TELKOM
NIKA
, Vol.12, No
.3, Septembe
r 2014, pp. 7
11~716
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v12i3.100
711
Re
cei
v
ed Ma
rch 1
9
, 2014;
Re
vised July
20, 2014; Accepted Augu
st
3, 2014
Single Stage RF Amplifier with High Gain for 2.4GHz
Receiver Front-Ends
Achmad M
u
nir, Biru Tutur Ranum
Radi
o T
e
lecom
m
unic
a
tion a
n
d
Micro
w
ave
La
borator
y
Schoo
l of Elect
r
ical En
gin
eeri
ng an
d Informa
tics
In
sti
t
u
t
T
e
kn
o
l
og
i
Ba
nd
un
g
Jala
n Ganes
ha
10 Band
un
g, 4
013
2,
Indon
esi
a
, Phone: +
62-
22-2
501
66
1
e-mail: munir@ieee.org
A
b
st
r
a
ct
T
he p
aper
de
als w
i
th th
e
nu
meric
a
l
an
d
exp
e
ri
me
ntal
dev
elo
p
m
ent
of sin
g
l
e
sta
ge ra
di
o
freque
ncy (RF
)
amplifi
e
r w
i
th hi
gh
gai
n fo
r 2.4GH
z
re
ce
iver front-e
nds
. T
he w
o
rk is
motiv
a
ted
by t
h
e
incre
a
sin
g
d
e
m
a
nd
of hi
gh-
gai
n rece
iver
amplifi
e
r i
n
lo
w
-
cost especia
lly for w
i
rel
e
ss
loca
l are
a
n
e
tw
ork
(W
LAN) ap
plic
ation. Pri
o
r
har
dw
are re
ali
z
at
i
on
and
exp
e
ri
me
ntal c
har
acteri
z
a
ti
on, the
p
r
opos
ed
a
m
pl
ifie
r
w
h
ich uses a singl
e RF
transi
s
tor of BF
P420 type is
numeri
c
ally des
ig
ned
usin
g ADS®
softw
are to satisfy
the requ
ire
d
specific
ation.
T
o
obtai
n the i
m
p
e
d
ance
matchin
g
at por
ts of amplifi
e
r, microstrip li
nes
a
r
e
empl
oyed
at the i
n
p
u
t an
d
output
por
ts.
T
he prot
otype
of a
m
p
lifier
i
s
real
i
z
e
d
by
use of
a d
i
el
e
c
tric
substrate of gl
ass-reinf
o
rced
epoxy l
a
min
a
ti
on (F
R4)
boar
d w
h
ich has thickness of 0.7
6
2
m
m an
d rel
a
tive
per
mittivity
of
4.3. T
he
proto
t
ype is
the
n
e
x
peri
m
e
n
tal
l
y
character
i
z
e
d
and
de
monstr
ates the
g
a
in
of
13.35
dB at fre
que
ncy of
2.4
G
H
z
w
i
th th
e
nois
e
fig
u
re
of 3.33
dB, the
i
nput
and
out
p
u
t volta
ge sta
n
d
in
g
w
a
ve ratio (VSW
R) of 2.08 an
d 2.55, resp
ectively.
Ke
y
w
ords
: BF
P420, ga
in, no
i
s
e figure, RF
a
m
p
lifier, sin
g
l
e
stage, VSW
R
1. Introduc
tion
Along
with
the growth
of com
m
uni
cation
techn
o
logy in
la
st 2
de
cad
e
s, the
comm
uni
cati
on
system
s h
a
ve si
gnifica
ntly transfo
rm
ed from the
wired
-
line to
the
wirel
e
ss
line.
These can
be pe
rceived
by appea
ra
nce of ma
n
y
technolo
g
i
e
s for m
obil
e
and wi
rel
e
ss
comm
uni
cati
ons such a
s
GSM, CDMA
, UMTS,
Wi
Fi, WiMAX and LTE [1]-
[3]. Cellular phones
,
wirel
e
ss lo
ca
l area n
e
two
r
ks (WLA
N),
and sh
o
r
t-ra
nge data
co
mmuni
cation
device
s
are
the
example
s
of
wirel
e
ss
com
m
unication d
e
vice
s whic
h
apply tho
s
e t
e
ch
nolo
g
ies.
As the in
crea
sing
deman
d for low-co
st and
multi-sta
nda
rd commu
ni
ca
tion device
s
, the front-en
d
device for
RF
receiver is
pl
aying an
e
s
sential role i
n
wire
l
e
ss
com
m
unication
system. Du
e t
o
the exp
and
able
area
of appli
c
ation, the f
r
ont-en
d
recei
v
er s
hould
a
c
compli
sh
so
me re
quirem
ents n
o
t only
in
techni
cal
spe
c
ificatio
ns bu
t also
in
so
me a
s
pe
ct
s
su
ch as
c
o
m
pact
si
ze,
lo
w co
st
an
d
li
ght
weig
ht a
s
wel
l
as lon
g
b
a
ttery life.
