TELKOM
NIKA
, Vol.14, No
.2, June 20
16
, pp. 411~4
2
2
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i1.3749
411
Re
cei
v
ed
De
cem
ber 2
7, 2015; Re
vi
sed
April 7, 2016;
Accept
ed Ap
ril 20, 2016
Performance Analysis of a PV/FC Hybrid System for
Generating Electricity
in Iraq’s Remote Areas
Z
.
N
a
wa
wi
1
, A.S. Az
iz
2
, Z. Buntat
2
, M.A.B. Sidik*
1,2
, H.J. Karee
m
2
, A.Z. Abdulameer
2
,
M.A.A. A
z
iz
2
, M.I. Jambak
1
, Y.Z.
Arief
2
1
Departme
n
t of Electrical En
gi
neer
ing, F
a
cult
y
of Eng
i
ne
eri
n
g, Univers
i
tas Sri
w
ij
a
y
a,
306
62 Ind
e
ral
a
ya Og
an Ilir, South Sumat
e
ra
, Indonesi
a
2
Institute of High Voltag
e an
d
High C
u
rre
nt (IVAT
), F
a
culty
of Electrical En
gin
eeri
ng,
Univers
i
ti T
e
knolo
g
i Mal
a
ysia,
8131
0 Joh
o
r Bahru, Joh
o
r, Mala
ysi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: abub
akar@
u
nsri.ac.id
A
b
st
r
a
ct
A relia
ble
elec
trical en
ergy s
upp
ly is a pr
e
r
equ
isite for i
m
pr
ovin
g the
standar
d eco
n
o
mic an
d
qua
lity of life
l
e
vels i
n
a c
o
u
n
try. As
is the
case i
n
many
countri
es, Iraq
is ho
me to a c
o
llecti
on
of re
mote
villa
ges. Sinc
e
it is unecon
o
m
ic
al to con
n
e
c
t these v
illa
g
e
s to the existi
ng gri
d
, the in
stallati
on of stand-
alo
ne
el
ectrical
pow
er
ge
nera
t
ors has
b
e
co
me
co
mmon
p
r
actice. As
a r
e
sult, d
i
es
el st
and-
alo
n
e
pow
er
gen
erators s
e
e w
idespr
ea
d
use i
n
thes
e r
e
mote l
o
cal
e
s, w
h
ich, w
h
ilst fit for their in
tende
d p
u
rpos
e,
unfortun
a
tely s
u
ffer from s
e
v
e
ral
draw
back
s
, inclu
d
in
g
i
n
s
t
ability i
n
re
gar
ds to every
day
oil
prices
and
a
num
b
er of
environm
ental is
sues.
The im
plem
entation of
a PV/FC hy
brid power system could be
one
potenti
a
l
alter
n
ative to help
s
o
lve t
hese pr
oblem
s. Therefore, this
paper w
ill
pres
ent
PV
/FC system
c
o
ntrol
strategies alongside infor
m
ation relating to the perfo
r
manc
e
of such system
c
o
m
p
onents
,
based
on a c
a
se
study that w
a
s conduct
ed in
Al-Gow
air,
Iraq. T
h
is study is espec
ial
l
y i
m
p
o
rtant in ter
m
s
of envisi
oni
ng
the
future en
ergy
supp
ly ne
eds
of Iraq. T
he H
O
MER si
mulati
on res
u
lts sho
w
ed that by u
s
ing th
e pro
p
o
s
e
d
control strategies and su
gges
ted com
p
onent
s of
a PV/FC system
, it was able
to produce a satisfactory
outco
me.
Ke
y
w
ords
:
photovoltaic, fuel
cells, hybr
id power syst
em
, rem
o
te
area, diesel generat
or
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Bac
k
grou
nd
There are m
any remote v
illages
that are located far away fr
om t
he utility gri
d
in Iraq.
Con
ne
c
ting
su
ch villag
es to the exist
i
ng gri
d
is
certainly both
impra
c
tical
and in
efficie
n
t.
Therefore, i
n
ord
e
r to
ful
f
il the ele
c
tri
c
al
ene
rgy d
e
mand
in th
ose
pa
rticul
a
r
village
s, th
e
installatio
n
of stand
alon
e g
enerators is a
normal p
r
a
c
tice in Iraq.
Ho
wever
pet
roleu
m
co
sts keep in
crea
sing, with th
e fluctuation
s
in price often bein
g
unpredi
ctable
.
As su
ch, th
e use of di
esel as a f
uel
source fo
r
sta
ndalo
ne g
ene
rators in
re
m
ote
area
s
can
n
o long
er b
e
con
s
id
ere
d
reliabl
e. In addition,
since it
s con
s
umption
rele
ase
s
signifi
cant pol
lutants, su
ch
as CO
2, CO,
NOx
and SO2, diesel i
s
unfrien
dly to
the environm
ent
[1, 2].
As a re
sult, the be
st optio
n for rem
ote
area
s
would
be to install
stand
alon
e el
ectri
c
al
gene
rato
rs,
whi
c
h utilise a rene
wa
ble
energy sup
pl
y
. Under
simi
lar co
ndition
s, there are
some
rene
wa
ble e
n
ergy
sou
r
ces
and te
chn
olo
gies th
at are
available fo
r
use,
whi
c
h h
a
v
e alrea
dy be
en
applie
d, as shown in Tabl
e 1.
