T
E
L
KO
M
NI
K
A
,
V
o
l.
1
4,
N
o.
3,
S
ept
em
ber
20
16,
pp.
10
35
~
104
1
I
S
S
N
:
1
693
-
6
930
,
ac
c
r
edi
t
ed
A
b
y
D
IK
T
I,
D
e
c
r
e
e
N
o
:
58/
D
I
K
T
I
/
K
ep/
2013
D
O
I
:
10.
12928/
T
E
LK
O
M
N
I
K
A
.
v
1
4
i
3
.
3591
10
35
R
ec
ei
v
ed
M
ay
2
,
2
01
6
;
R
e
v
i
s
ed
J
u
ly
1
4
,
2
01
6
;
A
c
c
ep
t
ed
Ju
l
y
30
,
201
6
A
n
Im
p
r
o
v
e
d
A
d
ap
t
i
v
e Nic
h
e D
if
f
er
e
n
t
ial E
v
o
lu
t
io
n
A
l
g
or
i
th
m
H
u
i
W
a
n
g
*
,
C
h
a
n
g
to
n
g
S
o
n
g
E
l
ec
t
r
on &
I
nf
or
m
at
i
on D
ep
ar
t
m
ent
,
Z
he
nj
i
ang C
o
l
l
e
ge,
Z
he
nj
i
a
ng 2
1200
0,
C
hi
na
*
C
or
r
es
po
ndi
ng a
ut
hor
,
e
-
m
ai
l
:
f
l
@
dnz
s
.
net
.
c
n
A
b
st
r
act
D
i
f
f
er
en
t
i
al
e
v
o
l
ut
i
on
(
D
E
)
al
gor
i
t
hm
i
s
a
r
a
ndom
s
e
ar
c
h
al
gor
i
t
hm
by
r
ef
er
r
i
ng
t
o
t
he
nat
ur
a
l
genet
i
c
a
nd
na
t
ur
a
l
s
e
l
ec
t
i
on
m
ec
hani
s
m
of
t
h
e
bi
o
l
og
i
c
a
l
w
or
l
d
an
d
i
t
i
s
u
s
ed
t
o
pr
o
c
es
s
t
he
c
om
p
l
i
c
at
ed
non
-
l
i
near
pr
ob
l
em
s
w
h
i
c
h
ar
e
di
f
f
i
c
ul
t
t
o
be s
ol
v
ed b
y
t
r
a
di
t
i
onal
c
om
put
at
i
o
nal
m
et
hod
s
.
H
ow
ev
er
,
s
ub
j
ec
t
t
o i
t
s
ow
n m
ec
h
ani
s
m
and s
i
ngl
e s
t
r
u
c
t
ur
e
,
t
he ba
s
i
c
D
E
al
gor
i
t
hm
i
s
eas
y
t
o get
t
r
a
pped i
n
t
o l
o
c
al
opt
i
m
um
and
i
t
i
s
d
i
f
f
i
c
u
l
t
t
o
h
andl
e
h
i
gh
-
di
m
en
s
i
on
al
an
d
c
om
pl
i
c
at
ed
op
t
i
m
i
z
at
i
on
pr
ob
l
em
s
.
I
n
or
der
t
o
enhan
c
e
t
he
s
ear
c
h
per
f
or
m
anc
e
of
t
he
D
E
al
gor
i
t
hm
,
t
hi
s
paper
u
s
e
s
t
he
i
dea
of
ni
c
he
,
dec
om
po
s
e
s
t
he
ent
i
r
e
po
pul
at
i
o
n i
nt
o
s
e
v
er
a
l
ni
c
h
es
ac
c
or
d
i
ng
t
o
t
he
f
i
t
nes
s
,
p
er
f
or
m
p
opu
l
at
i
on
s
el
ec
t
i
o
n by
i
n
t
egr
at
i
n
g
t
he opt
i
m
um
r
es
er
v
at
i
on s
t
r
a
t
egy
t
o r
eal
i
z
e t
he opt
i
m
al
s
el
ec
t
i
on
of
ni
c
he
,
adj
us
t
s
t
h
e f
i
t
ne
s
s
of
t
he
i
ndi
v
i
d
ual
of
t
he
pop
ul
at
i
on,
de
s
i
gn
s
t
h
e ad
apt
i
v
e
c
r
os
s
o
v
er
a
nd m
ut
at
i
on op
er
at
or
s
t
o m
ak
e t
he
c
r
os
s
o
v
er
and m
ut
at
i
on
pr
oba
bi
l
i
t
i
es
c
ha
nge w
i
t
h t
he
i
nd
i
v
i
dua
l
f
i
t
nes
s
and e
nhan
c
e
s
t
he
abi
l
i
t
y
of
D
E
al
gor
i
t
hm
t
o
j
um
p out
of
t
he
l
o
c
al
opt
i
m
al
s
ol
ut
i
on.
T
he
ex
per
i
m
ent
r
es
ul
t
of
be
nc
hm
ar
k
f
u
nc
t
i
on
s
h
ow
s
t
hat
t
h
e m
et
h
od
of
t
hi
s
p
aper
c
a
n m
ai
nt
ai
n
s
o
l
ut
i
o
n d
i
v
er
s
i
t
y
,
e
f
f
e
c
t
i
v
el
y
a
v
oi
d pr
em
at
ur
e
c
o
nv
er
gen
c
e a
nd en
han
c
e
th
e
gl
oba
l
s
ear
c
h a
bi
l
i
t
y
of
D
E
a
l
g
or
i
t
hm
.
Ke
y
w
o
rd
s
:
di
f
f
er
e
nt
i
a
l
e
v
ol
ut
i
on,
n
i
c
h
e al
gor
i
t
hm
,
ada
pt
i
v
e
c
r
os
s
ov
er
,
ad
apt
i
v
e m
ut
at
i
o
n
C
o
p
y
r
i
g
h
t
©
20
16 U
n
i
ver
si
t
a
s A
h
mad
D
ah
l
an
.
A
l
l
r
i
g
h
t
s r
eser
ved
.
1
.
I
n
tr
o
d
u
c
ti
o
n
I
n t
he f
i
e
l
d of
i
nf
or
m
at
i
on
s
c
i
enc
e,
e
v
o
l
ut
i
on
ar
y
c
om
put
at
i
o
n,
w
h
i
c
h i
s
af
f
ec
t
ed b
y
t
h
e
nat
ur
a
l
s
el
ec
t
i
on m
ec
hani
s
m
of
“
s
ur
v
i
v
al
of
t
he f
i
t
t
es
t
”
and t
he t
r
ans
m
i
s
s
i
on r
ul
es
of
genet
i
c
i
nf
or
m
at
i
on,
t
ak
es
t
he
pr
o
bl
em
s
t
o be
s
ol
v
ed
as
t
h
e en
v
i
r
onm
ent
an
d s
ear
c
h
es
t
he
opt
i
m
al
s
ol
ut
i
on t
hr
ou
gh n
at
ur
a
l
e
v
ol
ut
i
o
n f
r
o
m
t
he popu
l
at
i
o
n
f
or
m
ed b
y
t
he p
os
s
i
b
l
e s
ol
ut
i
o
ns
.