Hen
c
e, a lot
of top
o
logie
s
and
d
e
sig
n
meth
od
of RF
re
ceiver
inclu
d
ing
RF
-CMOS i
n
tegrated
circuit h
a
ve be
en p
r
opo
sed
in
which
some
a
c
hievem
ents
of
receiver fro
n
t-end
s a
c
com
p
lishi
ng the specifi
c
ation
s
and a
s
pe
cts
have bee
n acquire
d [4]-[6].
In the design of RF recei
v
er front-ends to
support multi-purpose
use, the stability of
active comp
onent
s, e.g.
transi
s
to
r, is the mo
st
importa
nt thing that shou
ld be p
a
id
more
attention. To attain the desired
stabilit
y as
well as the stability
main
tenance,
there are few
method
s tha
t
could be impleme
n
ted
includin
g
re
sistive matching, netwo
rk com
pen
sat
i
on,
negative fee
d
back, b
a
lan
c
ed
circuits,
a
nd traveli
ng
wave [7]-[8].
Ho
wever for
some
ap
plica
t
ion,
the metho
d
of
re
sistive m
a
tchin
g
can p
o
tentially
increa
se the
noi
se f
i
gure
and
de
crea
se th
e gai
n
of RF re
ceive
r
, while the m
e
thod of neg
ative feedba
ck
typically pro
duces infe
rio
r
return lo
ss [9]-
[10]. In additi
on, the meth
od of traveli
n
g wave
some
times give
s u
n
impressive
perfo
rman
ce
on
gain an
d noi
se figure [11].
In this pa
per, by eliminating the b
a
lan
c
e
circuits d
ue to the u
s
e of more th
an on
e
transi
s
to
r and
by avoiding the traveling
wave
to achi
eve high gain
perform
an
ce
, a single sta
ge
RF
amplifie
r
is p
r
o
p
o
s
ed
and
develo
p
ed by
empl
o
y
ing the
met
hod
of n
e
two
r
k compe
n
sa
tion
.
The amplifie
r that use
s
a
single
RF transi
s
to
r
of BFP420 type is intend
ed to
be applie
d for
2.4GHz
WL
AN re
ceive
r
front-e
nds.
The metho
d
of netwo
rk comp
en
sati
on whi
c
h
ai
ms to
comp
en
sate i
m
peda
nce mi
smat
ch
at the
po
rts
network
i
s
con
d
u
c
te
d by u
s
e
of m
i
cro
s
tri
p
lin
es
at
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 3, September 20
14: 71
1 – 716
712
the input an
d
output po
rts.
The dime
nsi
on of mi
cro
s
t
r
ip line
s
a
r
e
cal
c
ulate
d
an
d optimized t
o
achi
eve the i
m
peda
nce m
a
tchin
g
an
d o
p
timum pe
rf
o
r
man
c
e of
a
m
plifier with some
pa
ram
e
ters
desi
gn in
clu
d
i
ng gai
n, noi
se figu
re, a
n
d
VSWR
are
use
d
a
s
pe
rforma
nce in
dicato
rs. Afte
r
obtainin
g
the
optimum d
e
si
gn, the
p
r
otot
ype of amplifi
e
r i
s
de
ploy
e
d
on a
diel
ect
r
ic su
bstrate of
glass-rei
n
forced epoxy lam
i
nation (F
R4
) boar
d for exp
e
rime
ntal ch
a
r
acte
ri
zation.
2. O
v
er
v
i
e
w
of RF
Amplifier Design
In gene
ral, a
s
sho
w
n i
n
Figure 1, a
circuit d
e
si
gn
of sin
g
le
st
age
RF a
m
p
lifier is
con
s
tru
c
ted
o
f
micro
s
trip li
nes at the in
p
u
t and output
ports a
s
mat
c
hin
g
imped
a
n
ce
circuit
s
a
n
d
an RF tra
n
si
stor of BFP42
0
type a
s
the
heart
of am
pli
f
ier. As the
transi
s
tor ha
s
a wid
e
tra
n
sit
i
on
freque
ncy, th
erefo
r
e it is
suitabl
e to b
e
employ
e
d
as
RF amplif
ier for 2.4
G
Hz re
ceive
r
fro
n
t-
end
s. Actuall
y
, a similar
circuit d
e
si
gn
of RF
amplifi
e
r ba
se
d on
BFP420 tra
n
s
isto
r ha
s b
e
en
impleme
n
ted
for low noi
se
amplifier at 2.
