TELKOM
NIKA
, Vol.16, No
.2, April 2018
, pp. 488~4
9
4
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v16i2.8700
488
Re
cei
v
ed Se
ptem
ber 16, 2017; Revi
se
d Jan
uary 28,
2018; Accept
ed Feb
r
ua
ry
19, 2018
Alternative Grounding Method Using Coconut Shell
Charcoal as Media of Mesh Electrodes
Moch. Dho
f
ir
*, Rini Nur Hasana
h
, Had
i
Su
y
ono, A
v
rizal Riv
a
Belan
Dep
a
rtment of Electrical E
ngi
neer
i
ng, F
a
cult
y of Eng
i
ne
eri
n
g, Bra
w
ij
a
y
a U
n
iversit
y
, Mal
a
ng, Indo
nesi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: dhofir@
y
a
h
o
o
.com
A
b
st
r
a
ct
T
he util
i
z
a
t
io
n
of coc
o
n
u
t c
harco
al
as
alt
e
r
nativ
e
me
di
a
of gr
ou
ndi
ng
w
a
s inv
e
stig
a
t
ed. T
he
mes
h
-el
e
ctrod
e
w
a
s made
of stainl
ess steel
of 8-
mm
dia
m
eter, w
hereas its l
a
ttice
di
me
nsio
n w
a
s
50c
mx5
0
c
m
. Four vari
ations
of lattice nu
mb
er w
e
re c
onsid
ered, i.e. 1-, 2-, and 4-
l
a
ttice structures. Dry a
n
d
w
e
t charcoal
me
di
a w
e
re co
nsid
ered. Mes
h
locati
on
w
a
s
fixed in the
d
epth of
80c
m
und
er the gro
u
nd,
w
h
ile the 1
0
c
m
of med
i
u
m
thic
kness vari
atio
n
w
a
s c
hosen. T
he resista
n
ce o
b
tain
ed us
ing
1
0
-cm thick
ness
of charco
al lay
e
r in a
mes
h
c
onsisti
ng of 1-,
2-, and
4-l
a
ttic
e
s w
e
re 268, 1
31, an
d 78
oh
ms co
nsecutiv
ely.
T
he ad
ditio
n
o
f
layer up to
8
0
-cm r
e
sulte
d
i
n
a re
sista
n
ce
decreas
e of 4
8
%, 33
%, and
44%. Usi
ng w
e
t
charco
al, the 1
0
-cm l
a
yer pro
duce
d
26.5, 17
.5, and 14.
8 o
h
m
s of gro
und
in
g resistanc
e a
nd a red
u
ctio
n of
25%, 10
%, and
3.6% subse
q
u
ently for 1-, 2-, and 4-
lattice
mesh structure if
the layer thick
ness w
a
s 80 cm.
Ke
y
w
ords
:
alt
e
rnativ
e medi
a
,
coconut charc
oal, mesh gr
ou
ndi
ng
Copy
right
©
2018 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Co
con
u
t shel
l can be
cat
egori
z
e
d
as
hard
w
o
od wit
h
chemi
c
al
compo
s
ition si
milar to
woo
d
whi
c
h
is
co
mpo
s
e
d
of lig
nin,
cellul
o
se an
d hemi
c
ell
u
l
o
se.
Wh
en
subj
ecte
d to
heat
treatment, its
orga
nic m
o
le
cule
conte
n
t can p
r
o
d
u
c
e
carbon
(C) in
the form of ch
arcoal (ch
a
r) [1-
2]. Cha
r
a
c
teristics of
cha
r
co
al o
r
igin
ating fr
om
nat
ural
su
bsta
n
c
e
s
de
pen
d
stron
g
ly on i
t
s
conditions during the
carbonizati
on
process. A
m
ong them i
s
the
t
e
mperature, whi
c
h will cause
the increa
se
of its elect
r
ical con
d
u
c
tivity w
hen it is i
n
crea
sing [1
-2]. Results of
anothe
r stu
d
y
indicated that
the AC
con
d
u
ctivity starte
d to
incre
a
se
at the ca
rb
oni
zation te
mpe
r
ature
of 400
o
C
[3-5].
Grou
nd
re
si
stance i
s
hi
ghl
y variable
an
d g
r
eat
ly influ
enced
by the
clim
ate a
nd
weath
e
r
cha
nge
s. It is a fun
c
tion
of
the content
of ele
c
trol
yte,
water,
mine
ra
l and
salt in t
he
soil [6
-10].