A
s
a
uni
v
er
s
a
l
o
pt
i
m
i
z
at
i
o
n a
l
go
r
i
t
hm
bas
ed o
n n
at
ur
a
l
s
e
l
ec
t
i
on
an
d g
ene
t
i
c
t
heor
y
,
D
E
al
gor
i
t
hm
has
been
s
uc
c
es
s
f
ul
l
y
a
pp
l
i
ed
i
n
m
an
y
f
i
e
l
ds
.
A
l
t
ho
ug
h
D
E
al
gor
i
t
hm
has
m
an
y
adv
ant
ages
i
n
s
ol
v
i
ng
t
h
e
opt
i
m
i
z
at
i
on
pr
o
bl
em
s
,
t
her
e
i
s
s
t
i
l
l
s
om
e
r
oom
t
o
be
i
m
pr
ov
ed.
F
or
ex
a
m
pl
e,
i
t
f
ai
l
s
t
o
m
ai
nt
ai
n
p
opu
l
at
i
on
d
i
v
e
r
s
i
t
y
a
nd
i
t
i
s
eas
y
t
o
get
t
r
appe
d
i
nt
o
l
oc
a
l
ex
t
r
em
e
p
oi
nt
s
of
m
ul
t
i
-
peak
f
unc
t
i
on
[
1]
.
I
n
a
w
or
d,
D
E
a
l
g
or
i
t
hm
i
s
not
m
at
ur
el
y
de
v
e
l
op
ed
y
et
;
t
her
ef
or
e,
c
ont
i
nu
ous
r
es
ear
c
h i
s
r
e
qui
r
ed s
o
as
t
o
ex
pan
d t
h
e
app
l
i
c
at
i
o
n
f
i
el
ds
of
D
E
al
g
or
i
t
hm
.
A
s
an ef
f
ec
t
i
v
e
appr
o
ac
h
t
o
s
o
l
v
e
m
ul
t
i
-
pe
ak
opt
i
m
i
z
a
t
i
o
n
pr
o
bl
em
s
,
ni
c
he
has
dr
a
w
n
ex
t
e
ns
i
v
e
at
t
en
t
i
o
n
a
nd
i
t
has
bec
om
e
a
r
es
ear
c
h
f
o
c
us
i
n
D
E
a
l
gor
i
t
hm
.
N
i
c
he
m
et
hod
c
an
r
ed
uc
e
t
he
di
s
t
ur
banc
e
a
nd
t
he c
om
bi
nat
i
on
of
D
E
al
g
or
i
t
hm
c
an
m
a
k
e
up
f
or
t
he def
ec
t
s
of
D
E
a
l
g
or
i
t
hm
i
n
s
ol
v
i
ng
l
oc
a
l
ex
t
r
em
u
m
and
i
t
h
as
c
er
t
ai
n
ad
v
a
nt
ag
es
i
n
s
ol
v
i
ng
m
ul
t
i
-
m
odal
,
hi
gh
l
y
-
d
i
m
ens
i
ona
l
,
m
ul
t
i
-
obj
ec
t
i
v
e a
nd
d
y
n
am
i
c
c
o
m
pl
i
c
a
t
ed
opt
i
m
i
z
at
i
on
pr
ob
l
e
m
s
[
2,
3
].
B
as
ed
on p
opu
l
at
i
on
di
f
f
er
enc
e,
D
E
al
g
or
i
t
hm
w
as
pr
opos
ed
b
y
R
ai
ner
S
t
or
n and
K
en
net
h
P
r
i
c
e
i
n t
h
e
y
e
ar
of
1996 and
i
t
s
bas
i
c
i
de
a i
s
t
o obt
ai
n t
he
i
nt
er
i
m
popu
l
at
i
o
n b
y
r
eor
gan
i
z
i
n
g t
he d
i
f
f
er
enc
es
of
i
ndi
v
i
du
al
s
of
t
he c
ur
r
ent
popu
l
at
i
o
n and o
bt
ai
ns
a ne
w
gener
at
i
on
of
popu
l
at
i
o
n
t
h
r
ough
t
h
e
c
om
pet
i
t
i
on
of
of
f
s
pr
i
ng
i
nd
i
v
i
d
ual
s
a
nd
p
ar
ent
i
ndi
v
i
du
al
s
.
I
n
t
h
e
D
E
al
gor
i
t
hm
,
t
he
m
ut
at
e
d
i
nd
i
v
i
d
ua
l
s
ar
e
f
or
m
ed
t
hr
oug
h
t
he
m
u
t
at
i
on
o
per
at
i
on
of
t
h
e
par
ent
i
nd
i
v
i
d
ual
s
,
t
hen,
i
t
per
f
or
m
s
c
r
os
s
ov
er
oper
at
i
on
bet
w
een
t
he
par
ent
i
ndi
v
i
dua
l
s
and
t
h
e
m
ut
at
ed i
n
di
v
i
dua
l
s
b
as
ed
on c
er
t
ai
n pr
o
bab
i
l
i
t
y
an
d pr
o
duc
es
t
es
t
i
n
di
v
i
du
al
s
.
A
f
t
er
t
ha
t
,
i
t
c
onduc
t
s
gr
eed
y
s
e
l
ec
t
i
on
oper
at
i
o
n on
t
he par
e
nt
i
n
d
i
v
i
du
al
s
an
d t
he t
es
t
i
nd
i
v
i
d
ual
s
ac
c
or
di
n
g
t
o
t
he
f
i
t
n
es
s
,
r
et
ai
ns
t
he
b
et
t
er
i
ndi
v
i
du
al
s
an
d
r
ea
l
i
z
es
t
he
po
pu
l
at
i
on
ev
ol
ut
i
on
.
H
o
w
e
v
er
,
D
E
al
g
or
i
t
hm
has
s
uc
h pr
ob
l
e
m
s
as
bad l
oc
a
l
s
ear
c
h
a
bi
l
i
t
y
,
l
o
w
s
ear
c
h
ef
f
i
c
i
enc
y
i
n t
h
e pos
t
e
v
o
lu
t
io
n
p
has
e
an
d pr
em
at
ur
e c
o
nv
er
ge
nc
e
,
w
hi
c
h
s
el
ec
t
i
on
m
et
hods
t
o
us
e has
be
en
a
di
f
f
i
c
ul
t
y
f
or
D
E
al
gor
i
t
hm
al
l
t
he
t
i
m
e
s
o
as
t
o
r
et
ai
n
t
he
ex
c
el
l
ent
i
nd
i
v
i
du
al
s
an
d
m
ai
nt
a
i
n
t
he
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
10
35
–
1
041
1036
popu
l
at
i
o
n d
i
v
er
s
i
t
y
[
4]
.
N
i
c
he t
ec
hno
l
o
g
y
has
be
en
pr
op
os
ed
i
n
t
he
n
i
c
he
i
m
pl
e
m
ent
at
i
o
n
m
et
hod bas
ed on pr
e
-
s
el
e
c
t
i
on m
ec
hani
s
m
b
y
C
a
v
i
c
hi
o
i
n t
he
197
0s
f
or
t
he f
i
r
s
t
t
i
m
e.
T
he
c
r
eat
ur
e i
n t
h
e n
at
ur
a
l
w
or
l
d
l
i
v
es
w
i
t
h t
he
i
nd
i
v
i
dua
l
s
and
pop
ul
at
i
on
w
i
t
h s
i
m
i
l
ar
s
hapes
an
d
f
eat
ur
es
t
o
i
t
s
o
w
n
,
i
nc
l
u
di
n
g
s
el
ec
t
i
n
g
m
at
es
an
d
pr
od
uc
i
ng
o
f
f
s
pr
i
ng
,
u
nder
s
uc
h
nat
ur
al
r
ul
es
and
l
a
w
s
,
t
h
e n
at
ur
a
l
w
or
l
d
gr
adu
al
l
y
de
v
e
l
o
ps
an
d e
nr
i
c
hes
.