4GHz [
12]. Unfortunately, the circuit ha
s a compli
cate
d
dc
bia
s
ing
using a
dou
ble
-
transi
s
to
r to
provide
a
te
mperature
st
able
cu
rrent
sou
r
ce. In a
d
d
ition,
the circuit n
e
eds
an emitt
e
r ind
u
cta
n
ce as
neg
at
ive feedb
ack t
o
increa
se th
e stability bu
t, in
other ha
nd, affecting to the overall g
a
i
n. Theref
o
r
e,
in the curre
n
t desig
n, the compli
cate
d dc
biasi
ng a
nd
negative fee
dba
ck
are
a
v
oided to p
r
une the
com
p
lexity of design. Ba
sed
on
scattering
pa
rameter data
of tran
si
stor
whi
c
h
are
p
r
o
v
ided in
the
data
she
e
t [1
3], the inp
u
t
and
output imped
ances of tran
sisto
r
are the
n
cal
c
ulat
e
d
to determin
e
the dimen
s
io
n of micro
s
tri
p
lines. T
w
o
pa
irs
of micro
s
trip line
s
at the
input po
rt (M
1
and M
2
)
an
d the outp
u
t
port (M
3
and
M
4
)
are e
m
ploye
d
as im
ped
a
n
ce m
a
tchi
ng
netwo
rks.
T
he jun
c
tion
capa
citors a
r
e
con
n
e
c
ted a
t
the
input and
out
put port
s
of tran
sisto
r
to i
n
terconn
ect
t
he micro
s
trip
lines a
s
well
as to blo
c
k dc
curre
n
t. In this ca
se, it is
benefi
c
ial to
first bu
ild u
p
the circuit de
sign
with lo
ssle
ss mi
crost
r
ip
lines
and id
e
a
l lumpe
d
co
mpone
nts, ju
st to ve
rify that input an
d output imp
edan
ce
s ind
eed
prod
uce the required pe
rfo
r
man
c
e.
Figure 1. Circuit de
sign of
single
stage
RF amplifie
r
The di
men
s
io
n of e
a
ch mi
crost
r
ip li
ne
s
can b
e
d
e
term
ined from Sm
ith ch
art
by m
appin
g
the reflectio
n
values of transi
s
tor
(
S
and
L
). Sin
c
e the goal
of desig
n is to acquire the
maximum power gain of
amplifier, regarding to
stability factor of transi
s
tor and according to
desi
gn meth
od ba
sed o
n
simulta
neo
us-co
n
jug
a
te
-match te
chni
que, the refl
ection valu
e
at
sou
r
c
e
(
S
) should b
e
eq
ual to the o
p
timum refle
c
tion value
(
OPT
). If the
con
d
ition can
be
achi
eved, the
input imp
e
d
ance of am
pl
ifier will m
a
tch and
equ
als 50
. Thi
s
p
r
oce
dure is al
so
applie
d for t
he output p
o
r
t of tran
sist
or. He
re, the
input impe
d
ance (RF
IN
)
and the o
u
tp
u
t
impeda
nce (RF
OUT
) are set to be 50
in whi
c
h thi
s
is
also an i
m
peda
nce of
microstri
p
li
nes.
Whil
st the refl
ection valu
e at load (
L
) can be obtai
ne
d usin
g the following
equati
on [8].
S
S
L
S
S
S
S
11
21
12
22
*
1
(1)
M
2
M
4
M
1
M
3
BFP42
47
p
F
10
H
2k
2k
47
p
F
1nF
1nF
150
Vc
c
50
RF
IN
50
RF
OUT
output
impeda
nce
input
impeda
nce
1N4
0
0
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Single Stage
RF Am
plifier with Hig
h
Gai
n
for
2.4 GHz Receiver Fro
n
t-End
s
(Ach
m
ad Munir)
713
By utilizing th
e scatterin
g
p
a
ram
e
ter of trans
i
s
tor
at freque
ncy of 2.
4GHz, the reflection
values of tra
n
si
stor a
r
e (0
.25
-16
4
.19
o
) and
(0.3
1
-52.04
o
) for
S
an
d
L
, res
p
ec
tively. A
fter
mappin
g
both
values of reflection into S
m
ith cha
r
t, then the ele
c
tri
c
al len
g
th of each micro
s
trip
line can b
e
calcul
ated by
putting the in
put
and
outp
u
t impeda
nce
s
of am
plifier
to be 50
. While
to determi
ne
the physi
cal
length, the
electri
c
al
l
e
n
g
th of ea
ch
microstri
p
lin
e sh
ould
be
de-
norm
a
lized u
s
ing th
e wavelength
on th
e diele
c
tri
c
substrate for
2
.