A
site locatio
n
with high resi
stivity will generat
e high earthi
ng resi
stan
ce v
a
lue. Gro
u
n
d
ing
resi
stan
ce
co
uld b
e
lo
we
red by
addi
n
g
coconut
sh
ell charco
al
whi
c
h
had
a
relatively
small
resi
stivity [3-4,10]. Lo
w
groundi
ng
re
sistance
could
a
l
so be
obtain
ed
u
s
in
g co
coa shell
cha
r
coal
whi
c
h al
so h
a
s lo
w re
si
stivity
[3,11]. The use of
ri
ce
husk was al
so prove
n
to be useful to lo
we
r
the gro
undi
ng
re
sistan
ce
of plate ele
c
tro
des [1
2]. The
numbe
r of la
ttices to b
e
u
s
ed i
n
the me
sh
grou
ndin
g
infl
uen
ced
its
re
sista
n
ce valu
e [13-14].
Increa
sing
the
n
u
mbe
r
of l
a
ttice
s of th
e
sa
me
size wo
uld re
duce gro
undi
ng re
sista
n
ce
. This pap
er
pre
s
ent
s the
investigatio
n results on th
e
benefit of co
conut sh
ell ch
arcoal
a
s
alte
rnative medi
a
to redu
ce the
groun
ding m
e
sh resi
stan
ce.
2. Rese
arch
Metho
d
2.1. Groundi
ng Model
The mo
del of
mesh
-ele
ctro
de groun
ding
resi
st
an
ce
was d
e
rived by
adopting th
at of rod-
electrode g
r
o
undin
g
whi
c
h
was po
sitio
ned ho
rizont
ally, as sho
w
n in Figu
re
1. As seen, the
cha
r
coal me
d
i
a were pla
c
e
d
arou
nd the
electrode
s
be
cau
s
e of
it
s r
e
si
st
iv
it
y which is much lower
than its su
rro
undin
g
soil [1
0, 15-17].
The
m
a
them
atical mod
e
l of the groun
di
ng re
si
stan
ce wa
s dete
r
mined ba
sed
on the
model of current distri
butio
n of
the cha
r
coal m
edia. T
he cu
rrent
fro
m
the elect
r
o
de wa
s flo
w
in
g
radially th
rou
gh the
ch
arcoal me
dia b
e
f
ore g
o
ing
further th
roug
h t
he
soil. Ea
ch
se
gment
of the
media was a
pproxim
ated
as of tube-shape g
eom
et
ry. It was assume
d that curre
n
ts wou
l
d
penetrate ra
d
i
ally throug
h the tubula
r
se
gment
sheath
and not thro
ugh the
circul
ar si
de
s of tube
cov
e
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Alternative Groundi
ng Method Usi
ng
Coconut Shell Charcoal as
Media of... (Moch. Dhofir)
489
Figure 1. The
adopted g
r
o
undin
g
model
and the cu
rr
ent distrib
u
tio
n
in the mesh
electro
d
e
s
By using
the
curre
n
t di
stri
bution m
odel
in Fi
g
u
re 1,
the groun
din
g
ele
c
tro
de
resi
stan
ce
can b
e
expre
s
sed by the followin
g
equ
a
t
ion [15],
s
c
i
e
E
R
R
R
R
R
(
1
)
with
R
E
is th
e gro
undin
g
resi
stan
ce,
R
e
is the metal
electrode
s resi
stan
ce,
R
i
is the interf
ace
resi
stan
ce
be
tween the
ele
c
trod
e an
d charcoal m
edi
a,
R
c
is
the charcoal re
sist
ance,
and
R
s
is
the soil re
si
stance.