N
i
c
h
e t
ec
hno
l
og
y
dec
om
pos
es
t
he
gene
t
i
c
i
n
di
v
i
dua
l
s
of
eac
h
gener
at
i
on
i
n
t
o
s
ev
er
al
k
i
nds
,
s
el
ec
t
s
c
er
t
ai
n
i
n
di
v
i
du
al
s
w
i
t
h
b
i
g
ger
f
i
t
nes
s
f
r
o
m
eac
h
k
i
nd as
t
h
e
ex
c
el
l
e
nt
r
epr
es
ent
at
i
v
es
t
o f
or
m
a popul
a
t
i
o
n and pr
oduc
es
a ne
w
popu
l
at
i
o
n
w
i
t
h
i
n
t
he
pop
ul
at
i
o
n a
nd am
ong
di
f
f
er
ent
p
opu
l
a
t
i
o
ns
t
hr
o
ugh
c
r
os
s
ov
er
an
d
m
ut
at
i
on
[
5]
.
T
hi
s
paper
f
i
r
s
t
l
y
ana
l
y
z
es
t
he c
har
ac
t
er
i
s
t
i
c
s
of
s
uc
h oper
at
i
ons
as
c
r
os
s
ov
er
,
m
ut
at
i
o
n
and s
e
l
ec
t
i
on
of
D
E
al
gor
i
t
hm
.
T
hen,
i
t
i
nt
r
od
uc
es
ni
c
he t
ec
h
no
l
og
y
i
nt
o
D
E
al
go
r
i
t
hm
,
per
f
or
m
s
s
t
r
uc
t
ur
al
des
i
gn of
ni
c
he
di
f
f
er
ent
i
al
a
l
gor
i
t
hm
,
us
es
adapt
i
v
e pr
oba
bi
l
i
t
y
s
t
r
at
eg
y
i
n t
he
c
r
os
s
ov
er
an
d m
ut
at
i
o
n of
D
E
a
l
g
or
i
t
hm
,
ens
ur
es
ac
c
el
er
at
e
d
e
v
ol
ut
i
onar
y
opt
i
m
i
z
at
i
on
of
t
he
ent
i
r
e
pop
ul
at
i
on i
n t
h
e ear
l
y
e
v
ol
ut
i
on p
has
e a
nd a
v
o
i
ds
dam
age on t
he
pop
ul
at
i
on opt
i
m
i
z
at
i
o
n
i
n t
he pos
t
e
v
o
l
ut
i
on s
o as
t
o
m
ai
nt
a
i
n t
he p
opu
l
at
i
o
n di
v
er
s
i
t
y
,
r
et
ai
ns
c
er
t
ai
n d
i
s
t
anc
e bet
w
een
t
he i
nd
i
v
i
d
ua
l
s
,
c
r
eat
e a
n
i
c
he e
v
ol
ut
i
onar
y
e
nv
i
r
onm
ent
a
nd
i
m
pr
ov
e t
h
e c
on
v
er
genc
e s
p
eed
and
t
he
gl
oba
l
s
ear
c
h
per
f
or
m
anc
e
of
D
E
al
g
or
i
t
hm
.
T
he
f
i
nal
ex
p
er
i
m
ent
r
es
ul
t
pr
ov
es
t
hat
t
he
m
et
hod of
t
hi
s
p
ap
er
has
s
t
abl
e c
on
v
er
g
enc
e
per
f
or
m
a
nc
e an
d h
i
g
her
c
om
put
at
i
o
n ef
f
i
c
i
enc
y
i
n
so
l
v
i
ng
c
om
pl
i
c
at
ed
opt
i
m
i
z
at
i
o
n pr
o
bl
em
s
.
2.
O
p
er
at
i
o
n
s
o
f D
i
ffe
r
e
n
ti
a
l
E
v
o
l
u
ti
o
n
A
l
g
o
r
i
th
m
A
s
s
um
e t
hat
t
he c
ur
r
ent
e
v
ol
ut
i
o
n gen
er
at
i
on
i
s
t
,
t
he p
opu
l
at
i
on s
i
z
e
i
s
NP
,
t
he s
pac
e
di
m
ens
i
on i
s
D
,
t
h
e c
ur
r
ent
popu
l
at
i
o
n i
s
{
}
12
()
,
,
,
tt
t
NP
X
t
x
x
x
=
L
and
(
)
12
,
,,
t
t
t
t
i
i
i
iD
x
x
x
x
=
L
is
t
h
e
th
i
i
nd
i
v
i
d
ua
l
of
t
he
po
pul
at
i
o
n.
P
er
f
or
m
t
he f
ol
l
o
w
i
n
g t
h
r
ee op
er
at
i
ons
o
n e
ac
h i
n
di
v
i
d
ua
l
t
i
x
su
cce
ssi
v
e
l
y
.
(
1)
Mut
at
i
o
n
D
E
a
l
gor
i
t
hm
adds
t
h
e
w
e
i
ght
ed
di
f
f
er
enc
e v
ec
t
or
b
et
w
ee
n t
h
e t
w
o m
e
m
ber
s
of
t
he
popu
l
at
i
o
n t
o t
he
t
hi
r
d m
em
ber
t
o pr
oduc
e
n
e
w
par
a
m
et
er
v
ec
t
or
a
nd
t
hi
s
op
er
at
i
o
n
i
s
c
al
l
e
d
m
ut
at
i
on.
E
v
er
y
i
nd
i
v
i
d
ua
l
t
i
x
w
i
l
l
pr
o
duc
e t
he m
ut
at
i
on
i
n
di
v
i
d
ua
l
12
(,
,
,
)
t
tt
t
i
i
i
iD
v
vv
v
=
L
ac
c
or
di
ng
t
o
t
he f
or
m
ul
a bel
o
w
[6
]
.
1
23
(
)
1,
2
,
,
tt
t
t
ij
r
j
r
j
r
j
v
x
x
x
j
D
λ
=
+−
=
L
(
1)
I
n t
h
i
s
f
or
m
ul
a,
1
11
1
12
(
,
,,
)
t
tt
t
r
r
r
rD
x
xx
x
=
L
,
2
22
2
12
(
,
,,
)
t
tt
t
r
r
r
rD
x
xx
x
=
L
and
3
3
3
3
12
(
,
,,
)
t
tt
t
r
r
r
rD
x
xx
x
=
L
ar
e t
hr
ee
i
nd
i
v
i
dua
l
s
r
and
o
m
l
y
s
el
ec
t
ed f
r
om
t
he pop
ul
at
i
o
n an
d
12
3
rr
r
i
≠
≠
≠
,
λ
is
a
s
c
a
lin
g
f
ac
t
or
w
i
t
h a r
ang
e of
[
0,
2
]
.
(
2)
C
r
os
s
ov
er
D
E
a
l
gor
i
t
hm
m
i
x
es
t
he par
am
et
er
of
t
he
m
ut
at
i
on
v
ec
t
or
a
nd t
h
e pr
ed
ef
i
ne
d
t
ar
get
par
am
et
er
and pr
oduc
es
t
h
e t
es
t
v
ec
t
or
ac
c
or
di
n
g t
o c
er
t
ai
n r
u
l
es
,
k
now
n as
c
r
os
s
ov
er
.
