TELKOM
NIKA
, Vol.12, No
.2, June 20
14
, pp. 405~4
1
0
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v12i2.1833
405
Re
cei
v
ed O
c
t
ober 2
9
, 201
3; Revi
se
d March 17, 201
4
;
Accepte
d
April 3, 2014
Low Mutual Coupling Dualband MIMOMicrostrip
Antenna Parasiticwith Air Gap
Yuli Kurnia Ningsih, Ra
s
t
an
to Ha
dine
goro
Dep
a
rtment of Electrical E
ngi
neer
ing, F
a
cult
y
of Industri
a
l
T
e
chnolog
y, T
r
isakti Univ
ersit
y
Jl. K
y
ai T
apa N
o
.1 Grogol, Jak
a
rta 114
40, Ind
ones
ia,p
h/fax:6
221-
566
32
32
e
x
t8
403/5
6
0
5
8
4
1
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: yuli
_kn
@
yah
oo.com; rastan
to@
y
ah
oo.com
A
b
st
r
a
ct
Multiple Input
Multiple Output
(MIMO) system
s
use multiple anten
nas at both
the
trans
m
itter and
receiv
er to i
m
p
r
ove q
u
a
lity a
n
d
dat
a rate
mo
bile
co
mm
u
n
ic
ation.In r
e
cent
year, vari
ous
a
n
tenn
as w
o
rkin
g
on du
al or
mu
lti ban
ds hav
e b
een d
e
ve
lop
e
d
.
T
he increas
i
n
g mutual co
up
li
ng is on
e of the neg
ative effe
ct
due to the ad
ditio
n
of ante
nna e
l
e
m
e
n
t in MIMO
syste
m
.This pa
per
prese
n
t a low
mutua
l
cou
p
li
n
g
dua
lba
nd MIM
O
2x2 anten
na
. T
he pr
opos
e
d
MIMO antenna is abl
e to w
o
rk in dual fr
equ
ency at 1.8
G
H
z
and
2.3
5
GH
z
.
T
o
obta
i
n
the
opti
m
u
m
desi
gn, th
e ch
ara
c
tertistic of
propos
ed
ant
en
na
are
nu
meri
cal
l
y
investi
gate
d
th
roug
h th
e p
h
is
ical
par
a
m
eter
s of a
n
te
n
na.B
y
par
asitic
lay
e
r w
i
th a
i
r
gap
, mutual
co
upl
i
n
g
can be d
e
cre
a
s
ed unti
l
50 %
and g
a
i
n
of th
e
propos
ed a
n
te
nnac
an b
e
i
m
p
r
oved u
n
til 5
0
%
.
T
he obtain
ed
results show
th
at prop
osed
an
tenna
has a co
mp
act si
z
e
a
n
d
a ban
dw
idth o
f
100 MH
z
.
w
h
i
c
h is suita
b
le f
o
r
LT
E appl
icatio
n.
Ke
y
w
ords
:
MIMO, mutual co
upli
ng,
microstr
ip du
alb
a
n
d
an
tenna
1. Introduc
tion
The
dema
nd
for hig
h
e
r
q
u
a
lity and
dat
a rate
wa
s g
r
owin
g fa
st in
the p
a
st fe
w years.
One of the most promisi
ng solutio
n
s
to this probl
e
m
is Multiple
Input Multiple Output (MIMO)
system [1]. The MIMO techn
o
logy ma
de a gr
e
a
t brea
kthroug
h by satisfying
the deman
d of
highe
r qu
ality mobile co
mmuni
cation
servi
c
e
s
wit
hout usi
ng a
n
y additional
radio
re
sou
r
ce
s
[1],[2] and it
has a
significant ability to increase
data throughput
without
additional bandwidth or
transmit power (tran
s
mitter power). On
e type
of antenna that can be u
s
ed
to incre
a
se the
cha
nnel
cap
a
c
ity of MIMO is a mi
crostrip ant
en
na [3
]. Various mi
cro
s
tri
p
ante
nna
workin
g
on
multiband f
r
e
quen
cy have
been
devel
oped
and
re
ported. In [4
]-[6], dual b
and o
r
tri b
and
antenn
as hav
e be
en
achie
v
ed, but g
a
in
of the
anten
nas is not
expl
aine
d. An e
ffective way t
o
obtain du
al-b
and resonant
freque
ncy is
to use a fract
a
l mono
pole
with a U-sha
ped sl
ot just l
i
ke
in [7] but the
gain re
main
s
above 2.0dBi.