The g
r
ou
ndin
g
re
sista
n
ce i
s
obtai
ned from t
he
total seri
es re
si
sta
n
ce
s comp
ri
sing
the
electrode
resistan
ce, the interface re
si
stan
ce,
the whol
e re
sista
n
ce of all segment
s of the
cha
r
coal an
d
soil media. As elect
r
ode
is an exce
ll
e
n
t condu
cto
r
and the thickness of interf
ace
betwe
en the
electrode a
n
d
the cha
r
co
al m
edia is v
e
ry small, th
e values of
R
e
and
R
i
a
r
e als
o
very sm
all
a
nd
can
b
e
ig
nore
d
so
tha
t
the e
quatio
n (1) can
be
sim
p
lified i
n
to the foll
owi
ng
equatio
n,
s
c
E
R
R
R
(
2
)
R
c
and
R
s
ca
n be determin
ed usi
ng Oh
m's La
w give
n in the following equ
ation
s
,
m
1
i
ci
c
R
R
(
3
)
m
1,...,
:
i
;
)
f(S
S
1
t
ρ
S
t
ρ
R
i
i
c
i
c
ci
(
4
)
n
1
m
i
ci
s
R
R
(
5
)
n
1,...,
m
:
i
;
)
f(S
S
1
t
ρ
S
t
ρ
R
i
i
s
i
s
si
(
6
)
t)
2i
(h
t)
2
1
2i
(
2
π
S
i
i
(
7
)
w
h
er
e
R
ci
:
resistanc
e of
i-th segm
en
t of charco
al
medi
a
R
si
:
resistanc
e of i-th segme
n
t of soil me
dia
S
i
:
the av
erag
e tu
be
area
of i-t
h
segm
ent of
an
y med
i
a
i
:
i-th segme
n
t of an
y
m
edi
a
c
: resistivit
y
charcoal media
s
: soil resistivit
y
t
: the thickness of segment of an
y med
i
a
m
: the amount of
segments of charco
al med
i
a
n
: the amount of
segments of soil me
dia
h
i
:
the tube len
g
th
current
i
Earth Surface
t
S
i
h
i
charco
al
electro
d
e
soil
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 16, No. 2, April 2018 : 488 – 49
4
490
As the radiu
s
of metal ele
c
trod
e is
mu
ch small
e
r th
a
n
the segme
n
t thickne
ss
t
of any medi
a, it
can b
e
igno
re
d.
As ca
n be o
b
se
rved in th
e equatio
ns
(3)-(7
),
R
ci
an
d
R
si
are fun
c
tion
s of the
averag
e
tube are
a
of each se
gmen
t
i
. The greater the value
of
i
is, the greater the val
ue of
S
i
and the
smalle
r the value of
R
ci
and
R
si
. So,
the most influen
cing facto
r
o
n
the groun
di
ng re
sista
n
ce
is
the cl
osest m
edia to th
e el
ectro
de, o
r
th
e segme
n
t wi
th the
smalle
st
i
. Con
s
equ
ently, the me
di
a
with re
sistivity lower than t
hat of
its surroundi
ng soil should b
e
ch
o
s
en.
2.2. Experiment Lay
out
The te
sting o
b
ject of thi
s
resea
r
ch was the groun
di
ng me
sh [1
0,15].
The
con
s
ide
r
e
d
numbe
r of lattices an
d dimen
s
ion of
each me
sh
-electro
de as shown in Figure 2.
Th
ree
variation
s
of lattice numb
e
r we
re take
n to be 1-, 2-, and 4-l
a
ttice, with ea
ch lattice wa
s o
f
50cmx5
0
cm dimen
s
ion.
Figure 2.
The
shap
e and la
ttice-numbe
r variation
s
of mesh el
ect
r
o
des: 1
-
, 2-, a
nd 4
-
lattice
The field site of experiment is shown in Fi
gure 3.
As see
n
, the
mesh ele
c
tro
des were
laid in a pit o
f
120
cmx120
cm of size
. The hei
ght of the pit was 100cm.
The m
e
sh
-electrode
s
were pl
ace
d
dire
ctly over
a layer
of cha
r
co
al of
2
0
cm
thickne
ss, m
eanin
g
that th
e po
sition of t
he
mesh
was at
a de
pth of
80cm
un
der
the ea
rth
surface. Th
e m
e
sh
ele
c
tro
d
e
s
we
re m
a
d
e
of
stainle
s
s ste
e
l of 8mm
d
i
ameter. Aro
und the
me
sh-ele
ctrode
s wa
s
al
so co
vered with
t
he
cha
r
coal laye
r of 10
cm thickne
s
s. Three
variable
s
of treatment were
con
s
id
ere
d
, whi
c
h
were th
e
numbe
r of l
a
ttices, th
e pla
c
eme
n
t de
pth of the
ele
c
trode
s, the
thi
c
kne
s
s an
d
water content
of
cha
r
coal m
e
dia. The
r
e h
a
ve bee
n co
nsid
ere
d
two
variation
s
o
f
water l
e
vel
conte
n
t in t
he
cha
r
coal, i.e. the dry charcoal an
d the cha
r
c
oal with
50% wetting treatment.
The wet cha
r
coal
con
d
ition ha
s been obtain
ed by immersing the cha
r
coal po
wd
er
usin
g wate
r during 1 ho
ur
and
then drying it.
The re
sulted
wet ch
arcoal
w
oul
d have 1
.
5 times its original weight.
Figure 3.