T
he t
es
t
in
d
iv
id
u
a
l
12
(,
,
,
)
t
t
t
t
i
i
i
iD
u
uu
u
=
L
c
an
be
pr
oduc
e
d
ac
c
or
di
n
g
t
o
t
h
e
m
ut
at
i
o
n
i
nd
i
v
i
dua
l
t
i
v
and
t
he
par
ent
i
n
di
v
i
dua
l
t
i
x
and
i
f
o
r
i
f
a
n
d
t
ij
j
t
ij
t
ij
j
v
r
and
C
R
j
r
and
u
x
r
and
C
R
j
r
and
≤=
=
>
≠
(
2)
I
n
t
h
i
s
f
or
m
ul
a,
r
and
i
s
a
r
and
o
m
nu
m
ber
w
i
t
hi
n
t
h
e
s
c
op
e
of
[
0
,
1]
,
CR
i
s
a
c
o
ns
t
ant
w
it
h
in
[
0
,
1]
,
w
h
i
c
h i
s
c
a
l
l
e
d c
r
os
s
ov
er
f
ac
t
or
an
d
j
r
and
i
s
a r
an
do
m
i
nt
eger
w
i
t
hi
n
[
1,
]
D
[
7]
.
(
3)
S
el
ec
t
i
on
I
f
t
he c
os
t
f
unc
t
i
on
of
t
he
t
es
t
v
ec
t
or
i
s
l
o
w
er
t
ha
n t
hat
of
t
h
e t
ar
g
et
v
ec
t
or
,
t
h
e t
es
t
v
ec
t
or
w
i
l
l
r
e
pl
ac
e
t
he
t
a
r
get
v
ec
t
or
i
n
t
he
n
ex
t
g
ener
at
i
o
n.
T
he
f
i
nal
oper
at
i
o
n
i
s
c
al
l
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KO
M
NI
K
A
I
S
S
N
:
1
693
-
6
930
A
n I
mpr
ov
ed
A
dapt
i
v
e N
i
c
h
e
D
if
f
e
r
e
n
t
ia
l E
v
o
lu
t
io
n
A
lg
o
r
it
h
m
(
H
u
i
W
ang
)
1037
s
el
ec
t
i
on,
w
h
i
c
h i
s
t
o s
el
ec
t
t
he i
n
di
v
i
dua
l
w
i
t
h
t
he b
es
t
f
i
t
nes
s
f
r
o
m
t
he par
ent
i
n
di
v
i
dua
l
t
i
x
and
t
he t
es
t
i
n
di
v
i
dua
l
t
i
u
as
t
he
i
n
di
v
i
d
ua
l
1
t
i
x
+
of
t
he nex
t
gen
er
a
t
i
on
[
8]
.
1
i
f
()
()
ot
he
r
w
i
s
e
t
tt
i
ii
t
i
t
i
x
fit
x
fit
u
x
u
+
<
=
(
3)
I
n t
h
i
s
f
or
m
ul
a
(
3)
,
()
fit
⋅
i
s
t
he f
i
t
nes
s
f
unc
t
i
on.
F
ig
ur
e
1 i
s
t
he s
c
hem
at
i
c
f
or
D
E
a
l
g
or
i
t
hm
t
o per
f
or
m
opt
i
m
i
z
at
i
o
n s
ear
c
h o
n m
ul
t
i
-
peak
f
unc
t
i
on.
(
a)
(
b)
(c
)
F
i
gur
e 1.
O
pt
i
m
i
z
at
i
on s
e
ar
c
h of
di
f
f
er
ent
i
al
e
v
ol
ut
i
on
a
l
gor
i
t
hm
on m
ul
t
i
-
peak
f
unc
t
i
on
3.
D
e
si
g
n
o
f
A
d
a
p
ti
v
e
N
i
c
h
e
D
i
ffe
r
e
n
ti
a
l
E
v
o
l
u
ti
o
n
A
l
g
o
r
i
th
m
T
he bas
i
c
i
dea
of
ada
pt
i
v
e
ni
c
he
di
f
f
er
ent
i
al
ev
ol
ut
i
on
al
g
or
i
t
hm
i
s
t
o
adj
us
t
t
he
f
i
t
nes
s
of
eac
h
i
n
di
v
i
dua
l
f
r
o
m
t
he popu
l
at
i
on
b
y
r
ef
l
ec
t
i
ng
t
h
e s
i
m
i
l
ar
i
t
i
es
of
t
hes
e
i
ndi
v
i
d
ual
s
,
b
as
ed on
w
hi
c
h t
he a
l
gor
i
t
hm
c
an per
f
or
m
s
el
ec
t
i
on o
per
at
i
on an
d r
ea
l
i
z
e t
he e
v
o
l
u
t
i
on
oper
a
t
i
on
env
i
r
onm
ent
of
n
i
c
he.
T
he r
adi
us
of
t
he
ni
c
h
e i
s
of
gr
e
at
i
m
por
t
anc
e.
I
f
i
t
i
s
t
oo
s
m
al
l
,
t
her
e m
a
y
be t
oo m
an
y
ni
c
hes
w
h
i
l
e i
f
i
t
i
s
t
oo bi
g
,
m
an
y
s
m
al
l
ni
c
hes
c
an be s
een as
one n
i
c
he an
d i
t
w
i
l
l
af
f
ec
t
t
he
ev
ol
ut
i
on
pr
oc
es
s
of
t
he
ni
c
he
[9
]
.
T
he
H
a
m
m
i
ng
di
s
t
anc
e
of
an
y
t
w
o
i
nd
i
v
i
d
ual
s
i
X
and
j
X
i
n
a t
h
e po
pu
l
at
i
on
i
s
s
ho
w
n
as
:
(
)
2
1
(
1
,
2...,
1
,
1
,
...,
)
M
ij
i
j
ik
jk
k
d
X
X
x
x
i
MN
j
i
MN
=
=
−
=
−
=
+−
=
+
+
∑
(
4)
i
X
and
j
X
ar
e t
he
th
i
and
th
j
i
n
di
v
i
d
ual
s
r
es
pec
t
i
v
el
y
a
nd
N
i
s
t
he num
ber
of
t
he
in
i
t
ia
l p
o
p
u
la
t
io
n
s
.
U
s
ual
l
y
,
a f
unc
t
i
on
w
hi
c
h
i
n
di
c
at
es
t
h
e r
el
at
i
ons
h
i
p de
g
r
ee of
di
s
t
anc
e of
t
w
o i
nd
i
v
i
dua
l
s
i
n t
he p
opu
l
at
i
o
n i
s
c
a
l
l
ed s
har
i
n
g f
unc
t
i
o
n a
nd
i
t
i
s
m
ar
k
ed as
(,
)
Pi
j
.
(,
)
1
(,
)
/
P
i
j
d
i
j
p
=
−
(
5)
I
n t
h
i
s
f
or
m
ul
a,
ij
d
i
s
t
he r
e
l
at
i
ons
hi
p of
t
he
di
s
t
a
nc
e be
t
w
een
i
nd
i
v
i
d
ua
l
i
and i
nd
i
v
i
d
u
al
j
.
