of two
DC-bu
s
ca
pa
citors a
r
e
bal
anced o
r
n
o
t. In pra
c
tical
operation, th
e neut
ral p
o
i
n
t potential
would
fluctuate, lea
d
ing to these
two voltage
s of t
he DC-bu
s ca
pa
citors do not equal
compl
e
tely. Such
voltage fluct
uation
s
may also re
sult
in distor
tio
n
of the inverter output vol
t
ages, ha
rmo
n
ic
conte
n
t in
cre
a
se
d an
d d
e
crea
se i
n
the
o
u
tput e
fficie
n
c
y. Mean
whil
e, exce
ssive
high voltag
e t
hat
power
switch
device
s
wit
h
stoo
d woul
d ca
us
e the
device
itsel
f
brea
kd
own
and m
a
ke
the
system
atic re
liability redu
ced gre
a
tly [16, 21]. A
nd not only that, the
life span of capa
citan
c
e wi
ll
also be g
r
eat
ly reduced b
e
ca
use of se
vere ca
pa
ci
to
r voltages flu
c
tuation, which would gre
a
tly
damag
e AC d
r
ives. So it is importa
nt and
signifi
cant to balan
ce the
DC-bu
s
capa
citor voltage
s.
It is g
ene
rally
kn
own that
HCT
LI
contai
ns
64
kin
d
s o
f
swit
ch
state
s
co
rre
sp
ondi
ng to
64
voltage sp
ace vectors, but
among them
are some
re
dund
ant vect
ors. Th
e neut
ral point pote
n
tial
is p
r
ima
r
ily in
fluenced
by these
redu
nd
ant vecto
r
s g
enerated
at t
he o
u
tput of t
he inve
rter. T
h
e
distrib
u
tion of
voltage spa
c
e vectors is
pre
s
ente
d
in Figure 6. It h
a
s 64
kind
s
of voltage sp
ace
vectors, but
there a
r
e
on
ly 19 kind
s
of va
lid and
equivalent
voltage spa
c
e vectors aft
e
r
equivalent
tra
n
sformation, i
n
clu
d
ing
one
zero ve
ctor V
0
,
six
sm
all v
e
ct
or
s V
1
∼
V
6
, s
i
x
mid-
vec
t
or
s
V
7
∼
V
12
and si
x large
vecto
r
s V
13
∼
V
18
. Among
of the
m
, the vecto
r
V
0
contain
s
1
0
ki
nd
s of
swi
t
ch
states an
d
si
x swit
ch
stat
es fo
r e
a
ch
small ve
cto
r
, whil
e e
a
ch
mid-ve
ctor
correspon
ds to two
swit
ch state
s
and ea
ch la
rg
e vector
corre
s
po
nd
s to onl
y one.
Different
outp
u
ts of th
e inv
e
rter are g
e
n
e
rated
by vol
t
age
spa
c
e
vectors
ba
sed
on th
e
combi
nation
of 64
switch
states in
different ways.
Th
e an
alysi
s
of t
hese di
fferent
output
state
s
of
HCT
LI sho
w
s that there are only
seven output state
s
asso
ciated
wi
th the DC-bu
s ca
pacito
r
s and
the load. As
Figure 7 sh
o
w
s, the di
recti
on of t
he arro
ws in
dicates t
he dire
ction o
f
loop-current
.
0
V
13
V
7
V
14
V
8
V
15
V
9
V
16
V
10
V
17
V
11
V
18
V
12
V
6
V
5
V
4
V
3
V
2
V
1
V
(a)
(b)
(c
)
(d)
Figure 6. Dia
g
ram
of voltage sp
ace
vector di
strib
u
tion
(e)
(f)
(g)
Figure 7. Current path
s
un
der seven out
put states
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Optim
a
l Modulation Algo
rithm
for Hyb
r
id
Clam
ped Three-L
e
vel Inve
rter (Yi Liu
)
1257
The switch
states that correspon
d to
output states mentio
ne
d above are
sho
w
n
r
e
spec
tively:
(1) O
u
tput sta
t
e "a": 1
+
0
+
0
+
, 0
+
1
+
0
+
, 0
+
0
+
1
+
; (2) Output state "b": 1
+
1
+
0
+
, 1
+
0
+
1
+
, 0
+
1
+
1
+
;
(3) O
u
tput sta
t
e "c": 0
−
1
−
1
−
, 1
−
0
−
1
−
, 1
−
1
−
0
−
; (4) Output state "d": 1
−
0
−
0
−
, 0
−
1
−
0
−
, 0
−
0
−
1
−
;
(5)
Output
state "e": There are thi
r
ty si
x co
mbin
atio
ns
for switch states,
of whi
c
h small
v
e
ct
or
s 1
+
0
+
0
−
and 1
−
0
+
0
−
all have
six kinds
of com
b
i
nation
s
. Ho
wever, sm
all vectors 1
+
0
−
0
−
,
1
+
1
+
0
−
, 0
+
1
−
1
−
and 1
−
0
+
0
+
all have
three
kind
s. Me
anwhile, ea
ch of mid
-
ve
ctors 1
+
0
+
1
−
an
d
1
+
0
−
1
−
also h
a
s six
ki
nd
s o
f
combinat
io
n
s
;
(6) O
u
tput sta
t
e "f": 1
+
1
+
1
−
, 1
−
1
+
1
+
, 1
+
1
−
1
+
; (7) Output state "g": 1
+
1
−
1
−
, 1
−
1
+
1
−
, 1
−
1
−
1
+
.