The
pits for experiments
The pla
c
e
m
e
n
t layout of mesh
ele
c
tro
des
and th
e
addition
of ch
arcoal in th
e
pits were
given in Figure 4.
As seen, a 20cm
-
layer of char
co
al media wa
s first spr
ead ove
r
the base of the
pit.
A
4-lattice me
sh el
ectrode
wa
s th
en pla
c
e
d
o
v
er the laye
r of po
wde
r
e
d
co
co
nut
shell
cha
r
coal. Ad
ditional layers of 10cm of thickne
ss
were furthermore
given until re
achi
ng the ea
rth
surfa
c
e
while
performi
ng g
r
oun
d re
si
sta
n
ce me
as
ure
m
ent usin
g the three
-
point method
at each
layer additio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Alternative Groundi
ng Method Usi
ng
Coconut Shell Charcoal as
Media of... (Moch. Dhofir)
491
Figure 4.
The
placem
ent la
yout of mesh
electr
ode
s an
d the addition
of charcoal i
n
the pits
3. Results a
nd Analy
s
is
Cal
c
ulation
of grou
ndin
g
resi
stan
ce
bas
ed o
n
Equation
(3
-7) being
appli
ed to
a
hori
z
ontal
-electrod
e
stru
ct
ure of
1-m long in a soil
media of 300-
m resi
stivity resulted in a
resi
stan
ce of 154.8
. Insertion of dry cocon
u
t-shell charcoal of 15
-
m re
sist
iv
it
y
could red
u
c
e
the grou
ndin
g
resi
stan
ce
value by 78% to 34
.
The use of wet ch
arcoal
conditio
n
gi
ving
resi
st
iv
it
y
of
5-
m decre
a
s
ed mo
re the
resi
stan
ce b
y
81% to
the
value of 29.75
, as illustrated
in Figu
re
5. Figure 5 i
ndi
cate
s the i
n
fluen
ce of
ea
ch se
gme
n
t a
ddition to th
e
total gro
undi
ng
resi
stan
ce. It also
sh
ows t
hat the saturation c
onditio
n
wa
s rea
c
he
d app
roximat
e
ly after the
20
th
segm
ent ad
di
tion, indicatin
g
no si
gnifica
nt further
co
n
t
ribution to th
e total gro
u
n
d
ing resi
stan
ce
value. It was dependi
ng on the surro
undin
g
resi
st
ance clo
s
e
s
t to the electrode
s, i.e. being
determi
ned b
y
the media resi
stivity
closest to the metal electrode
s.
Figure 5. The
addition of coco
nut-shell
cha
r
coal to re
duce gro
undi
ng re
sista
n
ce
Some variabl
es have been
observe
d: the number of lattices in the mesh, the thickne
ss
of charco
al media, the placement
depth
of the electro
des, the wate
r conte
n
t of charcoal me
di
a.
T
w
o variatio
n
s
of water level content in the ch
a
r
coal h
a
ve been con
s
ide
r
ed, i.e. the dry and wet
cha
r
coal con
d
itions.
The
wet cha
r
coal
has bee
n obtained with
50% wetting treatment. It
ha
s
been obtai
ne
d by immersi
ng the cha
r
coal powde
r us
ing
water d
u
ring 1 ho
ur a
nd then dryin
g
it,
to obtained th
e wet ch
arco
al with 1.5 times of its ori
g
inal wei
ght.
T
able 1 indi
cates the
obt
ained g
r
o
und
ing re
si
stan
ces u
s
in
g just
the soil m
e
dia.
The
resi
stan
ce va
lues fo
r vari
o
u
s lattice
-nu
m
bers h
a
ve b
een o
b
tained
as a fu
nctio
n
of the thickne
ss
g
round
charcoal
Pit section
4-lattice mesh
Sta
g
e 1
Sta
g
e 2
ai
r
100cm
80cm
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 16, No. 2, April 2018 : 488 – 49
4
492
of media layer
.
Thickn
ess variation fro
m
30
cm to 100 cm have
been co
nsi
d
ered, with three
variation
s
of
lattice
-numb
e
r
which a
r
e
1-, 2-,
and
4-lattice structures. It al
so
sho
w
s th
at
increa
sing th
e numbe
r of
lattices can redu
ce
the groundi
ng re
sistance value.
Addition of the
layer up to the height of 100
cm for the mesh
-elect
rode
s co
mpo
s
ed of 1-, 2
-
, and 4-lattices
resulted in th
e grou
ndin
g
resi
stan
ce val
ues of 74
8
, 368
, and 23
9
respec
tively
.