4GHz. As th
e physi
cal l
e
ngth
is nume
r
i
c
ally calculated fo
r the circuit d
e
sig
n
wi
th assumin
g
lossle
ss mi
crostri
p
lines, then
ce f
o
r
the si
mulatio
n
de
sig
n
whi
c
h i
s
ru
n o
n
ADS®
software
the
actu
al phy
sical l
ength
ha
s to
be
optimize
d
by taking into
accou
n
t all parameters
of in
volved materi
als in
cludi
ng
microstri
p
lin
e,
lumped
co
mp
onent a
nd di
e
l
ectri
c
sub
s
trate. Basi
cally
,
param
eters of
material
s should cove
r
t
h
e
thickne
ss
and
con
d
u
c
tivity
of microst
r
ip l
i
ne,
the freq
u
ency rang
e of
lumped
co
m
pone
nt, and t
h
e
diele
c
tric l
o
ss and thickn
ess of diele
c
tri
c
sub
s
trate.
T
h
is is
req
u
ire
d
to obtain th
e actual
de
si
gn
of amplifier to be satisfie
d
with the desi
r
ed pe
rf
orm
a
nce an
d suita
b
le for reali
z
ation. Moreov
er,
the optimi
z
ati
on i
s
al
so
useful to
comp
e
n
sate
impe
da
nce
mismatch at the
po
rts network, he
n
c
e
the amplifie
r
cha
r
a
c
teri
stics can
b
e
imp
r
oved. Ta
ble
1 su
mma
rize
s
the elect
r
ical
length of
e
a
ch
microstri
p
lin
e obtained from Smith ch
art, and the
physical length
before an
d after optimizati
on.
It should be
noted that the width of each mi
cro
s
tri
p
line is 3m
m which co
rresp
ond
s to the
impeda
nce line of 50
.
Table 1. Elect
r
ical a
nd phy
sical length
s
of micro
s
trip l
i
nes
Microstrip line
Electrical l
ength
Ph
y
s
ical length (mm)
(m)
before optimization
after optimization
M1 0.174
12
10
M2 0.418
29
27
M3 0.077
5
3
M4 0.159
11
12
Figure 2
plot
s the
si
mulat
ed
re
sults of
amplifier gai
n
and
noi
se
figure
befo
r
e
and
after
optimizatio
n. It is sho
w
n t
hat the dime
nsio
n of
microstrip li
ne
s a
fter optimization affect
s the
improvem
ent
of amplifier gain for freque
ncy
ra
n
ge highe
r than 2.25G
Hz.
It seem
s that
optimizatio
n has shifted
th
e
cu
rve
of overall gai
n to
h
i
gher freq
uen
cy ra
nge
whi
c
h p
r
o
d
u
c
e
s
the
increa
se of gain e
s
pe
cial
ly at frequen
cy of 2.
4GHz. Ho
wever t
here i
s
no significa
nt effect
appe
ars fo
r t
he n
o
ise figu
re of
amplifier,
on
t
he
co
ntrary the
noi
se
figure b
e
co
mes to b
e
worse
for frequ
en
cy rang
e lower t
han 2.25
GHz.
Figure 2. Simulated re
sult
s of gain and n
o
ise
Figure 3. Simulated re
sult
s of VSWR
IN
and
figure befo
r
e
and after opti
m
ization
VSWR
OUT
b
e
fore an
d after
optimizatio
n
This can
be
figure
d
out tha
t
the dim
e
n
s
i
on va
riation
o
f
microst
r
ip li
nes influe
nce
s
the
rea
c
tan
c
e
value of imp
edan
ce m
a
tching n
e
two
r
ks. He
nce, it
is noti
c
ea
ble
that the re
a
c
tan
c
e valu
e
of
impeda
nce m
a
tchin
g
net
works i
s
sen
s
it
ive with t
he
chang
e of mi
crost
r
ip lin
es
d
i
mensi
on. As a
1.
5
2
2.
5
3
0
3
6
9
12
15
18
F
r
eq
ue
nc
y
(
G
H
z
)
G
a
i
n
a
nd Noi
s
e F
i
g
u
r
e
(
d
B
)
ga
i
n
be
f
o
r
e
op
t
i
m
i
z
a
t
i
on
g
a
i
n
a
f
te
r
o
p
ti
m
i
z
a
ti
o
n
no
i
s
e f
i
gu
r
e
b
e
f
or
e
opt
i
m
i
z
at
i
o
n
no
i
s
e f
i
gu
r
e
a
f
t
e
r
o
p
t
i
m
i
z
a
t
i
o
n
ga
i
n
no
i
s
e
f
i
gu
r
e
1.
5
2
2.