S
har
i
ng
de
gr
ee
i
s
a m
eas
ur
em
ent
t
o m
eas
ur
e t
he
de
gr
ee
of
s
har
i
n
g
of
a
c
er
t
ai
n
i
nd
i
v
i
d
ual
i
n t
he p
opu
l
at
i
o
n and i
t
i
s
def
i
n
ed as
t
he s
um
of
t
he s
har
i
ng f
unc
t
i
ons
of
t
hi
s
i
nd
i
v
i
dua
l
and
ot
her
i
n
di
v
i
dua
l
s
of
t
he
popu
l
at
i
o
n.
I
t
i
s
dem
ons
t
r
at
ed as
f
ol
l
o
w
s
w
i
t
h
i
S
.
1
(
)
,
1
,
2
,
...,
N
i
ij
j
S
Sd
i
N
=
=
=
∑
(
6)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
10
35
–
1
041
1038
I
n t
h
i
s
f
or
m
ul
a,
N
i
s
t
he
pop
ul
at
i
o
n s
i
z
e.
A
s
s
um
e
t
hat
t
he
f
i
t
nes
s
of
t
he
i
ndi
v
i
du
al
i
is
i
F
and
t
h
e
p
opu
l
at
i
on
s
i
z
e
i
s
N
,
t
hen
t
he
pr
oba
bi
l
i
t
y
i
P
f
or
i
ndi
v
i
du
al
i
t
o
be s
e
l
ec
t
ed
i
s
:
1
/
(
)
(
1,
2
,
,
)
N
ii
i
i
PF
F
i
N
=
=
=
∑
L
(
7)
Start
End
Initialize the population
,
the algorithm parameters
,
clarify the
decoding and encoding schemes
Evaluate every individual of the current population
s
Whether the convergence criterion is
met or not
?
Obtain the initial population and determine the number of samples
Perform the adaptive operations of
crossover
Perform the
adaptive
operations
of
mutation
Output the optimization
result
Perform niche elimination operation on the new population formed
by N g
roups
Y
N
...
...
Use selection and give higher probability to the individual with higher
performance
,
select M different individuals and form the individual set
to the mating pool
F
i
gur
e
2
.
F
l
o
w
c
h
ar
t
of
opt
i
m
i
z
at
i
on
op
er
at
i
ons
of
ad
a
pt
i
v
e
ni
c
he
di
f
f
er
ent
i
al
ev
ol
ut
i
o
n
a
l
gor
i
t
hm
T
he
s
t
eps
of
adapt
i
v
e n
i
c
he
di
f
f
er
ent
i
a
l
e
v
o
l
ut
i
on
al
g
or
i
t
hm
ar
e c
l
ar
i
f
i
ed as
f
ol
l
o
w
s
:
(
1)
S
et
t
h
e e
v
o
l
u
t
i
o
n
gen
e
r
at
i
on
c
ou
nt
er
1
t
=
,
r
an
dom
l
y
pr
oduc
e
N
in
i
t
ia
l in
d
i
v
i
d
u
a
ls
and f
or
m
t
he i
ni
t
i
a
l
p
opu
l
a
t
i
on
(
)
Pt
,
i
n
i
t
i
al
i
z
e t
he c
r
os
s
ov
er
pr
ob
abi
l
i
t
y
c
P
and
t
he
m
u
t
at
i
o
n
pr
oba
bi
l
i
t
y
m
P
.
(
2)
O
bt
ai
n
t
he
f
i
t
nes
s
of
ea
c
h
i
nd
i
v
i
du
al
(
)
(
12
)
i
Ft
i
N
…
=
,
,
,
and
m
ai
nt
a
i
n
t
he
i
n
di
v
i
du
al
ma
x
X
w
i
t
h
t
he
m
ax
i
m
u
m
f
i
t
nes
s
.
(
3)
A
dj
us
t
c
P
and
m
P
ac
c
or
di
n
g t
o F
or
m
ul
as
(
4)
-
(6
).
R
and
om
l
y
s
el
ec
t
t
w
o
i
ndi
v
i
dua
l
s
f
r
o
m
t
he p
ar
ent
po
p
ul
at
i
o
n
of
eac
h n
i
c
he.
R
et
ai
n
t
he
in
d
iv
id
u
a
ls
w
it
h
b
ig
f
it
n
e
s
s
,
i
n
or
der
t
o
ens
ur
e
t
he
c
r
o
s
s
ov
er
qua
l
i
t
y
,
t
he
c
r
os
s
ov
er
pr
obab
i
l
i
t
y
i
s
pr
oduc
e
d i
n t
h
e ad
apt
i
v
e
w
a
y
and
t
he
ad
apt
i
v
e c
r
o
s
s
ov
er
pr
ob
ab
i
l
i
t
y
i
s
d
et
er
m
i
ned b
y
t
he
f
ol
l
o
w
i
ng f
or
m
ul
a.
1
ma
x
ma
x
1
1
(
)/
(
)
(
0
,
1]
ca
ca
c
ca
ff
k
ff
ff
P
k
ff
k
≥
−−
=
∈
<
(
8)
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KO
M
NI
K
A
I
S
S
N
:
1
693
-
6
930
A
n I
mpr
ov
ed
A
dapt
i
v
e N
i
c
h
e
D
if
f
e
r
e
n
t
ia
l E
v
o
lu
t
io
n
A
lg
o
r
it
h
m
(
H
u
i
W
ang
)
1039
I
n t
h
i
s
f
or
m
ul
a,
ma
x
f
and
a
f
ar
e
t
he m
ax
i
m
u
m
f
i
t
nes
s
and t
he a
v
er
a
ge f
i
t
n
es
s
of
t
he
par
ent
ge
ner
at
i
on r
es
pec
t
i
v
el
y
an
d
c
f
i
s
t
he
bi
gge
r
f
i
t
n
es
s
of
t
w
o
i
n
di
v
i
dua
l
s
t
o
be c
r
os
s
-
ov
er
ed.
N
on
-
un
i
f
or
m
m
ut
at
i
on o
per
at
i
o
n i
s
us
ed
and t
he m
ut
at
i
on pr
oba
bi
l
i
t
y
i
s
c
ont
r
o
l
l
ed
b
y
t
h
e
ev
o
l
ut
i
o
n d
egr
ee
i
n or
d
er
t
o
guar
a
nt
e
e t
he m
ut
at
i
on
qu
al
i
t
y
.
T
he ad
apt
i
v
e m
ut
at
i
o
n pr
ob
ab
i
l
i
t
y
i
s
det
er
m
i
ned b
y
t
he f
o
r
m
ul
a bel
o
w
.
2
ma
x
ma
x
2
2
(
)/
(
)
(
0
,
1]
m
a
m
a
m
m
a
ff
k
ff
ff
P
k
ff
k
≥
−−
=
∈
<
(
9)
I
n t
h
i
s
f
or
m
ul
a,
ma
x
f
and
a
f
ar
e
t
he m
ax
i
m
u
m
f
i
t
nes
s
and t
he a
v
er
a
ge f
i
t
n
es
s
of
t
he
par
ent
po
pul
at
i
on r
es
p
ec
t
i
v
el
y
an
d
m
f
i
s
t
he f
i
t
nes
s
of
t
he
i
nd
i
v
i
d
ua
l
t
o
be m
ut
at
ed
.
(
4)
S
el
ec
t
i
on
o
per
at
i
o
n.