Unfortu
nately
,
in MIMO system
with
mult
iband,
mutual coupli
ngis
signif
c
a
n
t issue
s
need
to b
e
o
v
erco
me to
e
nhan
ce
theef
fectivene
ss
o
f
MIMOand
it
be
com
e
s m
o
re
critical
when
inter-eleme
n
t spa
c
in
g i
s
very small. Achievi
ng hi
gh i
s
olatio
nbet
we
en the
radi
ating ele
m
ent
s i
s
a
chall
engin
g
t
a
sk a
n
d
al
so i
t
is
difficult to
contro
l th
e i
s
olation
over the d
e
si
re
d b
a
nds.
Thi
s
kin
d
of
situation
ca
n
occu
r in m
obile
comm
un
ication
s
, e
s
p
e
cially in
m
obile p
hon
es, whe
r
e
spa
c
e
limitationsb
e
come a
n
im
p
o
rtant va
riabl
e.Mutual
cou
p
ling i
s
a fu
nction
of a
n
tenna
spa
c
in
g,
numbe
r of antenna
s, and
directio
n of each ray rela
tive to the arrayplan
e
. He
nce, it beco
m
es
difficult to match the anten
na imped
an
ce,whi
ch is
im
portant for eff
i
cient en
ergy
transfe
r [2].
In this pape
r, a comp
act no
vel MIMO micro
s
tri
p
anten
na wo
rks for
a dual freq
ue
ncywith
low mutu
al couplin
g is p
r
opo
sed to
be
applie
d for
LTE appli
c
ati
on. The p
r
o
p
o
se
d ante
n
n
a
is
develop
ed from a tria
ng
ular mi
crost
r
i
p
anten
na f
ed by co-pla
nar
waveg
u
i
de (CPW).
The
developm
ent is done by two slots
on its
triangul
ar pat
ch, a co
-plan
a
r wave
guid
e
feed-line, an
d
para
s
itic
with
air ga
p between the
sub
s
trate.By
air g
ap between t
he pa
ra
sitic a
n
tenna all
o
w
to
increa
se the
gain of the prop
osed ant
enna. Th
e
n
u
meri
cal d
e
si
gn is pe
rformed to find the
optimum de
si
gn of antenn
a whe
r
e physical pa
ramete
rs of anten
na
such as leng
th and width
of
its slots,lin
e width and
wi
dth of
gap in CPW feed, height of the
air gap in p
a
ra
sitic layer is
investigate
d
intensively through p
a
ra
me
trical st
udy.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 2, June 20
14: 405 – 41
0
406
2.
Numerical d
esign of Antenna
The g
eomet
ry of MIMO (2x2) i
s
ba
se
d on
singl
e patch anten
n
a
usi
ng
two slots with
different hei
g
h
t for dual fre
quen
cy ope
ra
tion, co-p
lan
a
r
wave
guid
e
feed line. Fi
gu
re 1 illu
strate
s
a sha
pe of the singl
e patch dual-ban
d a
n
tenna.
Figure 1. Shape of singl
e p
a
tch du
alba
n
d
antenn
a
2.1. Slots of ante
nna
Basically, the prop
osed d
u
a
l-ba
nd a
n
te
nna i
s
modifi
ed with
add t
w
o
slots
at a
singl
e
band a
n
tenn
a. Here, the antenn
a with
the frequ
en
cy
reso
nator i
s
a 1.8 G
H
z is dete
r
mine
d
to
obtain
dual
-b
and
antenn
a. The
slot i
s
t
he mo
st-wi
d
e
l
y use
d
meth
od to
achive
more
than
o
ne
freque
ncy
wh
ich
still m
a
int
a
ins the
com
pactn
ess
of t
he a
n
tenn
a [
8
]-[11]. Th
e p
r
opo
se
d
ante
nna
deploye
d
on
an F
R
-4 E
p
oxy sub
s
trat
e with p
e
rmi
t
ivity of 4.3,
thickne
ss
of 1.6mman
d
lo
ss
tangent (
ta
n
δ
)
= 0.02
65.