5
3
0
3
6
9
12
15
V
o
l
t
age
S
t
a
ndi
ng
W
a
v
e
R
a
t
i
o
F
r
e
quenc
y
(
G
H
z
)
V
S
W
R
IN
bef
or
e opt
i
m
i
z
at
i
o
n
V
S
W
R
IN
af
t
e
r
opt
i
m
i
z
at
i
o
n
V
S
W
R
OU
T
bef
or
e opt
i
m
i
z
at
i
o
n
V
S
W
R
OU
T
af
t
e
r
opt
i
m
i
z
at
i
o
n
VS
W
R
IN
VS
W
R
OU
T
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 3, September 20
14: 71
1 – 716
714
result, the impeda
nce value of impedan
ce matchi
ng
netwo
rks at the input
and
output port
s
will
vary con
s
e
c
u
t
ively minimizing the overal
l impedan
ce
mismat
ch of
amplifier alth
ough it ha
s to
be
paid
by sacri
f
icing th
e n
o
i
s
e fig
u
re. Even
so, thi
s
i
s
u
s
eful
ne
ss of u
s
in
g mi
cro
s
tri
p
lin
es a
s
impeda
nce m
a
tchin
g
networks in RF a
m
plifier de
sig
n
to compe
n
s
ate the imp
edan
ce mi
sm
atch
in un
compli
cated ma
nne
r
whi
c
h o
c
cu
rs due to th
e c
hara
c
te
risti
c
variation
of transi
s
tor or ot
her
material
s, i.e. lumped com
pone
nts or di
el
ectri
c
sub
s
trate, used in the de
sign.
The o
p
timiza
tion also e
n
h
ances th
e va
lues
of VSWR at the
inp
u
t and
outpu
t port
s
arou
nd
the f
r
eque
ncy
of 2.
4GHz
as d
epi
cted i
n
Fi
gu
re
3. It can
be
n
o
ticed
that th
e outp
u
t p
o
rt
of
amplifier afte
r optimizatio
n has
better impeda
nc
e matchin
g
tha
n
the input
port. The
re
sult
demon
strates that the value of VSWR at the input port (VSWR
IN
) is 1.46 at frequen
cy o
f
2.4GHz, whil
st at the outp
u
t port (VS
W
R
OUT
) i
s
1.3
6
. This
can
be
unde
rsto
od t
hat the value
of
VSWR
espe
cially at th
e
input p
o
rt i
s
strongly
i
n
fluen
ced
by t
he g
a
in, o
r
vice ve
rsa.
More
improvem
ent
in impedance m
a
tchi
ng will not al
ways increase the gai
n
of
amplifier as the
transi
s
to
r will
be loaded
more affe
ctin
g to the ov
erall gain. Therefore,
there is a com
p
ro
m
i
se
value o
r
tra
d
e
-off bet
wee
n
the g
a
in a
n
d
VSWR of a
m
plifier. Neverthele
s
s, fro
m
the si
mula
ted
result, it is sh
own th
at the f
i
nal de
sig
n
of
RF
a
m
plifier
has
exhibited
the gain
up t
o
16dB
and t
he
noise figure
of 2.73dB at
frequ
en
cy o
f
2.4GHz
. T
h
is a
c
hi
eve
m
ent is
suffi
cient fo
r WL
AN
appli
c
ation a
nd
ha
s sati
sfied
the de
sire
d
pe
rfor
m
a
n
c
e whi
c
h
re
qu
ires at le
ast
13dB g
a
in a
n
d
3dB noise figure.
3. Protot
y
p
in
g and Experi
mental Ch
ar
acte
r
iza
t
ion
Based
on th
e
desi
gn
expla
i
ned in
the p
r
evious
se
ctio
n, the prototy
pe of p
r
op
osed si
ngle
stage
RF a
m
plifier i
s
th
en
reali
z
ed
to
b
e
cha
r
a
c
teri
zed experim
en
tally as indicated in Figure 4
.
Whil
st Figu
re
5 sh
ows a
pi
cture
of
final board
of RF amplifier
depl
oyed on
a die
l
ectri
c
sub
s
trate
of glass-reinf
o
rced ep
oxy lamination (FR4
) boa
rd
in whi
c
h the
thickn
ess a
nd the relati
ve
permittivity are 0.76
2mm
a
nd 4.3,
re
sp
e
c
tively. T
he
d
i
mensi
o
n
of fi
nal b
o
a
r
d
of
RF
amplifie
r i
s
40mm (l
engt
h) by 30mm
(width
). The
experim
ental
cha
r
a
c
teri
zati
on re
sult
s for gain and
noi
se
figure
of am
plifier, an
d th
e value
of V
S
WR are
dep
ic
te
d in
F
i
gu
r
e
s
6 a
n
d
7, r
e
s
p
ec
tive
ly. It
sho
u
ld be n
o
ted that the measured
noise figu
re
sho
w
n in F
i
gure 6 i
s
o
b
tained fro
m
the
correl
ation of
measured
gain in
stead
of dire
ct m
easure
m
ent
due to the
unavailability
of
instru
ment fo
r noi
se fig
u
re
cha
r
a
c
teri
zat
i
on. In
additi
on, sim
u
lated
re
sults
of ga
in, noise figu
re
and VSWR are also pl
otted
together in e
a
ch respe
c
te
d figure a
s
co
mpari
s
o
n
.