Known f
r
om t
he analy
s
is
o
f
the above: (i) In
"a" and "
b
" output stat
es, the ne
utral point
potential ri
se
s, and the HCTLI output
s positive sm
all
vectors. The
load is only con
n
e
c
ted to the
cap
a
cit
o
r C
1
, which form
s a discharge
circuit. At this moment, the voltage of C
1
drop
s and the
other ri
se
s. (ii
)
In "c" and "d", the neutra
l point
potential drop
s, and
t
he HCTLI o
u
tputs ne
gati
v
e
small ve
ctors. The load i
s
only con
n
e
c
ted to C
2
, and
it forms a di
scharge
circu
i
t. In these two
states, the voltage of C
2
drops an
d the other ri
se
s. (i
ii) In
"e",
the HCT
LI output
s neutral sm
all
vectors a
nd
mid-ve
ctors.
The two cap
a
citors
C
1
an
d C
2
a
r
e b
o
t
h
co
nne
cted
to the load,
whi
c
h
con
s
tituting
t
w
o cha
r
ge
-di
s
charge circuits.
In
theory, the small
scale flu
c
tu
ation of neut
ral
potential can be
a
c
hieved by
some co
m
b
ination
s
of
n
eutral
small v
e
ctors a
nd m
i
d-vecto
r
s. (iv)
In "f" and "
g
", the ne
utral
point O
ha
s
no
con
n
e
c
ti
o
n
an
d n
o
cu
rrent to
the l
o
ad. In thi
s
ca
se,
large ve
ctors
are ge
ne
rate
d. At t
he same time, the load co
nne
cts t
he C
1
and
C
2
directly, whi
c
h
have the
sam
e
value in
ch
arge
-di
s
cha
r
g
e
time
and th
e avera
ge
cu
rre
nt of ch
arg
e
-di
s
cha
r
ge. I
n
theory, a
s
lo
ng a
s
th
ese t
w
o
ca
pa
citors h
a
ve the
same p
a
ramet
e
rs,
the
neutral poi
nt pote
n
tial
woul
d ke
ep consta
nt. Acco
rdingly, the n
eutral poi
nt
potential is not
affected by the larg
e vect
ors.
In
s
u
mma
r
y, s
e
le
c
t
ing
d
i
ffe
r
e
n
t
ve
c
t
or
s
to s
y
n
t
hes
ize
th
e r
e
fer
e
nc
e
vo
ltage
sp
ac
e
vectors will cause different
effe
cts on th
e neutral p
o
in
t potential.
4. Optimized
Modulation
Algorithm
Select the appropriate volt
age space vector
s is the
core issue of
SVPWM for HCTLI.
The hexag
on
al plane of th
ree
-
level voltage spa
c
e vector i
s
divid
ed into six small hexago
n
s
of
the same
shape in convent
ional modulat
i
on al
gorithm,
and then sol
v
ed by two-level SVPWM in
two-level volt
age spa
c
e vector pl
ane [
22]. Howe
ver, this conven
tional modul
ation algo
rith
m
need
s to furt
her divid
e
the
referen
c
e vol
t
age vecto
r
region
s, be
ca
use
of its inte
rse
c
tion
area
for
some ve
ctors. Figure 8(a)
sho
w
s a ne
w i
rre
gula
r
division method a
dopted in thi
s
paper.
(a) Ve
ctor pl
a
ne divisio
n
(S
=1, 2, 3, 4, 5
,
6)
V
V
(b)
Comp
ositi
on for the ref
e
ren
c
e voltag
e
vector in
sma
ll hexagonal
section S=1, small
triangle se
ction
N=1
Figure 8. Dia
g
ram
s
of vect
or plan
e divisi
on and ve
ctor compo
s
ition
Table 2. Swit
ch state
s
for
pha
se A
Num Sw
itch
states
1 1
+
0
+
0
+
→
1
+
0
+
1
-
→
1
+
1
-
1
-
→
0
-
1
-
1
-
2 1
+
0
+
0
+
→
1
+
0
+
1
-
→
1
+
1
-
1
-
→
0
+
1
-
1
-
3 1
+
0
-
0
-
→
1
+
0
-
1
-
→
1
+
1
-
1
-
→
0
-
1
-
1
-
4 1
+
0
-
0
-
→
1
+
0
-
1
-
→
1
+
1
-
1
-
→
0
+
1
-
1
-
5 1
+
0
-
0
+
→
1
+
0
-
1
-
→
1
+
1
-
1
-
→
0
-
1
-
1
-
6 1
+
0
-
0
+
→
1
+
0
-
1
-
→
1
+
1
-
1
-
→
0
+
1
-
1
-
7 1
+
0
+
0
-
→
1
+
0
+
1
-
→
1
+
1
-
1
-
→
0
-
1
-
1
-
8 1
+
0
+
0
-
→
1
+
0
+
1
-
→
1
+
1
-
1
-
→
0
+
1
-
1
-
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1253 – 126
2
1258
The ve
ctor
pl
ane
s (S
=
1,
2, 3, 4, 5, 6
)
ar
e
divided to
en
sure the
referen
c
e
vect
or
can
be
assign
ed to a unique two
-
l
e
vel voltage spa
c
e ve
ctor
plane. Ta
ke the vector pl
a
ne divided (small
hexagonal section
S
=
1, sm
all
triang
le
section
N=1) as an example
t
o
illust
rate
and calculate the
swit
ch o
p
e
r
a
t
ion time of
voltage vect
ors sele
cted.