As both
the
radiating
elem
ents
and th
e
CPW fe
edin
g
mechani
sm
are
impleme
n
ted on the same
plane; hen
ce,
fabricat
io
n of the propo
se
d antenna i
s
very easy usi
n
g
a singl
e-sided meta
llizationprocess.
2.2. Co-plan
a
r
w
a
v
e
guide (CP
W) f
e
d
A
CPW
fe
d make
s
th
e
a
n
tenna more
suitabl
e
for comp
act wire
less commu
n
i
cation
becau
se of its features li
ke uni
pla
nar
structu
r
e, ea
sil
y
manufac
tu
red and e
a
sily
integrated
wi
th
other mi
cro
w
ave integ
r
ated circuit
s
.Another
im
portant adva
n
tage of CPW-fed i
s
wide
r
band
width th
an CPS an
d
microstri
p
li
ne. The 5
0
Ω
CP
W tran
smissi
on i
s
u
s
ed to excitite
th
e
antenn
a. For
the given val
ues
off su
bst
r
ate p
a
ra
met
e
rs, th
e CP
W dimen
s
io
ns
of the CP
W li
ne
are inve
stigat
ed.
2.3. Parasitic
la
y
e
r
w
i
th ai
r gap
Several
app
roache
s to i
m
provin
g the
radi
ation
efficin
c
y and
o
b
taining
a hi
gh-g
a
in
antenn
a. Th
e
ele
c
tri
c
le
ns
antenn
a
wa
s
adpted
to
ach
i
eve a
high
-g
ain a
n
tenn
a[1
2
]. Ho
weve
r,the
comm
only u
s
ed len
s
a
n
ten
na is
co
nst
r
u
c
ted u
s
in
g an
expen
sive crystal materi
al
and it i
s
difficult
to mount it on the MMIC pa
cket. The tech
niq
u
e
for improvin
g the radi
ation efficien
cy
and
obtainin
g
a
high-gain
by arrangi
ng p
a
ra
sitic el
em
ents a
bove t
he feedi
ng
microstri
p
an
tenna
element
s is e
x
amined [13]-[16]. In this paper, to
achie
v
e a high-gai
n, the next step in nume
r
ical
desi
gn of MI
MO ante
nna
is em
ploying
two p
a
ra
siti
c laye
rs. F
o
u
r
pat
ch
s d
u
a
l-ba
nd
elem
ent
without
gro
u
n
d
on
the first
para
s
itic laye
r an
d fo
u
r
pa
tchs du
al b
a
n
d
elem
ent
with CP
W fed
o
n
t
he se
con
d
p
a
ra
sit
i
c lay
e
r.
3.
Design o
f
MIMO 2x2
Dual
Frequen
c
y
Antenna
The d
e
si
gn i
s
starte
d from
the sin
g
le b
a
nd-n
o
tc
h
ed chara
c
te
risti
c
at
1.8GHz an
d
at
2.35
GHz re
spe
c
ti
vely. Howeve
r, with com
b
i
nation sl
ot pa
ir from the si
ngle elem
ent antenn
a, a dual
band
-not
che
d
characte
ri
stics a
n
tenn
a is achieved.
The slot
s are carefully tuned so that the
antenn
a ca
n
be ope
rabl
e at low a
nd high f
r
e
quen
cy ban
ds. The
du
al-ba
nd n
o
tched
cha
r
a
c
teri
stic radiato
r
is co
nne
cted to a5
0
Ω
co
plan
ar
wave gui
de (CPW) feed
-line.