Figure 4. Picture of RF a
m
plifier prototype
Fi
gure 5. Picture of RF a
m
plifier final bo
ard
As
sho
w
n i
n
Figure 6
the
measured
ga
in ha
s
coi
n
ci
ded
with th
e
simulate
d o
n
e
up
to
freque
ncy of
1.9GHz,
wh
erea
s in
the
re
st frequ
en
cy the me
asured
gain
is lowe
r tha
n
the
simulate
d re
sult an
d ten
d
s to de
crea
se for
high
er freque
ncy range. Th
e si
milar
ca
se al
so
happ
en
s for t
he mea
s
u
r
e
d
noise figure
but in the o
p
posite m
ann
e
r
. From th
e result
s, the ga
in
and n
o
ise figure of
RF a
m
plifier p
r
oto
t
ype at
frequ
ency of 2.4
G
Hz
are
13.35
dB and 3.3
3
d
B,
respe
c
tively, in whi
c
h th
ese are
wo
rse t
han the
simul
a
ted on
e at the same freq
uen
cy with th
e
gain
of 16dB and noi
se figure
of
2.73dB. There
are some po
ssibilities
whi
c
h evokes these
discre
pan
cie
s
. One
of the
most
po
ssibili
ties i
s
cau
s
e
d
by the
pa
ra
meters of
diel
ectri
c
su
bstra
t
e
of glass-reinf
o
rced ep
oxy lamination (F
R4) b
o
a
r
d,
i.e. dielectri
c
l
o
ss and relat
i
ve permittivity,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Single Stage
RF Am
plifier with Hig
h
Gai
n
for
2.4 GHz Receiver Fro
n
t-End
s
(Ach
m
ad Munir)
715
use
d
for reali
z
ing
the
prot
otype. It sho
u
l
d be
note
d
t
hat in th
e d
e
s
ign
the
diele
c
tri
c
lo
ss an
d
the
relative p
e
rm
ittivity are
se
t to be
4.3
and
0.
02,
re
spe
c
tively, in
whi
c
h
both
para
m
eters
a
r
e
assume
d to b
e
flat for all f
r
eque
ncy
rang
es.
Whilst
i
n
actual
co
nditi
on, the di
electric lo
ss an
d t
he
relative p
e
rmi
ttivity are
alm
o
st frequ
en
cy-dep
end
ent. In the
ca
se
of
mea
s
u
r
ed
re
sults which a
r
e
different with
the simul
a
te
d one
s, it is
prob
ably cau
s
ed
by the d
i
electri
c
lo
ss
whi
c
h ha
s th
e
actual value
slightly highe
r than in the desi
gn. Si
nce
the actual di
electri
c
lo
ss i
s
highe
r than
in
the de
sig
n
e
s
peci
a
lly for
hi
gh freque
ncy
regio
n
, thu
s
some a
m
ou
nt
of ene
rgy fro
m
the i
nput
p
o
rt
that sh
ould
b
e
a
c
tually tra
n
smitted to
t
he o
u
tput
por
t is a
b
s
o
r
b
ed
b
y
th
e d
i
e
l
e
c
tr
ic
s
u
bs
trate
affecting to the de
crea
se
of measu
r
e
d
gain.
As the escal
a
tio
n
of energy absorb
ed by
the
diele
c
tric sub
s
trate, the tot
a
l noi
se of
a
m
plifier
g
r
o
w
s up
con
s
ecu
t
ively resultin
g the in
crea
se of
noise figure i
n
total.
Figure 6. Measu
r
ed a
nd si
mulated resul
t
s of
Figure 7. Measu
r
ed a
nd si
mulated resul
t
s of
gain an
d noi
se figure of am
plifier
VSWR
IN
and
VSWR
OUT
The differe
nt
results of e
x
perime
n
tal chara
c
te
rizatio
n
are al
so fo
und for th
e value of
VSWR at the
input a
n
d
out
put po
rts,
as
plotted
in
Fig
u
re
7. It
sho
w
s that
the
me
asu
r
ed
VSWR
IN
has b
e
tter va
lue than the
simulate
d on
e for frequ
en
cy ran
ge up t
o
2.3GHz an
d be co
ntra
ry for
the rest freq
u
ency. The si
milar
tende
ncy also occu
rs for the VSWR
OUT
with the
frequen
cy ra
nge
lowe
r tha
n
2.
05G
Hz.
From
the results,
t
he p
r
ototype
of RF
amplifi
e
r h
a
s VSWR
IN
o
f
2
.