U
s
e
s
el
ec
t
i
on
an
d
gi
v
e
h
i
gh
er
pr
obab
i
l
i
t
y
t
o
t
he
i
nd
i
v
i
du
a
l
w
i
t
h
hi
g
her
per
f
or
m
anc
e,
s
el
ec
t
M
di
f
f
er
ent
i
ndi
v
i
du
al
s
ac
c
or
di
n
g t
o F
or
m
ul
a (
7)
and f
or
m
t
he
i
nd
i
v
i
d
ual
s
et
t
o
t
he
m
at
i
ng
poo
l
an
d o
bt
a
i
n t
he
ne
w
po
pul
at
i
on.
(
5)
C
on
v
er
g
enc
e
c
r
i
t
er
i
o
n
j
udgm
ent
.
I
f
t
he
c
on
v
er
g
en
c
e
c
r
i
t
er
i
o
n
i
s
no
t
m
et
,
upd
at
e
t
he
c
ount
er
1
tt
=+
an
d
r
et
a
i
n
t
he
be
s
t
i
nd
i
v
i
d
ua
l
d
i
r
ec
t
l
y
i
nt
o
t
h
e
nex
t
gen
er
at
i
on,
obt
ai
n
t
he
f
i
t
nes
s
()
i
fit
t
of
eac
h i
ndi
v
i
d
ual
,
r
et
ai
n
t
he c
ur
r
ent
opt
i
m
al
i
nd
i
v
i
dua
l
ma
x
()
X
t
and t
ur
n t
o S
t
ep 3,
ot
her
w
i
s
e,
o
ut
p
ut
t
h
e o
pt
i
m
al
l
a
y
out
r
es
ul
t.
B
as
ed
on
t
he
ab
ov
e a
na
l
y
s
i
s
,
F
i
g
ur
e
2
i
s
t
he f
l
o
w
c
har
t
of
t
he
opt
i
m
i
z
at
i
on o
per
at
i
ons
of
adap
t
i
v
e ni
c
he
di
f
f
er
ent
i
al
e
v
o
l
ut
i
on al
gor
i
t
hm
.
4
.
E
x
p
e
r
i
m
e
n
t S
i
m
u
l
a
ti
o
n
a
n
d
A
n
al
ysi
s
4.
1
.
T
est
F
u
n
c
ti
o
n
I
n or
der
t
o
t
es
t
t
he per
f
or
m
anc
es
of
A
NDE
s
uc
h
as
t
he
ab
i
l
i
t
y
t
o ov
er
c
om
e
pr
e
m
at
ur
e
c
onv
er
g
enc
e
an
d t
h
e g
l
ob
al
o
pt
i
m
i
z
a
t
i
o
n c
ap
ab
i
l
i
t
y
,
f
our
f
unc
t
i
o
ns
s
ho
w
e
d b
y
F
or
m
ul
a
(
10)
t
o
F
or
m
ul
a (
13)
ha
v
e
be
en
s
el
ec
t
ed
as
t
he
t
es
t
f
unc
t
i
ons
.
A
m
ong t
h
em
,
1
f
i
s
a
s
i
ngl
e
-
pe
ak
f
unc
t
i
on w
hi
l
e
24
ff
−
ar
e m
ul
t
i
-
pe
ak
f
unc
t
i
ons
.
S
ee
t
he
i
r
r
es
p
ec
t
i
v
e c
har
ac
t
er
i
s
t
i
c
s
i
n
T
abl
e
1.
(
)
2
1
11
ni
j
ij
fx
x
=
=
=
∑∑
(
10
)
(
)
[
)
4
2
1
0,
1
n
i
i
f
x
i
x
r
andom
=
=
+
∑
(
11)
(
)
2
3
11
1
1
20
e
xp
0.2
e
xp
c
os
2
20
nn
ii
i
i
fx
x
x
e
n
n
π
=
=
=
−
−
−
++
∑∑
(
12)
(
)
(
)
2
4
1
10
c
os
2
10
n
i
i
i
fx
x
x
π
=
=
−+
∑
(
13)
T
abl
e 1.
C
har
ac
t
er
i
s
t
i
c
s
of
t
es
t
f
unc
t
i
ons
F
unc
t
i
on
V
ar
i
abl
e r
ange
V
ar
i
abl
e l
engt
h
G
l
obal
opt
i
m
al
s
ol
ut
i
on
1
f
[
-
100,
100]
n
8
0
2
f
[
-
1.
28,
1.
28
]
n
10
0
3
f
[
-
32,
32]
n
10
0
4
f
[
-
5.
12,
5
.
12]
n
12
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
1
6
9
3
-
6
930
T
E
L
KO
M
NI
K
A
V
o
l.
14
,
N
o
.
3,
S
ept
em
ber
2016
:
10
35
–
1
041
1040
1
f
i
s
a
c
o
nt
i
nuo
us
s
i
n
gl
e
-
pea
k
f
unc
t
i
on.
S
ur
r
ou
nd
i
ng
t
he
v
a
l
l
e
y
i
s
t
he
r
e
l
at
i
v
el
y
s
m
oot
h
s
ur
f
ac
e and i
t
i
s
m
ai
nl
y
us
e
d
t
o t
es
t
t
he
op
t
i
m
i
z
at
i
on
ac
c
ur
ac
y
of
t
he
al
g
or
i
t
hm
.
2
f
has
m
an
y
un
ev
enl
y
di
s
t
r
i
but
e
d pe
ak
s
,
w
hi
c
h
ha
v
e
di
f
f
er
ent
l
en
gt
hs
.
I
t
has
s
e
v
er
a
l
l
oc
al
m
ax
i
m
u
m
and
m
i
ni
m
um
and a hug
e os
c
i
l
l
a
t
i
o
n.
3
f
has
a
m
ul
t
i
-
peak
and
m
ul
t
i
-
v
a
l
l
e
y
s
ur
f
ac
e and
i
t
h
as
one
an
d o
nl
y
o
ne
opt
i
m
al
ex
t
r
em
u
m
.
B
es
i
des
,
i
t
h
as
t
he s
pa
t
i
a
l
di
s
t
r
i
but
i
on
of
di
f
f
er
ent
hei
ght
s
and
pe
ak
s
and i
t
i
s
us
u
al
l
y
us
ed
t
o
m
eas
ur
e
t
he
per
f
or
m
anc
e
of
t
he
s
ear
c
h
a
l
gor
i
t
hm
i
n
pr
oc
es
s
i
ng
t
h
e
op
t
i
m
i
z
at
i
on
pr
obl
em
s
w
i
t
h m
an
y
noi
s
es
.
4
f
has
a
s
t
r
o
ng
os
c
i
l
l
at
i
on
as
w
el
l
as
m
an
y
t
r
a
ps
.
D
u
e
t
o
t
he
os
c
i
l
l
at
i
o
n
an
d
t
h
e
m
an
y
l
oc
al
o
pt
i
m
al
poi
nt
s
s
ur
r
oun
di
n
g t
he gl
oba
l
opt
i
m
al
poi
n
t
,
i
t
c
an t
r
i
c
k
and
m
i
s
gui
de t
he pop
ul
at
i
on
s
ear
c
h i
nt
o l
oc
al
opt
i
m
a
l
po
i
nt
s
a
nd
i
t
i
s
qui
t
e d
ec
ept
i
v
e t
o t
he
al
g
or
i
t
hm
.