After a dual
-b
and fre
que
ncy that is expe
cted t
he
be
st con
d
ition return lo
ss an
d
VSWR,
in ord
e
r to im
prove g
a
in p
e
r
forma
n
ce, a
triangul
ar
pat
ch i
s
pla
c
e
d
on the d
ualb
a
nd ante
nna
with
an air ga
p be
tween the su
bstrate.T
he a
n
tenna
con
s
i
s
ts
of two layers of sub
s
tra
t
e. The first layer
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Low Mutual Coupling Dual
band MIMOMi
cros
tri
p
Antenna .... (Yuli
Kurnia
Ningsi
h)
407
r
r
f
c
a
3
2
is
a tr
ia
ng
u
l
ar p
a
t
ch
on
ly an
d
th
e se
co
nd
la
ye
r co
ns
is
ts
o
f
tr
ia
ng
u
l
a
r
pa
tc
h w
i
th
C
P
W
fed
an
d a
layer of air ga
p betwe
en th
e two layers of sub
s
trate.
The g
eom
etry of the MIM
O
2x2
dual
freque
nc
y ante
nna with CP
W
i
s
sho
w
n
i
n
Figu
re
2.The ge
om
etry and
con
f
iguration
of antenn
a
for singl
e-b
and can be
exp
r
essed
follo
wi
ng
[1].The patch
antenn
a i
s
cal
c
ulate
d
by
(1
), (2
), (3) and
(4
) for
desi
gn a
microst
r
ip
anten
na
sha
ped tria
ng
ular.
(1)
For mo
de TM
10
frequen
cy reso
nan
ce by
the followin
g
equatio
n:
(2)
Whe
r
e
a
e
is:
(3)
And
a
is
subs
tituted:
(4)
The a
n
tenn
a
is ex
cited by
a 50
mi
crost
r
ip lin
e. The
width of th
e
50
Ω
mi
cro
s
tri
p
line i
s
3 m
m
,
and the ga
p o
f
the CPW lin
e is
g
= 0.5 m
m
and dime
n
s
ion of groun
d plane i
s
(
d
g
) =
6.5 mm.
(a)
(b)
(c
)
Figure 2. The
propo
se
d MIMO 2x2 ante
nna, (a
) t
op view (b)
side
view c. Front
view
2
2
3
2
2
n
mn
m
a
c
ck
f
r
r
mn
r
r
e
a
c
f
3
2
10
2
2
1
802
.
9
182
.
6
436
.
16
853
.
12
199
.
2
1
a
h
a
h
a
h
a
h
a
h
a
a
r
r
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 2, June 20
14: 405 – 41
0
408
For MIMO (2
x2) antenn
a in Figure 2,
d
is dista
n
ce be
tween
anten
n
a
element
s a
nd given by [4] :
݀ൌ
ఒ
ସ
(5)
4. Simulation
Result
Simulation to
ols
have
bee
n u
s
ed
to
cal
c
ulate
S p
a
rameters, b
a
sed o
n
th
e M
e
thod
o
f
Moment
s. Th
e final
optimi
z
ation, th
e
re
flection l
o
ss factor vs fre
q
uen
cy is d
epi
cted i
n
Fi
gu
re 3.
The reflectio
n
co
efficient i
s
a
c
hieve
d
b
e
low
-21.
1
9
dB at 1.8 GHz an
d -2
1.99
dB at 2.35
GHz.
The anten
na
can p
r
od
uce dual ba
nd wit
h
notch
cha
r
a
c
teri
stics.
Figure 3.Simulation re
sult
of the dual ba
ndMIMO 2x2
Antenna pa
ra
sitic with ai
r g
a
p
Whe
n
the nu
mber of ante
nna elem
ents is plac
e
d
in formin
g the arrays, mutual
cou
p
ling
betwe
en the
antenna
el
ements i
s
a
critical issu
e.