08
an
d
VSWR
OUT
of
2.55 at fre
q
u
ency of 2.4
G
Hz. Simila
r to
the mea
s
u
r
e
d
gain
and
n
o
ise fig
u
re, th
ese
results a
r
e
worse than the
simulate
d o
nes
with VSWR
IN
of 1.46
and VSWR
OUT
of 1.36 at
the
same
fre
que
ncy. Th
e di
screpa
ncy
in th
e me
asure
d
result
s of
VSWR is p
r
ob
a
b
ly evoked
b
y
the
different valu
e of rel
a
tive permittivity of diel
e
c
tric
sub
s
trate
u
s
ed in the
re
alizatio
n an
d
the
desi
gn. F
o
r t
he
re
sults sh
own
in
Figu
re 7, the
a
c
tu
al value
of
re
lative permittivity of dielect
r
ic
sub
s
trate
se
ems to b
e
sl
ightly highe
r
than in t
he d
e
sig
n
. If the actual
relativ
e
permittivity is
highe
r, thus the imped
an
ce value of impeda
nce matc
hin
g
netwo
rks, i.e. micro
s
trip line
s
, re
acts
to move to
b
e
sm
alle
r resulting the
de
cre
a
se of VS
WR an
d it i
s
se
en
bein
g
happ
ened
at
the
lowe
r freque
ncy rang
e. A
s
the
in
cre
a
se of fre
qu
e
n
c
y, the a
c
tua
l
relative
permittivity which i
s
usu
a
lly frequ
ency-dep
end
ent and tend
s to be lowe
r for highe
r fre
quen
cy regi
o
n
, the impedance
value of imp
e
dan
ce m
a
tchi
ng net
wo
rks
grad
ually mo
ve
s to b
e
hig
her
affecting t
o
the in
crea
se of
VSWR. More
over, anothe
r possibility which
cau
s
e
s
t
he discrepa
n
c
ie
s in the measure
d
re
sul
t
of
gain, noi
se
figure
an
d VSWR is th
e in
accuracy
effe
ct in h
a
rd
wa
re re
alization.
Ho
wever, to
ou
r
kno
w
le
dge, the effect of i
naccu
ra
cy gi
ves no
signi
fi
cantly influen
ce
comp
are
d
to the effect of
material
pa
ra
meter va
riatio
n. Neve
rthele
ss, f
r
om
the measured re
sults
de
picte
d
in Figu
re 6 an
d
7, in despite
of some m
e
asu
r
ed val
u
e
s
ne
ed to
be
improved, it
can b
e
con
c
lud
ed that the
prototype of
single
stag
e RF am
plifier built
of BFP420 type
transi
s
to
r ha
s dem
on
strat
ed
accepta
b
le p
e
rform
a
n
c
e for de
sired ap
plicatio
n.
1.
5
2
2.
5
3
0
3
6
9
12
15
V
o
l
t
age S
t
andi
ng W
a
v
e
R
a
t
i
o
F
r
eq
ue
nc
y
(
G
H
z
)
s
i
m
u
l
a
te
d
V
S
W
R
IN
m
e
as
ur
e
d
V
S
W
R
IN
s
i
m
u
l
a
te
d
V
S
W
R
OU
T
m
e
as
ur
e
d
V
S
W
R
OU
T
VS
W
R
IN
VS
W
R
OU
T
1.
5
2
2.
5
3
0
3
6
9
12
15
18
F
r
equ
enc
y
(
G
H
z
)
G
a
i
n
an
d N
o
i
s
e F
i
gu
r
e
(
d
B
)
s
i
m
u
l
a
t
ed gai
n
m
e
as
ur
e
d
ga
i
n
s
i
m
u
l
a
t
ed noi
s
e
f
i
g
u
r
e
m
e
a
s
u
r
ed
n
o
i
s
e f
i
gur
e
ga
i
n
noi
s
e
f
i
g
u
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 3, September 20
14: 71
1 – 716
716
4. Conclusio
n
The develo
p
m
ent of singl
e stage RF a
m
plifier
with
high gain for
2.4GHz re
cei
v
er front-
end
s ha
s be
en investig
ated num
eri
c
all
y
and experi
m
entally. The
prototype of
amplifier wit
h
a
singl
e RF transi
s
tor of
BFP420 typ
e
a
s
a
co
re
com
pon
ent
ha
s al
so
b
een
reali
z
e
d
for
experim
ental
cha
r
a
c
teri
zati
on by deployi
ng it on a
diel
ectri
c
sub
s
tra
t
e of glass-rei
n
forced e
poxy
lamination (F
R4) boa
rd. From cha
r
a
c
terizatio
n
results, it has
been
demo
n
s
trated th
at the
prototype exh
i
bits the gain of
13.35dB at frequen
cy of 2.4GHz wi
th
the noise figure of 3.33d
B,
VSWR
IN
of 2.08, and VSWR
OUT
of 2.55.
Although the
measure
d
re
sults a
r
e
slig
htly worse th
an
the si
mulated
one
s
and
ne
ed to
be
enh
anced, the
p
r
ototype of
sin
g
le
stage
am
plifier h
a
s
sh
own
accepta
b
le p
e
rform
a
n
c
e for WLA
N
ap
plicatio
n.