(
a)
T
es
t
f
unc
t
i
on
1
(
b)
T
es
t
f
unc
t
i
on
2
(
c
)
T
es
t
f
unc
t
i
on 3
(
d)
T
es
t
f
unc
t
i
on
4
F
i
gur
e
3.
T
hr
ee
-
di
m
ens
i
on
al
s
ur
f
ac
es
of
f
our
t
es
t
f
unc
t
i
ons
F
r
o
m
t
he
abo
v
e
an
al
y
s
i
s
,
i
t
c
an
be
s
een
t
h
at
t
h
e
f
our
f
unc
t
i
ons
of
14
f
f
−
ar
e
gener
a
l
l
y
r
epr
es
ent
a
t
i
v
e
and
t
he
y
c
a
n be
us
ed t
o t
es
t
t
he
opt
i
m
i
z
at
i
on
per
f
or
m
anc
e of
t
he a
l
gor
i
t
hm
.
4
.
2
.
C
o
m
p
a
r
i
s
o
n
o
f g
l
o
b
a
l
o
p
ti
m
i
z
a
ti
o
n
p
e
r
fo
r
m
a
n
c
e
T
abl
e 2
i
s
t
he
s
t
at
i
s
t
i
c
c
o
m
par
i
s
on of
t
h
e g
l
ob
al
opt
i
m
i
z
at
i
on p
er
f
or
m
anc
e af
t
er
r
epeat
i
n
g
30
t
i
m
es
on
ev
er
y
t
es
t
f
unc
t
i
on
w
i
t
h
A
N
D
E
and
B
D
E
w
h
en
t
he
m
ax
i
m
um
i
t
er
at
i
on
i
s
500.
,,
be
s
t
w
or
s
t
m
e
an
and
st
d
ar
e
t
he
op
t
i
m
al
s
ol
ut
i
on,
t
he
w
or
s
t
s
ol
ut
i
on,
t
he
m
ean
v
al
ue
a
n
d
t
he m
ean s
quar
e er
r
or
.
T
abl
e 2
i
s
t
he s
t
at
i
s
t
i
c
c
o
m
par
i
s
on of
t
he gl
ob
al
opt
i
m
i
z
at
i
on
per
f
or
m
anc
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KO
M
NI
K
A
I
S
S
N
:
1
693
-
6
930
A
n I
mpr
ov
ed
A
dapt
i
v
e N
i
c
h
e
D
if
f
e
r
e
n
t
ia
l E
v
o
lu
t
io
n
A
lg
o
r
it
h
m
(
H
u
i
W
ang
)
1041
T
abl
e 2.
S
t
a
t
i
s
t
i
c
c
om
par
i
s
on of
t
he
gl
oba
l
o
pt
i
m
i
z
a
t
i
o
n per
f
or
m
anc
e
F
unc
t
i
on
A
l
gor
i
t
h
m
B
e
s
t
W
or
s
t
M
ean
S
td
1
f
B
DE
0
.
9515
×
10
-
4
3.
6
×
10
-
4
1.
8271
×
10
-
4
8.
7625
×
10
-
5
A
NDE
1
.
3826
×
10
-
5
2.
3
×
10
-
4
6.
5533
×
10
-
5
6.
6382
×
10
-
5
2
f
B
DE
1.
2
×
10
-
6
0.
0
822
0.
0
232
0.
02
47
A
NDE
1.
0167
×
10
-
5
5.
85
e
-
4
1.
9
288
×
10
-
5
1.
1
6
36
×
10
-
4
3
f
B
DE
3.
2774
7
.
7320
5.
3260
0.
6
552
A
NDE
2
.
5453
5.
0036
3
.
8558
0.
8
7
49
4
f
B
DE
1
.8
966
8
.
99
63
4
.
875
6
0.
5
4
66
A
NDE
2
.
9628
8.
2558
5
.
1885
0.
5
0
73
I
t
c
an be s
een f
r
o
m
t
he
dat
a i
n T
abl
e 2 t
h
at
A
N
D
E
has
t
he b
es
t
opt
i
m
i
z
at
i
on
per
f
or
m
anc
e
w
h
i
l
e
BD
E
ha
s
t
he
w
or
s
t
and
t
ha
t
A
N
D
E
c
an
j
u
m
p
out
of
t
he
l
oc
al
opt
i
m
um
m
or
e
ef
f
ec
t
i
v
el
y
,
r
ed
uc
e t
h
e pr
e
m
at
ur
e c
onv
er
ge
nc
e a
nd s
ho
w
s
t
r
on
g o
pt
i
m
i
z
at
i
o
n per
f
or
m
anc
e.
As
f
or
1
f
,
A
N
D
E
has
s
i
m
i
l
ar
per
f
or
m
anc
e
w
i
t
h B
D
E
,
how
ev
e
r
,
BD
E
has
dr
opp
ed
i
nt
o
t
he d
eep
pi
t
s
ur
r
o
und
i
ng
t
h
e gl
oba
l
o
pt
i
m
u
m
i
n 30 ex
p
er
i
m
ent
s
.
T
her
ef
or
e,
c
o
m
p
ar
ed
w
i
t
h
BD
E
,
A
N
D
E
has
bet
t
er
per
f
or
m
a
nc
e t
o
ov
er
c
om
e l
oc
al
o
pt
i
m
i
z
at
i
on.
F
or
2
f
and
3
f
,
t
he
av
er
age
i
t
er
at
i
o
ns
of
A
N
D
E
ar
e
b
i
g
ger
t
han
t
hos
e
of
BD
E
bec
aus
e
2
f
an
d
3
f
ha
v
e
pl
ent
y
of
l
oc
a
l
o
pt
i
m
al
po
i
nt
s
an
d
A
N
D
E
c
a
n j
um
p out
of
t
he
l
oc
a
l
opt
i
m
i
z
at
i
on,
l
ea
di
n
g t
o t
he
i
nc
r
eas
e
of
a
v
er
ag
e
i
t
er
at
i
o
ns
.
B
es
i
d
es
,
i
t
c
an
a
l
s
o b
e s
ee
n
i
n
t
he
e
x
per
i
m
ent
t
hat
w
hen t
he c
y
c
l
i
c
i
t
er
at
i
ons
i
nc
r
eas
e,
A
N
D
E
c
an h
av
e
m
or
e gl
ob
al
o
pt
i
m
al
s
ol
ut
i
ons
b
ut
BD
E
bar
el
y
c
h
ang
es
.
5.
C
o
n
c
l
u
s
i
o
n
B
as
ed
on
t
he
s
h
or
t
c
om
i
ngs
and
f
l
a
w
s
of
D
E
a
l
go
r
i
t
hm
i
n
t
heor
y
a
nd
app
l
i
c
at
i
on
t
ec
hno
l
og
y
,
t
hi
s
pap
er
has
i
nt
r
oduc
e
d n
i
c
he
and
s
har
i
n
g de
gr
ee
i
n t
he
opt
i
m
i
z
at
i
o
n c
om
put
at
i
o
n.
B
es
i
d
es
,
i
n t
h
e e
v
o
l
ut
i
on
pr
oc
es
s
,
i
t
h
as
l
i
m
i
t
ed t
he
i
nc
r
eas
e of
ot
her
i
n
di
v
i
dua
l
s
b
y
a
dj
us
t
i
ng
t
he
f
i
t
nes
s
of
eac
h i
ndi
v
i
du
al
and c
r
eat
e
d n
i
c
he e
v
o
l
ut
i
o
n en
v
i
r
o
nm
ent
.