This t
r
iangl
e dem
arcate
s the valid
and
reali
z
abl
e location for the reference voltage
vector. For HCTLI, SVPWM is implemented by
synthe
sizi
ng
the referen
c
e
vector u
s
ing
the thr
ee ne
are
s
t vectors forming a tri
angle a
r
ou
nd
it.
As sho
w
n i
n
Figure 8
(
b
)
,
whe
n
the
ref
e
ren
c
e
voltag
e vecto
r
V
ref
l
i
es to
the first
regi
on
N=1,
the
V
ref
can be
joi
n
tly synthesi
z
ed
by three v
o
ltage ve
ctors V
1
, V
7
and
V
13
. Accordi
n
g to the p
r
in
ci
ple
of Volt-se
c
on
d balan
ce, th
e ope
ration ti
mes of V
1
, V
7
and V
13
wo
uld be de
rive
d at a sampli
ng
period through the voltage
vectors correction and tw
o-level SVPWM algorithm.
In Figure 8
(
b
)
, the vector V'
ref
is correcte
d by V
ref
and V
1
as
the following func
tion.
1
V
V
V
ref
ref
(1)
Then, the Vol
t
-se
c
on
d bala
n
ce for th
e co
rre
ct refe
ren
c
e voltage ca
n
be expre
s
se
d as:
2
13
1
7
0
1
2
/
T
V
T
V
T
V
T
V
s
ref
(2)
HCT
LI has 1
9
kind
s of valid and eq
uiva
l
ent states of the followi
ng type:
T
C
B
A
ABC
S
S
S
S
(3)
S
w
it
ch st
at
e
s
S
X
(x=
A
,B,C) tak
e
values
in{1
+
, 0
+
or 0
−
, 1
−
} p
r
e
s
entin
g the
per unit
voltag
e
of the phase with re
spe
c
t to the neutral
point.
Phase t
o
neutral p
o
in
t voltages are
given by:
T
C
B
A
d
T
CO
BO
AO
S
S
S
U
U
U
U
5
.
0
(4)
Thus, th
ese
voltages
co
ul
d be
conve
r
t
ed into the
α
-
β
coo
r
dinate
usin
g the fo
llowing
transfo
rmatio
n:
CO
BO
AO
ref
ref
U
U
U
V
V
2
3
2
3
0
2
1
2
1
1
(5)
The co
rrespo
nding op
eration times (T
0
, T
1
and T
2
) of V
1
, V
7
and V
13
are derived by
equatio
ns (1)~ (5
) re
spe
c
ti
vely as follows:
d
s
ref
s
d
s
ref
d
s
ref
s
U
T
V
T
U
T
V
T
U
T
V
T
T
T
T
T
2
3
3
2
3
5
.
4
3
3
2
1
2
1
0
(6)
Whe
r
e: T
S
is the sam
p
ling
perio
d, V
ref
α
and
V
ref
β
are the com
pon
en
ts of V
ref
in
α
,
β
axis
.
In orde
r to a
d
just the n
e
u
t
ral point pot
ent
ial fluctuat
ions, the
con
v
entional mo
dulation
algorith
m
gen
erally dete
c
ts the voltages
of DC
-bu
s
ca
pacito
r
s
and t
he cla
m
ped
capa
citors, an
d
then combin
e
s
the p
o
sitive
and n
egative
small ve
ctor
s
to make it
co
me true.
Ho
wever, It may be
equivalent to a hystereti
c
regulato
r
, whi
c
h appli
e
s o
n
l
y
to
the case of DC-bu
s voltage imbala
n
c
e.