It should be n
o
ted that para
m
eters of involved
material
s in t
he de
sign
proce
s
s sh
ould
be take
n int
o
accou
n
t to avoid the di
scre
pan
cie
s
which
may o
ccu
r i
n
the
reali
z
ati
on. In a
dditi
on, a
fu
rthe
r investig
ation
on th
e e
n
h
ancement
of RF
amplifier gain
and
noi
se fi
gure
by impl
ementing
so
me de
sig
n
m
e
thod
usin
g
non
simulta
n
eou
s-
conj
ugate
-
ma
ch techniq
ue
is still in pro
g
ress
wh
ere th
e results will
be rep
o
rte
d
later.
Referen
ces
[1]
Rap
pap
ort T
S
.
W
i
reless Co
mmu
n
ic
ation Pri
n
cipl
es an
d Practice
. Ne
w
Je
rse
y
: Prentic
e Hall. 19
96: 1-
12.
[2]
Pahl
avan
K, Krishn
amurth
y P.
Netw
orking F
u
n
d
a
m
en
tals: W
i
de, L
o
cal
and
Per
s
ona
l Are
a
Co
mmun
icati
o
ns
. 1
st
Edition.
W
e
st Sussex:
John W
i
l
e
y
& S
ons. 200
9.
[3]
Yi L, Mi
ao
K, Li
u A.
A c
o
mpar
ative stu
d
y of
W
i
MAX an
d LT
E as
th
e n
e
xt g
ener
ation
mo
bi
le
enterpr
is
e
netw
o
rk
.
T
he Internati
o
n
a
l C
onfere
n
ce o
n
Advanc
ed C
o
mmunicati
on T
e
chn
o
lo
g
y
(IC
A
CT
). Seoul.
201
1: 654-
658.
[4]
Razavi B.
RF
Microel
ectron
ic
s
. 2
nd
Edition. Ne
w
York: Pre
n
tice Ha
ll. 201
1.
[5]
Lee
T
H
.
T
he Desi
gn
of C
M
OS Radi
o
F
r
eque
ncy Int
egrate
d
C
i
rcui
ts.
2
nd
Edition
.
Ne
w
Y
o
rk
:
Cambri
dg
e Uni
v
ersit
y
Press.
200
3.
[6]
Dal
y
DC, C
han
drakas
an AP. An ener
g
y
effic
i
ent
OOK transceiver for
w
i
r
e
l
e
ss sensor n
e
t
w
o
r
ks.
IEEE
Journ
a
l of Soli
d-State Circu
its
. 2007; 42(
5): 100
3-10
11.
[7]
Gonzal
es G.
Microw
ave T
r
ansistor A
m
pli
f
iers: Analysis
and D
e
si
gn
. 2
nd
Edition.
Ne
w
Jers
e
y
:
Prentice-
Hal
l
. 199
6.
[8]
Misra DK.
Ra
dio-F
r
e
que
ncy
and Micr
ow
a
v
e Co
mmu
n
ic
ation
Circu
its: Analys
is an
d
Desig
n
. 2
nd
Editio
n. Ne
w
Y
o
rk: John W
ile
y & Sons. 20
04
.
[9]
Othman AF, Noh NM.
W
i
deb
and L
N
A des
ig
n for SDR radi
o usin
g bal
anc
ed a
m
p
lifier to
pol
ogy
. T
he 4
th
Asia S
y
m
pos
iu
m on Qualit
y El
ectronic D
e
sig
n
(ASQED). Penan
g. 201
2: 86
-90.
[10]
Ranum BT, M
unir A.
High
gai
n sing
le stage a
m
plifi
e
r w
i
th w
i
deband
characteristic
for
w
i
reles
s
communic
a
tio
n
. T
he
4
th
Internatio
nal
Co
nfe
r
ence
on E
l
ect
r
ical
E
ngi
ne
eri
ng a
nd Inform
atics (ICEEI).
Sela
ngor. 2
013
: 809-81
5.
[11]
Jarrahi
M, Le
e T
H
, Miller
ABD. Wideb
a
nd, lo
w
dr
ivin
g volta
ge trav
elin
g-
w
a
ve M
a
ch–Ze
h
n
d
e
r
modu
lator for RF
photon
ics.
IEEE Photonic Technology
Letters.
2008; 20(
7): 517-5
19.
[12]
Appl
icatio
n
no
te no.
00
1.
SIEG
ET
25 lo
w
n
o
ise
am
pl
ifier
w
i
t
h
BF
P
420
transist
o
r
at 2.
4GHz.
Appl
icatio
n not
e, Rev. 2
. 2007
.
[13]
Infenio
n
BFP4
20 NPN Si
lico
n
RF
T
r
ansistor.
Data sheet
. 20
09.
Evaluation Warning : The document was created with Spire.PDF for Python.