T
able 2 indicates the obt
ained g
r
ou
nd
ing re
si
sta
n
ces u
s
ing dry
charco
al me
dia.
The
same
pro
c
e
d
u
re h
a
s b
een
performed a
s
to obtain th
e re
sults of
T
able 1.
The
resi
stan
ce val
ues
for variou
s lattice
-numb
e
rs have been o
b
tained a
s
a
function of the thickn
ess o
f
charcoal lay
e
r
.
Media thi
c
kn
ess vari
ation
from 30
cm to
100
cm
hav
e bee
n
con
s
i
dere
d
, with t
h
ree
variatio
n
s
of
lattice
-numb
e
r
whi
c
h a
r
e 1
-
, 2
-
, and 4-lattice structu
r
es.
The lattice size wa
s 5
0
cmx50
c
m.
As
T
able 1, incre
a
sin
g
the number of lattices ca
n re
d
u
ce the groun
di
ng re
sista
n
ce
value.
Addition of
the layer up t
o
the height
of 100cm for the mesh
-ele
ctrod
e
s
com
p
ose
d
of 1-, 2-, and 4-lattices
resulted in the gro
undi
ng
resi
stan
ce value
s
of 139
, 88
, and 43.8
resp
ectively
.
T
able 2
proved
that
addition
of
co
con
u
t-sh
ell ch
arco
al
media
re
d
u
ce
d d
r
a
s
tically the gro
unding
resi
stan
ce in
gene
ral.
Table 1. Grou
nding resi
sta
n
ce a
s
fun
c
tions of lattice
-numbe
r an
d media laye
r-t
hickne
ss in a
grou
ndin
g
sy
stem u
s
ing soil media
No
Grou
nd soil lay
e
r
thickness
(c
m)
Grou
nding resistance (ohm)
1-lattice 2-lattice 4-lattice
1 30
1022
497
342
2 40
908
444
305
3 50
837
419
286
4 60
800
398
264
5 70
799
386
255
6 80
776
377
246
7 90
754
370
241
8 100
748
368
239
Table 2. Grou
nding resi
sta
n
ce a
s
fun
c
tions of lattice
-numbe
r an
d media laye
r-t
hickne
ss in a
grou
ndin
g
sy
stem u
s
ing d
r
y charcoal m
edia
No
Dry
char
coal lay
e
r
thickness
(c
m)
Grou
nding resistance (ohm)
1-lattice 2-lattice 4-lattice
1 30
268
131
78
2 40
226
117
66
3 50
193
105
57
4 60
168
97
50
5 70
151
91
46
6 80
142
89
44.8
7 90
140
89
44.3
8 100
139
88
43.8
T
able 3 in
dicates the
obta
i
ned g
r
ou
ndi
ng resi
stan
ce
s u
s
ing
the 5
0
% wet
co
co
nut-shel
l
cha
r
coal med
i
a.
The same
proce
d
u
r
e has bee
n per
f
o
rme
d
as to obtain the re
sults of
T
able
1
and
T
abl
e 2.
The resi
stan
ce value
s
for v
a
riou
s lattice
-numbe
rs hav
e bee
n obtai
n
ed a
s
a fun
c
ti
on
of the thickn
ess of cha
r
coal layer
.
Me
dia th
ickne
s
s variation fro
m
30cm to 1
00 cm have
been
con
s
id
ere
d
, with thre
e variations of latti
ce
-num
ber
which a
r
e 1
-
, 2-, and 4-lattice stru
ctu
r
e
s
.
The
lattice si
ze
was 5
0
cmx50
c
m.
As o
b
tain
ed in
T
a
ble
1 and
T
able
2, increa
sin
g
the num
be
r of
lattices
can
redu
ce the g
r
oundi
ng resi
stance valu
e.
Addition of the layer u
p
to the heig
h
t of
100
cm for the mesh
-elect
rode
s compo
s
ed of 1
-
, 2-, and 4-lattices re
sulte
d
in the groun
d
i
ng
resi
stan
ce val
ues of 19.9
, 15.8
, and 1
4
.3
respec
tively
.
The relation
ship betwee
n
the grou
ndin
g
resi
stan
ce an
d media type
is sho
w
n in a
form of
grap
hic in Figure 6. It shows respe
c
tively t
he grounding re
si
sta
n
ce
s as a function of lattice
-
numbe
r for
soil media, d
r
y cha
r
coal, an
d wet char
co
al for the sa
me ele
c
trod
e
place
m
ent d
epth
of 80cm. It was done by placin
g the electrod
es
in the depth of 80 cm.