Mutual co
upli
ng is a p
o
tentia
l sourc
e
of
performa
nce d
egra
datio
n i
n
the form of
de
viatio
n of the
radi
ation
patte
rn
from the d
e
sire
d on
e, ga
i
n
reducti
on d
ue to e
x
citatio
n
of surface
w
a
v
e
, increas
ed sid
e
l
obe l
e
vels
etc.
Effect of mu
tual Co
uplin
g al
so o
c
cu
rs in
MIMOa
n
tenna.
One
rea
s
o
n
i
s
the
wave
surfa
c
e.
It ca
n chan
ge
the
amo
unt of
current, ph
ase
,
and
the dist
ribution
of ea
ch elem
ent so
that the
over all
antenn
a
ra
diation
pa
ttern i
s
diffe
rent than
n
o
t having
cou
p
ling.
Whe
n
the
distan
ce
bet
wee
n
the
adj
ace
n
t elem
en
ts a
r
e
not
a
p
p
rop
r
iate
with
equ
ation
(2
), mutual
coupl
ing
effects will increase [6].
The
m
u
tual couplin
g simul
a
tion
at dista
n
ce
s of
8 cm
is sho
w
n
in Fi
gure
4
.
S
21
is almost
-
40 dB at 1.8GHz an
d >40 dB at 2.35G
Hz
, which sho
w
s go
od isol
ation
betwe
en ant
enn
a
element
s and
it can be see
n
that thesim
ulation are in
a good ag
re
ement.
Figure 5 sh
o
w
s the radiati
on pattern of
t
he dual-ban
d
-
MIMO 2x2 a
n
tenna
with CPW fed
in
plan
e
.
Half-po
w
e
r
be
am width i
s
122.0
at freq
uen
cy of 1.8GHz, and 9
7
.6
at freq
u
ency
2.35G
Hz. T
h
e main lo
be
has it
s pe
ak
power at
13
an
d at 2.3
5
GHz, the m
a
in lob
e
ha
s
its
pea
k po
wer a
t
166
.
Figure 4. The
effect mutual
coupli
ng Port
1 of Port 2
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Low Mutual Coupling Dual
band MIMOMi
cros
tri
p
Antenna .... (Yuli
Kurnia
Ningsi
h)
409
Figure 5. Simulated Radiati
on Pattern of the dual
-ban
d
-
MIMO 2x2 a
n
tenna p
a
ra
si
ticwith air g
a
p
at 1.8 GHz a
nd 2.35 G
H
z
Figure 6.3-D Visual of Ra
d
i
ation Pattern
of
the dual-b
and-MIMO 2x
2 antenna p
a
r
asiti
c
with ai
r
gapat 1.8 G
H
z and 2.3
5
G
H
z
Figure 6
is a
3
-D radiatio
n
pattern at
a
fr
eq
uen
cy of
1.8G
Hz an
d
2.35G
Hz. It
can
be
see
n
that th
e anten
na
ra
diation p
a
ttern is di
re
ction
a
l whi
c
h l
e
a
d
s o
n
ly in o
ne directio
n
and
dire
ction l
o
o
k
s g
r
eat
in the
reda
re
a. Di
re
ctivity
antenn
a at a
fre
que
ncy of
1.8G
Hz i
s
3.6
d
Bi while
the 2.35G
Hz
freque
ncyi
s e
qual to 5.3dBi
.
The impa
ct of para
s
itic with
air gap is cl
e
a
rly notice
abl
e from Table
2. The impro
v
ement
of 89%
avera
gely at th
e d
e
sired
freq
ue
ncy i
s
due
to
the fa
ct th
at
the st
ru
cture
of
para
s
itic
with
air
gap
provid
ing g
ood
isol
ation
cha
r
a
c
teristi
c
s
co
mp
ared
to th
e
structu
r
e
of p
a
racitic with
out
air
gap.