The effect
s of
the clam
ped
cap
a
cito
rs
an
d the
neut
ral
small ve
ctors are ig
nored i
n
co
nvention
a
l
modulatio
n. Thus, ta
kin
g
fully accoun
t of t
he cla
m
ped
ca
paci
t
ors
ch
argi
ng
and di
scha
rgin
g
effects, a new voltage vector
selection method to synthesi
z
e
the reference vector of SVPWM
algorith
m
is p
r
opo
se
d in thi
s
pap
er. Fu
rtherm
o
re,
cho
o
sin
g
differe
n
t
appro
p
riate
combi
nation
s
of
neutral
small
vectors ma
ke
s voltage vect
or sel
e
ctio
n impleme
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Optim
a
l Modulation Algo
rithm
for Hyb
r
id
Clam
ped Three-L
e
vel Inve
rter (Yi Liu
)
1259
Take th
e ref
e
ren
c
e volta
ge V
ref
sho
w
n in Figu
re
8(b
)
for exa
m
ple to an
al
yze. As
mentione
d a
bove, the referen
c
e volta
g
e
vecto
r
V
ref
can
be joi
n
tly synthe
sized
by three volt
age
v
e
ct
or
s V
1
, V
7
and
V
13
us
ing the method of
seven
s
egment
c
onfiguration.
For SVPWM, t
h
e
seq
uen
ce of these three vo
ltage vectors
applie
d duri
n
g a swit
chin
g cycle i
s
as fol
l
ows:
V
1
→
V
7
→
V
13
→
V
1
→
V
13
→
V
7
→
V
1
In the corre
s
pondi
ng six switch
states
of small vect
or V
1
, both the positive sm
all vector
state {1
+
0
+
0
+
}
and neg
ative small vecto
r
state {0
−
1
−
1
−
} have a sig
n
ificant impa
ct on the neu
tra
l
point pote
n
tia
l
, and othe
rs
are n
eutral small vecto
r
st
ates{
1
+
0
+
0
−
, 1
+
0
−
0
+
, 1
+
0
−
0
−
, 0
+
1
−
1
−
}. Mid-
v
e
ct
or
s h
a
v
e
t
w
o
kin
d
s
of
st
at
e
s
{1
+
0
−
1
−
, 1
+
0
+
1
−
}, wh
ile large ve
ct
or h
a
s only
o
ne
swit
ch
sta
t
e.
Therefore,
ei
ght kin
d
s of vector
state
s
seque
nces to
synthe
size
re
feren
c
e volta
ge vecto
r
co
uld
be obtain
ed a
s
sh
own in Table 2.
In ord
e
r to
en
sure that e
a
ch switch
stat
e ch
ang
e ma
ke
s only
one
power
switch
turn
o
n
or off, appropriate switch state should be sele
cted f
r
om the neutral
small vector
and mid-vect
or
to meet the n
eed. For th
e first of the swi
t
ch st
ate
seq
uen
ce
s, the same
chan
ges of three-pha
se
swit
ch state
s
are bet
wee
n
S
1x
and S
4x
(x = a, b, c).
And the fou
r
th of the swi
t
ch state
s
, the
cha
nge
s of t
h
ree
-
p
h
a
s
e p
o
we
r switch
states
are
be
tween S
2x
and S
3x
(x=a, b, c). Con
s
ide
r
i
ng
the po
we
r
switch
devices S
2a
and S
3a
ca
n not tu
rn
on
simulta
n
eou
sly be
cau
s
e
of the
HCTLI
topology, the
AC loa
d
cu
rre
nt flows t
h
rou
gh th
e p
r
imary
ch
ann
el of 1
+
a
nd 1
−
. In order to
improve the
quality of AC curre
n
t wav
e
form a
nd
re
duce switch l
o
sse
s
of po
wer switch dev
ice
s
S
2x
and S
3x
(x = a,
b, c), i
n
the m
eanti
m
e, takin
g
th
e fluctu
ation
s
of the
clam
p
ed
cap
a
cito
r i
n
to
accou
n
t, this pape
r choo
se
s the first se
quen
ce to
synthesi
z
e the
referen
c
e volt
age vecto
r
. T
h
e
first se
quen
ce of switch st
ates with
corresp
ondi
ng op
eration time
s
is sh
own as f
o
llow:
Similarly, the other ve
ctor seq
uen
ce
s
w
oul
d be g
o
t to synthe
size the voltage
spa
c
e
vectors in ot
her diffe
rent
se
ction
s
of the ve
cto
r
pl
ane follo
wing
the prin
cipl
e
prop
osed. T
he
s
e
quenc
e
s
of
c
o
rres
ponding s
w
it
c
h
s
t
ates
for SVPWM algorithm are s
h
own in Table 3.