The layer of the me
dia
wa
s added 1
0
cm at each
time, making
the height
variation
s
of 30cm to 100cm, as also sh
own
in T
able
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Alternative Groundi
ng Method Usi
ng
Coconut Shell Charcoal as
Media of... (Moch. Dhofir)
493
Table 3. Grou
nding resi
sta
n
ce a
s
fun
c
tions of medi
a type and med
i
a layer-thi
ckness
No
Media height (cm
)
Grou
nding resistance (ohm)
Soil media
Dr
y
cha
r
coal me
dia
Wet charcoal media
1 30
342
78
14.8
2 40
305
66
14.5
3 50
286
57
14.5
4 60
264
50
14.4
5 70
255
46
14.3
6 80
246
44.8
14.3
7 90
241
44.3
14.3
8 100
239
43.8
14.3
Figure 6. The
influence of the lattice-nu
m
ber
on the re
sulte
d
grou
ndin
g
resi
stan
ce at 80cm
media laye
r h
e
ight for thre
e different me
dia
types (
s
oil m
edia,
dry cha
r
co
al
media,
wet charcoal m
edi
a)
Figure 7. The
influence of the media lay
e
r
height on the
resulted g
r
ou
nding resi
sta
n
ce of
4-lattice m
e
sh for three dif
f
erent medi
a types (
soil media,
dry cha
r
coal m
edia,
wet cha
r
coal
media,)
T
able 3 shows that higher the media layer
,
lower will be the
resi
stance value of th
e
grou
ndin
g
m
e
sh.
Th
e re
si
stan
ce d
e
cre
a
se
starte
d to ch
ange i
n
si
gnifica
ntly at about the g
r
o
und
height of 60cm.
The table also i
ndi
cates that t
he type of filling m
edia used greatly af
fects t
he
value of groundin
g
resi
st
ance.
At
the same
medi
a laer heigh
t of 100cm,
the groundi
ng
resi
stan
ce
va
lues
of 4
-
lattice m
e
sh were 239
ohm
s
in soil
medi
a
,
43.8 ohm
i
n
dry
cha
r
co
al
media, an
d 1
4
.3 ohm in
wet cha
r
coal
media
re
spe
c
tively
, as also
sho
w
n i
n
Fi
gure
7. Figu
re 6
sho
w
s that in
the media
with high resi
stivity
val
ues (soil an
d d
r
y cha
r
coal
) increa
se in l
a
ttice
number
will decrease the grounding
resi
stance val
ue, whereas
Figure 6 indica
tes that
the
decrea
s
e in
resi
stan
ce val
ue wa
s not si
gni
fica
nt whe
n
usin
g wet charcoal m
edi
a.
4. Conclusio
n
s
The mesh
-electro
de grou
nding sy
ste
m
using ch
arcoal media
is design
e
d
in this
resea
r
ch. Addition of cha
r
co
al me
dia
can
be
con
s
i
dere
d
to lo
wer the
gro
u
n
d
ing resi
stan
ce
value. The wet cha
r
coal
media resulte
d
in
lowe
r groundi
ng re
si
stance valu
e than dry
cha
r
coal
media. Comp
aring th
e re
si
stivity of media types
co
nsid
e
r
ed
in
th
is r
e
se
ar
ch
(s
oil, d
r
y c
h
ar
coa
l
,
wet ch
arcoal
) sho
w
ed that
the soil me
dia ha
s t
he bigge
st re
sist
ivity
,
being followe
d with d
r
y
cha
r
coal med
i
a, and then
wet cha
r
coal media. Low
er the resistivity of media, l
o
we
r will be the
grou
ndin
g
re
sista
n
ce to be obtained. T
he numb
e
r
of
lattices of the mesh
-elect
rode d
e
termi
nes
the gro
undi
n
g
re
sista
n
ce value. High
er the numbe
r
of lattices u
s
ed, lowe
r will
be the groun
ding
resi
stan
ce to be obtaine
d.
The value
s
of resi
st
an
ce o
b
tained u
s
ing
10cm thickn
ess of charco
al
layer in a mesh co
nsi
s
ting
of 1
-
, 2
-
, and 4-lattice
s were 268, 131,
and 78 ohms con
s
e
c
utiv
ely
.
The h
e
ight of
media l
a
yer
use
d
dete
r
mi
nes th
e grou
nding re
si
sta
n
ce value. Hi
gher the med
i
a
layer
,
lowe
r will be the grou
nding resi
sta
n
ce to be obt
ained. Using
wet cha
r
coal,
the 10cm layer
prod
uced
26.