Table 2 . The
effect of para
s
itic with ai
r g
ap on mutual
cou
p
ling an
d
gain
Freque
nc
y
Parasitic w
i
thout
air gap
Parasitic w
i
th air
gap
Mutual Coupling
Gain
Mutual Coupling
Gain
1.8GHz
-20.07 dB
3.2 dBi
-38.67 dB
3.6 dBi
2.35GHz
-25,12 dB
2.9dBi
-47.75 dB
5.3 dBi
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 2, June 20
14: 405 – 41
0
410
5. Conclu
sion
A novel con
f
iguration of
dual-b
and
MIMO
2x2 microstrp ant
enna
withstructure of
para
c
itic
with
air gap ha
s been stu
d
ied
and simulat
ed. The results of this si
mulation ante
nna
microstri
p
for freque
ncy of
1.8GHz sho
w
s
retu
rn
lo
ss is
-21.19
d
B
with imped
ance ban
dwi
d
th
about 1
25M
Hz an
d at 2.35
GHz sho
w
s
return lo
ss
is -21.99dB with impeda
nce
b
and
width
a
b
o
u
t
110M
Hz. Structure of p
a
racitic
with
air gap
ca
n
en
han
che
d
the mutual cou
p
ling
si
gnificant
ly.
The result of
simulate
d HP
BW is
122
o
at
1.8
GHz and 97.6°
at 2.35
GH
z, re
sp
ectively.It is se
e
n
that the g
a
in
rem
a
in
s a
b
o
v
e 3.5dBiin t
he d
ual
LTE band
s.The
r
ef
ore
the pro
p
o
se
d
a
n
tenn
a
is
appli
c
able
a
s
ne
w candi
d
a
te for
dual
freque
ncy
an
tenna to
ma
ke MIM
O
in
(2x2
) ante
n
n
a
microstri
p
for
LTE appli
c
ati
on in Indon
esia.
Ackn
o
w
l
e
dg
ment
This
wo
rk is sup
p
o
r
ted b
y
the Prog
ra
m of
Research
Gra
n
t Ind
one
sia G
o
ve
rment, Kop
e
rtis
Wilayah III Direktorat
Jenderal
Pendidi
k
an Tinggi K
e
menter
ian
Pendidi
kan dan Kebudayaan
(Contract No.
002/K3/KM/SPK/2013)
References
[1]
Hua
L, Jin
g
B,
Shuj
ia
n L, Ju
anp
ing
W
.
Simulati
on m
ode
ls
for MIMO
w
i
r
e
less ch
an
nels.
Te
l
k
om
ni
ka
Journ
a
l
. 20
14; 11(1):1
58-1
66.
[2]
Astel
y
D, an
d et al. LT
E: t
he
evol
ution of mo
bile br
oa
db
and
.
C
o
mm
un
i
c
a
t
io
n
s
Ma
ga
z
i
ne
, IEEE
.
1999
;
47(4
0
): 44-5
1
.
[3] Weso
ł
o
w
sk
i K.
Appl
icati
on O
f
MIMO And Netw
ork Cod
i
n
g
In T
w
o-W
a
y Rel
a
yin
g
Ap
p
lied
In LT
E
.
Proceeding of IEEE 21st Inte
rnational S
y
mposium.
Personal Indoor
and Mobile
Radio
Communications (PIMRC).
Pozna
n
. 201
0: 619-6
24.
[4]
Shu P, Q Feng. Com
pact
tri-band mo
nop
ole
a
n
ten
na
w
i
th
a par
asitic E-sha
p
ed strip for
W
L
AN/W
iMAXapp
licati
ons.
P
r
ogress In Elec
troma
g
n
e
tics R
e
searc
h
C
. 201
2; 32: 53-6
3
.
[5]
Sa
yidm
arie K
H
, T
A
Nagem. Compact d
u
a
l
-ba
nd d
ual-r
in
g print
ed mo
n
opo
le a
n
ten
n
a
s
for W
L
AN
Appl
icatio
ns.
Progressi
n Elect
r
omag
netics R
e
searc
h
B
. 201
2; 43: 313-
331.
[6]
W
ang H, M Z
h
eng. A
n
i
n
tern
al trip
le-b
an
d
W
L
ANante
n
n
a
.
IEEE Antennas and Wireless
Propagation
Letters
. 201
1; 10: 569-
57
2.