Table 3. Swit
c
h
s
t
ates
sequenc
e
s
for SVPWM
Small
Sectio
ns
Sw
itch states sequences
S=1 S=2
S=3
N=1
1
+
0
+
0
+
→
1
+
0
+
1
-
→
1
+
1
-
1
-
→
0
-
1
-
1
-
1
+
1
+
0
+
→
1
+
1
+
1
-
→
1
+
0
-
1
-
→
0
-
0
-
1
-
0
+
1
+
0
+
→
0
+
1
+
1
-
→
0
+
0
-
1
-
→
1
-
0
-
1
-
N=2
1
+
0
+
0
+
→
1
+
0
+
1
-
→
0
-
0
+
1
-
→
0
-
1
-
1
-
1
+
1
+
0
+
→
1
+
1
+
1
-
→
0
-
1
+
1
-
→
0
-
0
-
1
-
0
+
1
+
0
+
→
0
+
1
+
1
-
→
1
-
1
+
1
-
→
1
-
0
-
1
-
N=3
1
+
0
+
0
+
→
0
-
0
+
0
+
→
0
-
0
+
1
-
→
0
-
1
-
1
-
1
+
1
+
0
+
→
0
-
1
+
0
+
→
0
-
1
+
1
-
→
0
-
0
-
1
-
0
+
1
+
0
+
→
1
-
1
+
0
+
→
1
-
1
+
1
-
→
1
-
0
-
1
-
N=4
1
+
0
+
0
+
→
0
-
0
+
0
+
→
0
-
1
-
0
+
→
0
-
1
-
1
-
1
+
1
+
0
+
→
0
-
1
+
0
+
→
0
-
0
-
0
+
→
0
-
0
-
1
-
0
+
1
+
0
+
→
1
-
1
+
0
+
→
1
-
0
-
0
+
→
1
-
0
-
1
-
N=5
1
+
0
+
0
+
→
1
+
1
-
0
+
→
0
-
1
-
0
+
→
0
-
1
-
1
-
1
+
1
+
0
+
→
1
+
0
-
0
+
→
0
-
0
-
0
+
→
0
-
0
-
1
-
0
+
1
+
0
+
→
0
+
0
-
0
+
→
1
-
0
-
0
+
→
1
-
0
-
1
-
N=6
1
+
0
+
0
+
→
1
+
1
-
0
+
→
1
+
1
-
1
-
→
0
-
1
-
1
-
1
+
1
+
0
+
→
1
+
0
-
0
+
→
1
+
0
-
1
-
→
0
-
0
-
1
-
0
+
1
+
0
+
→
0
+
0
-
0
+
→
0
+
0
-
1
-
→
1
-
0
-
1
-
S=4
S=5
S=6
N=1
0
+
1
+
1
+
→
0
+
1
+
0
-
→
0
+
0
-
0
-
→
1
-
0
-
0
-
0
+
0
+
1
+
→
0
+
0
+
0
-
→
0
+
1
-
0
-
→
1
-
1
-
0
-
1
+
0
+
1
+
→
1
+
0
+
0
-
→
1
+
1
-
0
-
→
0
-
1
-
0
-
N=2
0
+
1
+
1
+
→
0
+
1
+
0
-
→
1
-
1
+
0
-
→
1
-
0
-
0
-
0
+
0
+
1
+
→
0
+
0
+
0
-
→
1
-
0
+
0
-
→
1
-
1
-
0
-
1
+
0
+
1
+
→
1
+
0
+
0
-
→
0
-
0
+
0
-
→
0
-
1
-
0
-
N=3
0
+
1
+
1
+
→
1
-
1
+
1
+
→
1
-
1
+
0
-
→
1
-
0
-
0
-
0
+
0
+
1
+
→
1
-
0
+
1
+
→
1
-
0
+
0
-
→
1
-
1
-
0
-
1
+
0
+
1
+
→
0
-
0
+
1
+
→
0
-
0
+
0
-
→
0
-
1
-
0
-
N=4
0
+
1
+
1
+
→
1
-
1
+
1
+
→
1
-
0
-
1
+
→
1
-
0
-
0
-
0
+
0
+
1
+
→
1
-
0
+
1
+
→
1
-
1
-
1
+
→
1
-
1
-
0
-
1
+
0
+
1
+
→
0
-
0
+
1
+
→
0
-
1
-
1
+
→
0
-
1
-
0
-
N=5
0
+
1
+
1
+
→
0
+
0
-
1
+
→
1
-
0
-
1
+
→
1
-
0
-
0
-
0
+
0
+
1
+
→
0
+
1
-
1
+
→
1
-
1
-
1
+
→
1
-
1
-
0
-
1
+
0
+
1
+
→
1
+
1
-
1
+
→
0
-
1
-
1
+
→
0
-
1
-
0
-
N=6
0
+
1
+
1
+
→
0
+
0
-
1
+
→
0
+
0
-
0
-
→
1
-
0
-
0
-
0
+
0
+
1
+
→
0
+
1
-
1
+
→
0
+
1
-
0
-
→
1
-
1
-
0
-
1
+
0
+
1
+
→
1
+
1
-
1
+
→
1
+
1
-
0
-
→
0
-
1
-
0
-
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1253 – 126
2
1260
In the
same
way, op
eratio
n times of
co
rre
sp
ondi
ng
vectors in
ab
ove re
gion
s
coul
d b
e
obtaine
d by the method p
r
opo
sed. The
n
,
the pulses
t
o
control the swit
ch devi
c
e
s
on-off could
be
acquired based on SVPWM pri
n
ci
ple. T
he optimi
zed
modulation not only
ca
n m
e
et
the need to
synthe
size th
e voltage
spa
c
e ve
cto
r
s a
s
a p
r
e
c
on
dition, but
also
can
bal
an
ce t
he n
eutral
po
int
potential aut
omatically. In addition to, it has good
features of redu
cin
g
the
switch lo
sses,
decrea
s
in
g switch freque
n
c
y of S
2x
and
S
3x
.