I
n t
he m
ean
w
h
i
l
e,
i
t
h
as
us
ed c
r
os
s
ov
er
and
m
ut
at
i
on
oper
at
or
s
,
w
h
i
c
h ar
e
good
f
or
t
he d
i
v
er
s
i
t
y
of
t
he p
opu
l
at
i
o
n
ev
o
l
ut
i
o
n,
an
d
i
m
pr
ov
ed
t
h
e
s
ear
c
h
al
gor
i
t
h
m
of
t
he
al
g
or
i
t
hm
.
T
he
ex
per
i
m
ent
s
ho
w
s
t
hat
t
h
e
al
g
or
i
t
hm
pr
opos
ed
b
y
t
hi
s
pa
per
ef
f
ec
t
i
v
e
l
y
m
ai
nt
ai
ns
pop
ul
at
i
on d
i
v
er
s
i
t
y
,
h
as
f
as
t
er
c
onv
er
g
enc
e
r
at
e,
j
um
ps
out
f
r
o
m
t
he
l
oc
al
opt
i
m
u
m
,
al
l
ev
i
at
es
pr
em
at
ur
i
t
y
an
d
s
ho
w
s
s
t
r
onger
opt
i
m
i
z
at
i
o
n p
er
f
or
m
anc
e
.
R
ef
er
en
ces
[1
]
Li
ng
j
uan
H
o
u,
Z
h
i
j
i
ang
H
ou
.
A
nov
el
di
s
c
r
et
e
d
i
f
f
er
e
nt
i
al
ev
ol
ut
i
o
n
al
g
or
i
t
hm
.
T
E
L
KO
M
N
I
KA
I
ndon
es
i
an J
our
nal
of
E
l
ec
t
r
i
c
al
E
ng
i
ne
er
i
ng
.
20
13;
11(
4)
:
1
883
-
18
88
.
[2
]
D
ex
uan Z
ou,
J
i
anhu
a
W
u
,
L
i
qun G
ao,
S
t
ev
en Li
.
A
M
od
i
f
i
ed D
i
f
f
er
ent
i
al
E
v
ol
ut
i
on
A
l
gor
i
t
h
m
f
or
U
nc
on
s
t
r
ai
ned
O
pt
i
m
i
z
at
i
o
n P
r
obl
e
m
s
.
N
eur
o
c
om
put
i
ng
.
201
3
;
120(
23)
:
469
-
481.
[3
]
C
am
i
l
a
S
i
l
v
a
de
M
agal
h
ães
,
D
i
ogo
M
ar
i
nho
A
l
m
ei
d
a,
H
e
l
i
o
J
os
é
C
or
r
ea
B
ar
bo
s
a,
Laur
e
nt
E
m
m
a
nuel
D
ar
denn
e.
A
D
y
nam
i
c
N
i
c
hi
ng G
enet
i
c
A
l
gor
i
t
hm
S
t
r
at
e
gy
f
or
D
oc
k
i
ng H
i
g
hl
y
F
l
ex
i
bl
e Li
g
and
s
.
I
nf
or
m
at
i
on S
c
i
en
c
e
s
.
20
14
;
2
89(
24)
:
206
-
224.
[4
]
Li
nda
S
l
i
m
an
i
,
T
ar
ek
B
ou
k
t
i
r
,
A
l
ger
i
a.
O
pt
i
m
al
P
ow
er
F
l
ow
S
ol
ut
i
on
o
f
t
h
e
A
l
g
er
i
a
n
E
l
e
c
t
r
i
c
al
N
e
t
w
or
k
us
i
n
g D
i
f
f
er
ent
i
al
E
v
ol
ut
i
on A
l
gor
i
t
h
m
.
T
E
LK
O
M
N
I
K
A
I
ndones
i
a
n J
ou
r
nal
o
f
E
l
ec
t
r
i
c
al
E
ngi
ne
er
i
n
g
.
2012;
10(
2)
:
1
99
-
210
.
[5
]
M
os
t
af
a Z
Al
i
,
N
o
o
r H
A
w
ad.
A
N
ov
el
C
l
as
s
o
f
N
i
c
h
e H
y
br
i
d C
ul
t
ur
a
l
A
l
go
r
i
t
h
m
s
f
or
C
ont
i
nu
ou
s
E
ngi
ne
er
i
n
g O
pt
i
m
i
z
at
i
on
.
I
nf
o
r
m
at
i
on S
c
i
en
c
e
s
.
2
014
;
267(
2
0)
:
158
-
190
.
[6
]
M
oham
m
ad H
M
or
adi
,
M
oham
m
a
d A
bedi
ni
,
S
M
R
ez
a
T
ous
i
,
S
Ma
hdi
H
os
s
ei
n
i
an.
O
pt
i
m
al
S
i
t
i
n
g and
S
i
z
i
ng
of
R
enew
abl
e
E
ner
gy
S
our
c
e
s
an
d
C
har
gi
ng
S
t
at
i
o
ns
S
i
m
ul
t
a
neo
us
l
y
B
a
s
ed
on
D
i
f
f
er
en
t
i
a
l
E
v
ol
ut
i
on
A
l
g
or
i
t
h
m
.
I
nt
er
n
at
i
o
nal
J
our
nal
of
E
l
ec
t
r
i
c
a
l
P
ow
e
r
&
E
ner
g
y
S
y
s
t
em
s
.
20
15
;
73
(
12)
:
1
015
-
1024.
[7
]
M
ar
t
i
n K
ot
y
r
ba,
E
v
a
V
ol
na,
P
et
r
B
uj
o
k
.
U
nc
onv
ent
i
ona
l
M
o
del
l
i
ng of
C
o
m
pl
ex
S
y
s
t
em
v
i
a C
el
l
u
l
ar
A
ut
om
at
a a
nd D
i
f
f
er
e
nt
i
a
l
E
v
ol
ut
i
on
.
S
w
ar
m
and E
v
o
l
ut
i
onar
y
C
om
put
at
i
on
.
2
015
;
25(
12)
:
52
-
62.
[8
]
C
ar
l
os
S
eg
ur
a,
C
ar
l
o
s
A
C
oel
l
o C
oel
l
o,
A
l
f
r
edo G
H
er
nánd
e
z
-
D
í
az
.
I
m
pr
ov
i
ng T
he
V
ec
t
or
G
ener
at
i
on
S
t
r
at
egy
of
D
i
f
f
er
en
t
i
a
l
E
v
ol
ut
i
on f
or
Lar
ge
-
S
c
a
l
e O
pt
i
m
i
z
at
i
on
.
I
n
f
or
m
at
i
on S
c
i
en
c
es
.
20
15
;
32
3(
1)
:
106
-
12
9.
[9
]
J
av
i
er
E
V
i
t
e
l
a,
O
c
t
av
i
o
C
as
t
a
ños
.
A
S
eq
uent
i
al
N
i
c
hi
n
g
M
em
et
i
c
A
l
gor
i
t
hm
f
or
C
ont
i
nuo
u
s
M
ul
t
i
m
o
dal
F
unc
t
i
on O
p
t
i
m
i
z
at
i
o
n
.
Ap
p
l
i
e
d
M
at
hem
at
i
c
s
a
nd C
om
pu
t
at
i
o
n
.
201
2
;
2
18(
1
7)
:
82
42
-
8
259.
Evaluation Warning : The document was created with Spire.PDF for Python.