[7]
Li D, F
S
Z
h
an
g, Z
N
Z
hao,
L
T
Ma, XN L
i
.
A comp
act CP
W
-
F
E
D Koch
sno
w
fl
ake frac
tal a
n
tenn
a
forW
LAN/W
i
MAX a
ppl
icati
o
n
s
,
Progress In Electro
m
a
gneti
cs Researc
h
C
.
2012; 28:1
43-
153.
[8]
Amit A, Deshmukh KP, Ra
y.
Res
ona
nt L
ength F
o
rm
ula
t
ions for Du
al
Band Sl
ot C
u
t Equil
a
tera
l
T
r
iangular Micr
ostrip Anten
n
a
s
.
W
i
reless Engin
eeri
ng a
nd
T
e
chno
logy
. 2
010; 1: 55-
63.
[9]
YC Lee, JS S
un. Comp
act Printed Sl
ot Ant
enn
as for W
i
reless D
u
a
l
-a
nd Multi-B
a
n
d
Operations.
Progress in Electrom
agnetics Research
. 20
0
8
; 88: 289
–30
5
.
[10]
Kang
L, YZ
Yi
n, ST
F
an, SJ W
e
i. A n
o
ve
lr
ectang
ul
ar sl
ot ante
n
n
a
w
i
t
h
embe
dde
d s
e
lf
-similar
T
-
shap
edstrips f
o
r W
L
AN ap
pli
c
ations.
Prog
re
ss In
El
e
c
trom
ag
ne
ti
cs R
e
se
a
r
ch
Le
tte
rs
. 201
0; 15: 19-
26.
[11]
Josep
h
R, T
F
u
kusak
o
. Ba
nd
w
i
dth
en
ha
nce
m
ent of circ
ul
a
r
l
y
po
lariz
e
d
sq
uare s
l
ot
ante
n
na.
Progress
In Electrom
agnetics Research B
. 2011; 29: 3
3
-25
0
.
[12]
U Sa
nga
w
a
, T
Ura
be, Y
Kud
oh, A Om
ote,
K T
a
kahash
i
.
A study
on
a
6
0
GH
z
l
o
w
pr
o
f
ile
die
l
ectric
lens
ante
n
n
a
u
s
ing
hi
gh-p
e
r
m
ittivity cera
mic
s—T
ow
ard a l
o
w
profil
e a
n
te
nna
. Pr
ocee
di
n
g
of IEICE.
T
o
ky
o. 2
002: 1
6
-11
9
.
[13].
H Le
ga
y, L
Sh
afai.
A n
e
w
stacked
micr
ostrip
anten
na w
i
th
l
a
rge
ban
dw
idth
and
hi
gh
gai
n.
Proc. IEEE
AP-S Int. Sy
m
p
. Digest. 19
93
: 948–9
51.
[14]
SD T
a
rgonski,
RB W
a
ter
h
o
u
s
e, DM P
o
zar.
Des
i
gn
of
w
i
d
e
-ba
n
d
ap
ertur
e
-stacked
p
a
tch micr
ostrip
anten
nas.
IEEE Trans.Antennas
Propagation.
1998; 4
6
(9): 124
5–
125
1.
[15]
RB W
a
terh
ous
e. Stacked
p
a
tches
usin
g
hig
h
a
nd lo
w
d
i
el
e
c
tric
consta
ntmateria
l
com
b
in
ations.
IEEE
T
r
ans. Antenn
as Propa
gati
o
n
.
1999; 47(
12): 176
7–
177
1.
[16]
R Li, G De
je
an
, M Maeng, K
Lim, S Pin
e
l, M
M
T
entzeris, J Laskar. D
e
sig
n
of compact st
acked-
patch
anten
nas i
n
LT
CC multil
a
y
er
p
a
ckag
i
ng m
o
d
u
les for
w
i
r
e
l
e
ss appl
icati
ons
.
IEEE Trans.
Adv.Packag.
200
4; 27(4): 58
1–5
89.
Evaluation Warning : The document was created with Spire.PDF for Python.