5, 17.5, an
d
14.8 o
h
ms
and a
re
si
stance de
crea
se of
25%,
10%, and
3.6%
sub
s
e
que
ntly for 1-, 2
-
, and 4-lattices m
e
sh
st
ru
cture if the layer thickne
ss b
e
ca
me 80cm.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 16, No. 2, April 2018 : 488 – 49
4
494
Ackn
o
w
l
e
dg
ments
W
e
would li
ke to thank th
e Re
sea
r
ch
and
Commu
nity Services Board of En
ginee
ring
Faculty
,
Bra
w
ijaya Universi
ty for the fun
d
ing of
the re
sea
r
ch the re
sults of whi
c
h
are pre
s
e
n
te
d
in this publi
c
ation, and th
e Powe
r System E
nginee
ring an
d Ene
r
gy Mana
ge
ment Re
sea
r
ch
Grou
p (P
see
M
RG
) for the
funding of thi
s
publi
c
atio
n.
Referen
ces
[1]
Che
n
H, W
a
n
g
J, Yang
H, Z
han
g S, Ch
en
Y.
Study
on
C
o
mbusti
on Ch
aracteristic of Coal-
C
h
a
r
in
Oxygen-Enr
i
ch
ed Env
i
ron
m
en
ts
.
2009 IEEE
Asia-Pac
ific Po
w
e
r and
En
erg
y
Engi
neer
in
g Confer
ence
.
W
uhan, Ch
ina.
28-30 Mar 2
0
0
9
: pp. 1-5.
[2]
Sun Y, Jian
g
J, Xu J, Z
hao
S.
Biomass C
a
rbo
n
i
z
a
t
i
on In
dustria
l Proces
s
. 2011 IEEE Internati
o
n
a
l
C
o
n
f
e
r
e
n
c
e on Ma
te
ri
al
s fo
r
R
e
ne
w
a
b
l
e Ene
r
gy
&
E
n
viro
n
m
ent (ICMRE
E). Shan
gha
i,
Chin
a. 2
0
-22
Ma
y
2
0
1
1
; Vol.
1: pp. 54-59.
[3]
Rhim YR, Z
h
a
ng D, F
a
ir
brot
her DH, W
e
pa
snick KA, Liv
i
KJ, Bodnar
RJ, Nagl
e D
C
. Cha
nges
in
Electrical
a
n
d
Microstructural
Prop
erties
of
Microc
r
y
stall
i
n
e
C
e
ll
ulos
e
as
F
unctio
n
of C
a
rbo
n
izati
o
n
T
e
mperature.
Carb
on
. 20
10; 48(4):1
01
2-24.
[4]
Carp
enter Jr R
B
, Lanzo
n
i JA.
Desig
n
i
ng for
a Lo
w
Resista
n
ce Earth Inter
f
ace (Groun
din
g
). An LE
C
pub
licati
on, rev
i
sed Ju
l
y
. 1
9
9
7
.
[5]
Guemes-Al
ons
o JA, Hernan
do-F
e
rn
ánd
ez
F
E
, Rodrígu
e
z-Bon
a
F
,
Ruiz-Mo
ll JM. A Practical
Appro
a
ch for
Determin
i
n
g
th
e Groun
d Resi
stance of Grou
ndi
ng Grids.
IEEE Transactions on Power
Deliv
ery
. 200
6; 21(3):12
61-
6.
[6] Manik
and
an
P
.
Characteri
z
a
t
i
on a
nd
Co
mp
ariso
n
Studi
es
of Benton
ite
and F
l
y-as
h fo
r Electrical
Ground
ing
. IE
EE Internatio
n
a
l Co
nfere
n
ce
on El
ectric
al,
C
o
mputer and C
o
mmunic
a
tio
n
T
e
chnolog
ies
(ICECCT
). Coimbatore, Indi
a.
5-7 Mar 201
5: pp. 1-4.
[7]
Don
g
C, T
ao J
,
Z
hang J, Y
a
n
g
Y, She
ng S.
T
he Res
i
stivity
Property
of
Ni
kel L
o
a
ded
W
i
nter W
heat
Straw
Char
. 2010 IEEE Asia
-Pacific Po
w
e
r
and Ener
g
y
E
ngi
neer
in
g Co
nferenc
e. Che
ngd
u, Chin
a.
28-3
1
March 2
010: pp. 1-
4.
[8]
Natio
nal St
and
ardiz
a
tion A
g
e
n
c
y
f
o
r Ind
one
sia.