5. Simulation and Experi
ment
A detailed si
mulation for
HCT
LI has b
een built
to verify the feasibility of
the
prop
osed
algorith
m
ba
sed on Matlab/
Simulink. The
main par
ame
t
ers of sim
u
la
tion are liste
d
in Table 4.
Figure 9
sho
w
s th
e
simul
a
tion waveforms of
HCTLI
unde
r
stead
y-state o
pera
t
ion. The
modulate
d
p
o
le to pole v
o
ltage U
AB
a
nd the outp
u
t
current i
a
a
r
e sho
w
n in
Figure 9(a) a
n
d
Figure 9
(
b) separately, an
d the to
tal
ha
rmoni
c di
sto
r
tion of the
me
asu
r
ed
curre
n
t is 3.9
8
%.
DC-
bus ca
pa
citors
(C
1
, C
2
) volt
age
s and th
e
neutral
point
potential
fluctuations are shown
in
Fig
u
re
9(c)
and
Fig
u
re
9(d). It i
s
o
b
served
that the
vo
ltag
e
s
o
f
two
D
C
-
b
us
c
a
p
a
c
i
to
rs
ar
e a
l
mo
s
t
balan
ce. The
fluctuation of
the neutral p
o
i
nt
potential is very small, nearly ±5V.
Table 4. Main
simulation p
a
ram
e
ters of HCT
LI
DC-bus voltage(V)
1140
Resistance load(
Ω
) 5
Inductance load(H)
1e
-3
DC-bus capacito
r
s (
μ
F) 4700*2
Clamped capacitors(
μ
F) 1200*3
Sw
itch freq
uenc
y (Hz)
2000
(a) T
he mod
u
l
ated voltage
U
AB
(b) T
h
e outpu
t sinusoidal li
ne cu
rrent i
a
(c) Voltage
s of DC-bu
s ca
pacito
r
s
(d) Flu
c
tuatio
ns of neut
ral point potentia
l
Figure 9. Simulation of voltage an
d cu
rrent,
DC-bu
s
voltage
s and n
e
utral poi
nt voltage
T
h
e
pr
op
os
ed
a
l
go
r
i
th
m is
a
l
s
o
ve
r
i
fied
via expe
ri
mental
re
sult
s of
a 1M
W
prototype
based
up
on DSP
and CP
LD/FPGA structure.
Exper
imental
mea
s
urem
ents un
der steady state
are
re
corded
in Figu
re 1
0
, whi
c
h
sh
ows the
wa
veforms
of HCT
LI ne
utral point p
o
te
ntial
fluctuation
s
i
n
Figure 10(a), pow
er switch devices
turn-off over
-voltages in F
i
gure 1
0
(b
) a
nd
output load
current in Figu
re 10
(c).
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Optim
a
l Modulation Algo
rithm
for Hyb
r
id
Clam
ped Three-L
e
vel Inve
rter (Yi Liu
)
1261
(a)
Wavefo
rm
s of the neutral point poten
tial
(b) T
u
rn
-off o
v
er-v
oltag
e
(c) Output load c
u
rrent
Figure 10. Di
agra
m
s of ne
utral point vol
t
age, ov
er-vol
tage in cuttin
g
off and cu
rrent curve
s
Similar to the
simulatio
n
re
sults, th
e DC-bus
volta
ge i
s
stable
an
d th
e ratio
of the
neutral
point pote
n
tial fluctuatio
n
is very
smal
l. As sh
own i
n
Figu
re 1
0
(a), the n
eutral point p
o
te
ntial
fluctuation i
s
±42V, and the DC rippl
e
coeffici
e
n
t is 3.75% mea
s
ured in the
experim
ent. The
waveform di
splay goo
d loa
d
cu
rrent si
n
u
soi
dal, while
cont
rolling th
e po
wer
switch d
e
vice
s tu
rn-
off over-volta
ge effectively. The turn-off
over-voltage
of the powe
r
swit
ch devi
c
e S
1a
is abo
ut
200V, when
the load
current is
305A.
Experime
n
t
fully illustrate
d this
optimi
z
ed
mod
u
lati
on
strategy i
s
ab
le to meet the need
s of DC-b
us
voltag
e balan
ce, ef
fectively redu
cing the n
eut
ral
point potentia
l volatility and turn-o
ff over-voltage of po
wer
swit
ch.
6. Conclusio
n
The hybri
d
cl
amped th
ree
-
level inverter and the ope
rating conditi
ons
corre
s
p
o
nding to
power
swit
ch
states
we
re
pre
s
ente
d
in
this pa
per. T
he ba
si
c of the DC-bu
s
capa
citor volta
g
e
s
balan
cing
wa
s an
alyze
d
. A new SVP
WM
control a
l
gorithm
wa
s
prop
osed to
ensure
bala
n
c
ing
the DC-bu
s
cap
a
cito
r voltage
s and ou
tputting sinu
soidal cu
rrent
are met ba
sed o
n
different
optimal com
b
ination of neu
tral small vect
ors
wit
hout the use of three
clampe
d cap
a
citor voltag
e
s
measured in
this pa
pe
r. T
he op
erated
seq
uen
ce
s of
swit
ch
state
s
for this
opti
m
al mod
u
lati
on
algorithm has been detailed pres
ented.