Gener
al
R
equ
ire
m
e
n
ts fo
r Electrical
Installati
ons
(in
Bahas
a Indo
ne
sia). Jakarta: Bada
n Stand
aris
asi Nasi
on
al, 2
000.
[9]
Pires T
G
, Nery
s JW, Silva CL, Oliveira
D
N
, Silva Filh
o A
M
, Cali
xto WP, Alves AJ.
Comp
utatio
n of
Resista
n
ce a
n
d
Potenti
a
l of
Groundi
ng G
r
ids in Any G
e
o
m
etry
. 2016 IEEE 16th International
Confer
ence
on
Enviro
nment
and E
l
ectric
al
Engi
neer
in
g (E
EEIC). F
l
orenc
e, Ital
y
. 6-
8 Ju
ne 2
0
1
6
: pp
.
1-6.
[10]
Ahmad A, Sar
oni MR, R
a
zak
IA, Ahmad S.
A Case Stu
d
y on Grou
nd R
e
sistance B
a
se
d on C
o
p
p
e
r
Electrod
e vs.
Galvan
i
z
e
d
Ir
o
n
Electro
d
e
. 2
014 IEEE Inter
natio
nal
Co
nfe
r
ence
on P
o
w
e
r and E
ner
g
y
(PECon). Kuch
ing Sar
a
w
a
k,
Mala
ys
i
a
. 1-3
Dec 20
14: pp.
406-
410.
[11]
Nadir M., Dhofi
r
M., Purnomo
H.
T
he Use of Caca
o Skin C
h
arcoa
l
to Red
u
c
e Ground
in
g Resista
n
c
e
of Circu
lar
Pla
t
e Electro
d
e
(i
n Ba
has
a Ind
ones
ia).
El
ektro Stud
ent J
o
u
r
nal
Un
iversita
s Braw
ijay
a
.
201
6: Vol. 4, No. 3.
[12]
Roma
dho
n M., Dhofir M., So
emar
w
a
nto. T
he Infl
ue
nce
of Mesh Num
ber
Variati
on o
n
th
e Groun
din
g
Resista
n
ce Va
lue of a Grid
Groundi
ng S
y
stem (in B
a
h
a
sa Ind
ones
ia
).
Elektro Student Jo
urna
l
Univers
i
tas Bra
w
ijaya
. 201
5: Vol. 3, No. 7.
[13]
W
a
h
y
un
i W
., Dhofir M, W
i
b
a
w
a
U. Grou
n
d
in
g R
e
sistanc
e Improv
emen
t of Plate
Elec
trode
Usin
g
Husk Ric
e Ch
a
r
coal (i
n Bah
a
s
a
Indo
nesi
a
).
Elektro Stud
ent Journ
a
l Un
iver
sitas Braw
ijaya
. 2016: Vol
.
4, No. 4.
[14]
Obed B, Dhofir
M.
Utili
z
a
ti
on
of Coaxi
a
l Elec
trode as Ov
erv
o
ltag
e Protecti
on for Low
-Volt
age
Electrical A
ppl
i
ances
(i
n Bah
a
s
a Indon
esi
a
). T
he 6
th
Electrical Po
w
e
r, Electronics, Comm
u
n
icati
ons,
Contro
l and Inf
o
rmatics Semi
nar 20
12 (EEC
CIS)
. Malang, Indo
nesi
a
. 30-3
1
Ma
y
201
2.
[15] Hutaur
uk
T
.
S.
Peng
etan
aha
n
Netral Sistem
T
enaga da
n Peng
et
an
aha
n P
e
ral
a
tan. Jakar
t
a: Erlangg
a.
199
9.
[16]
Instruction Ma
nua
l - Digita
l
Ea
rth Resista
n
c
e
T
e
ster.
Mode
l 410
5A.
K
y
oritsu Electrica
l
Instruments
W
o
rks, L
T
D. 0
1
-07. 92-
14
94.
[17] IEEE-SA
Standard
B
oard. 1
42.20
07.
IEEE
Reco
mme
n
d
e
d
Practice for
Ground
ing
of Industri
a
l a
n
d
Co
mmerci
al P
o
w
e
r Systems
.
Ne
w
Y
o
rk: IEEE Press, 2007.
[18] IEEE-SA
Standard
Bo
ard. 8
0
.200
0.
Guide for Safety in
Substation Groun
din
g
.
Ne
w
York: IEEE
Press, 2000.
Evaluation Warning : The document was created with Spire.PDF for Python.