The functionality of the optimal SVPWM
algorithm was
proven
with si
mulation
s an experim
ents
of a 1 MW
laborato
r
y prot
otype. The match between
the
s
i
mulation and experiment
al res
u
lt
s
validates
the the optimal SVPWM
algorit
hm. The hybrid
clamp
ed th
re
e-level inve
rter is
able to
maintain b
a
la
nce
d
DC-bu
s
cap
a
cito
r vol
t
ages
and m
a
ke
lowe
r turn
-off over-volta
ge. Furthe
rmo
r
e,
it
provides b
e
tter sinu
soid
a
l
output load
curre
n
t.
Referen
ces
[1]
Lai
JS, Pe
ng
F
Z
.
Multileve
l
converters
-
a
ne
w
br
ee
d
of po
w
e
r c
onv
er
ters.
IEEE Transactions
on
Industry Appl
ic
ations
. 19
96; 3
2
(3): 509-
51
7.
[2]
Suroso NF
N,
Noguc
hi T
.
F
i
ve-Level
Co
mmon-E
m
itter Inverter Using Re
verse-Bl
ockin
g
IGB
T
s
.
T
E
LKOMNIKA T
e
leco
mmu
n
icati
on C
o
mputi
ng El
ectronics a
nd Co
n
t
rol
. 2012; 10(
1): 25-32.
[3]
Rodri
g
u
e
z J, L
a
i JS, Pen
g
FZ. Multilev
e
l i
n
v
e
rter
s, a surve
y
of to
pol
og
ies,
controls, a
nd
app
licati
ons.
IEEE Trans. In
dustry Applications
. 200
1; 49(
4): 724-7
38.
[4]
Rao GN, Raju
PS, Sekhar KC. Mu
ltileve
l Inverter Based Ac
tive Po
w
e
r Filt
er for Harmon
i
c Elimin
ation.
Internatio
na
l Journ
a
l of Pow
e
r Electronics &
Drive Syste
m
s
. 2013; 3(3): 5
6
-
63.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1253 – 126
2
1262
[5]
Holtz J, Qi
X.
Optimal
co
ntrol
of med
i
um-vo
l
tage
drives
ł
-an
overvi
e
w
.
IEE
E
T
r
ansacti
ons
on In
dustry
Electron
ics
. 20
13; 60(1
2
): 547
2-54
81.
[6]
Akagi H, Hata
d
a
T
.
Voltage b
a
la
ncin
g contro
l fo
r a three-lev
e
l di
ode-c
l
amp
ed conv
erter in
a medium-
voltag
e transfo
rmer-less
h
y
bri
d
active
filter.
IEEE Transactions on P
o
wer Electronics
. 2
009;
24(5)
:
571-
579.
[7]
Ng C
H
, Parker
MA, Ran
L, T
a
vner PJ, B
u
m
b
y JR. A mu
ltil
evel m
o
d
u
lar c
onverter f
o
r a
larg
e li
gh
t
w
e
ig
ht
w
i
n
d
turbin
e ge
nerator.
IEEE Transactions on Power Electronics
. 20
08; 23(3): 1
062
-107
4.
[8]
Haith
a
m AR,
Holtz J,
Rodr
i
guez
J, Ge B.
Med
i
um-vo
l
ta
ge m
u
ltil
evel
c
onverters-state
of the
art,
chall
e
n
ges,
an
d req
u
ir
ements
in
ind
u
stria
l
a
pplic
atio
ns.
IEEE Transactions on Industry Electronics.
201
0; 57(8): 25
81-2
596.
[9]
Mathe
w
J, Rajeevan PP,
Mat
hew
K
,
Azeez
NA, Gopak
um
ar K.
Multi
l
ev
el
do
deca
g
o
nal
voltag
e sp
ace
vector ge
ner
ati
on us
in
g flyi
ng
capac
itor
to
p
o
lo
gy for i
n
d
u
c
t
ion
motor
driv
es
. in Pr
oc. IEEE Ener
gy
Conv
ersio
n
Co
ngress a
nd E
x
posit
i
on (ECC
E). 2012: 11
36
-114
2.
[10]
Nab
ea A,
T
a
kahas
hi I, Akagi
H.
A ne
w
ne
u
t
ral point clam
ped PW
M inve
rter.
IEEE Transactions
on
Industry Appl
ic
ations.
19
81; 1
7
(5): 518-
52
3.
[11]
Bharatir
aja C, Rag
hu
S.
C
o
m
parativ
e An
al
ysis of Differe
nt
PW
M
T
e
chniq
ues to R
e
d
u
ce
the Comm
on
Mode V
o
ltag
e
in T
h
ree-Lev
el
Neutral-P
o
i
n
t-Clamp
ed
Inv
e
r
t
ers for Varia
b
l
e
Spe
ed In
duc
tion Driv
es.
Internatio
na
l Journ
a
l of Electr
ical & Co
mpute
r
Engin
eeri
n
g
.
201
3; 3(1): 105
-116.
[12]
Z
hang
YC, Z
h
ao Z
M
, Z
h
u
JG. A h
y
br
id
PW
M ap
pli
e
d
to h
i
gh-p
o
w
e
r
thre
e
-
level
i
n
verter f
ed
ind
u
ctio
n-
motor drives.
IEEE Transactions on Industrial Electronics
. 201
1; 58(8): 34
09-3
420.
[13]
Khaj
eho
dd
in S
A
, Bakhshai A,
Jain PK. A simp
le vo
ltag
e bal
anci
ng sch
eme
for M-level di
o
de-cl
ampe
d
multilev
e
l co
nv
erters on a
ge
nera
lize
d
curre
nt flo
w
mod
e
l.
IEEE Transactions on Power Electronic
.
200
8; 23(5): 22
48-2
259.
[14]
Verne
SA, Go
nzal
ez SA, Va
l
l
a MI.
An
opti
m
i
z
at
io
n a
l
gor
ith
m
for c
a
p
a
citor
voltag
e
bal
an
ce of N-
leve
l
d
i
od
e
cl
am
pe
d i
n
ve
rte
r
s
. In
P
r
oc. IEEE Conf
erenc
e o
n
Ind
u
s
trial El
ectroni
cs. Orlando, Fl
orid
a, USA.
200
8: 320
1-32
06.
[15]
Vasee
e
S, Sa
nkerram BV. V
o
ltag
e Bal
anc
i
ng C
ontrol Str
a
teg
y
i
n
Co
nv
erter S
y
st
em for T
h
ree-Leve
l
Inverters.
Internatio
nal J
ourn
a
l of Electrica
l
& Computer E
ngi
neer
in
g
. 20
13; 3(1): 7-14.
[16]
Gupta AK, Kh
amba
dkon
e A
M
.
A simple s
pace v
e
ctor P
W
M scheme to op
erate a t
h
ree-lev
e
l N
P
C
inverter at h
i
g
h
modul
atio
n in
de
x inc
l
u
d
in
g o
v
er m
odu
lati
on
regio
n
w
i
th
ne
utral po
int b
a
la
ncin
g.
IEEE
T
r
ansactio
n
s o
n
Industry App
l
icatio
ns
. 200
7; 43(3): 75
1-7
6
0
.
[17]
Chav
es M, Ma
rgato E,
Silv
a
JF
, Pinto SF
.
Ne
w
ap
pro
a
ch
in
back-t
o
-ba
ck M-lev
el
dio
de-cl
ampe
d
multilev
e
l c
onv
erter mo
del
lin
g a
nd
dire
ct c
u
rrent
bus v
o
lt
ages
ba
la
ncin
g.
IET Power
Electronics
,
201
0, 3(4): 578
-589.
[18]
Ning
DL, T
ong
XQ, She
n
M, Xi
a W
.
T
he ex
peri
m
e
n
ts of v
o
ltag
e ba
la
ncin
g metho
d
s in I
G
BT
s series
conn
ectio
n
.
In Proc. IEEE Conference
on
Asia-Pac
ific
P
o
w
e
r and E
n
ergy
E
n
gi
neering.
Chengdu,
Chin
a. 20
10: 1
-
4.
[19]
Kim YS, S
eo B
S
, H
y
un
DS.
A
nove
l
structur
e
of
mu
ltil
evel
hi
gh v
o
lta
ge s
o
u
r
ce i
n
verter
. In
Proc. IEEE
Confer
ence o
n
Computer, C
o
mmunic
a
tio
n
, Control
an
d Po
w
e
r En
gin
e
e
rin
g
. Beiji
ng, Chin
a. 199
3:
503-
508.
[20]
Z
hao J,
He
X,
Z
hao
R. A
no
vel PW
M co
ntrol
met
hod
for
h
y
bri
d
-clam
p
e
d
multi
l
ev
el
inv
e
rters.
IEEE
T
r
ans. Industri
a
l Electro
n
ics
, 201
0; 57(7): 23
65-2
373.
[21]
Cela
nov
ic N, Boro
yev
i
ch D.
A compreh
e
n
s
ive
stud
y of
neutra
l-po
int v
o
lt
ag
e ba
la
nci
ng pro
b
l
e
m in
three-l
e
vel ne
utral-p
o
int-cl
a
m
ped
v
o
ltag
e
source PW
M
inverters.
IE
EE T
r
ansactio
n
s on P
o
w
e
r
Electron
ics
. 20
00; 15(2): 2
42-
249.
[22]
Seo J
H
, Ch
an
g HC,
Do
ng
S
H
. A n
e
w
s
i
mp
lified
sp
ace-v
e
ctor PW
M met
hod
for thr
ee-l
e
vel
inv
e
rter.
IEEE Transactions on on Power Electronics
. 200
1; 16(4): 54
5-55
0.
Evaluation Warning : The document was created with Spire.PDF for Python.