Table 1. App
lication
s
of re
new
able en
ergy in some countrie
s
Countr
y
Rene
w
able en
er
g
y
applied
Capacit
y
Sine Moussa Abdou, Thiès
region, Senegal [
3]
PV-Wind turbine-
Batter
y
-
Diesel generato
r
5.2 kWp PV arra
y, 5 kW
w
i
nd turb
ine, 120 kWh
batter
y
bank and
a 8.5 kVA diesel genset
Kimprana-Mali [3
]
PV- Battery
- Die
s
el
generato
r
- local grid
72 kWp, PV arra
y, 1185 kWh, 17
5 kVA diesel
genset, 400 V D
C
, Sunn
y
Mini Central
Conselice, Italy
[
4
]
Palm oil
50 MWel
(engine
s) + 6 MWel (steam turbine)
Angonia, Tete, M
o
zambique [5]
H
y
dr
opo
w
e
r
280 kW
Maguga Dam, S
w
aziland [6]
H
y
dr
opo
w
e
r
19.2 MW
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 411 – 42
2
412
One pote
ntial
rene
wa
ble e
nergy
sou
r
ce
is a
hybri
d
p
hotovoltaic
(PV) and fuel
cell (FC)
system.
Re
g
a
rdin
g the
g
r
een
en
ergy co
ncep
t, th
ese
a
r
e
both
excell
ent
re
newable
en
e
r
gy
sou
r
ces. PV/FC power pl
ants hav
e be
en su
ccessfu
lly operated in
many coun
tries, inclu
din
g
Germ
any, Italy, Finland, Ja
pan, Spain, Saudi Ara
b
ia, Switze
rlan
d a
nd the USA [7].
In Ne
unb
urg
vorm
Wal
d, Ge
rmany, t
he
syst
em
consi
s
ts of
several
different PV
techn
o
logie
s
that rang
e in
size from 6
kW
p
to 135
kW
p
. Other
su
bsyste
ms in
cl
ude DC/DC a
nd
DC/AC
conve
r
ters, DC a
n
d
AC busb
a
rs
as we
ll as two electrolyze
r
s of 111 kWe
and 100
kW
e
,
whi
c
h
are
u
s
ed to
pro
du
c
e 47
m
3
/h
of hydrog
en, ref
r
ige
r
ating
unit
s
of 16.6 kW
th
and th
ree
fuel
cell
s, i.e. (1) alkali
ne of 6.5 kWe and 4
2.2 kWth, (2)
pho
sph
ori
c a
c
id of 79.3 kWe an
d 13.3
k
Wth
,
and (3) PEM
of 10 kWe. Similarly, the Ente Na
zi
on
ale pe
r le En
ergie Alte
rnat
ive (The ENEA
Proje
c
t) in Italy consi
s
ts of
a PV
field of 5.6 kW
p
, a bipolar al
kalin
e electrolyze
r
of 5 kW and
a
tank storage
su
bsy
s
tem of
18 Nm
3
. T
he
control
system i
s
b
a
se
d on
a Prog
rammabl
e Lo
gic
Controlle
r (PLC), which co
ntrols ma
ny variabl
es
su
ch
as the tempe
r
ature of the
electrolyze
r
, the
range of the current, the conduc
tivity of water and it has t
he
ability to stop the system
in
emergen
cy situations.
T
h
e
fuel cell size
i
s
a
3
kW PEM,
operating
at 72°
C. Th
e
two
aforem
ention
ed exam
ple
s
sh
ow th
at th
e cost of
i
nst
alling a
PV/FC
system i
s
highe
r tha
n t
he
relative in
stal
lation
co
sts
of a di
esel
gene
rato
r
system. Th
ey
also
indi
cate
that the
en
ergy
conve
r
si
on proce
s
s that take
s pl
ace through a PV-el
ectroly
z
e
r
-sto
rage
-F
C ch
ai
n is much m
ore
compl
e
x than
a sim
p
le di
rect loa
d
supp
ly. Howe
ve
r,
the PV/FC sy
stem i
s
abl
e to avoid e
nergy
surplu
s losse
s
and
can
sto
r
e more ene
rgy for longe
r perio
ds of tim
e
[8].
Even though
many efforts have bee
n
made to
wa
rd
s sim
plifying
the de
sign of
PV/FC
system
s, so
f
ar re
sea
r
che
r
s
h
ave been
unabl
e
to
ag
ree o
n
a d
efini
tive optimum
desi
gn
pro
c
e
ss
for su
ch a system. There
is a real ne
ed to
explore optimum si
zing of
co
mp
onent sel
ecti
on,
operational
control st
rategi
es an
d perfo
rmance-relate
d issue
s
in this are
a
.
A feasi
b
ility study regarding the application
of PV/F
C
system
s i
n
Iraq’
s
rem
o
te areas
has not yet been ca
rri
ed o
u
t. Therefore, this study
on
PV/FC systems is of parti
cula
r impo
rta
nce
whe
n
attempting to envisa
ge the future
energy sup
p
l
y
needs of Ira
q
.
Con
s
id
erin
g the above fa
cts, a PV/FC system
for Al-Gowair villag
e has b
een pl
anne
d in
orde
r to obt
ain an optim
al desi
gn, which in
clud
es the sizin
g
of compo
nen
ts, hourly-ba
s
ed
operating
states a
nd the
o
peratio
nal
co
ntrol st
rategy.
Four m
ain
compon
ents
of a PV/FC hyb
r
id
power
syste
m whi
c
h will
be examin
ed
, namely PV,
the elect
r
olyzer, hyd
r
og
e
n
storage ta
nks,
fuel cell
s a
s
well a
s
othe
r
acce
ssorie
s.
The st
o
r
ed
h
y
droge
n and
oxygen furni
s
h the fuel cell
s in
a controll
ed f
a
shi
on
witho
u
t interruptio
n when
t
he P
V
system
ca
nnot
sup
p
ly sufficient p
o
wer to
the electrolyzer and a
c
ce
ssori
es d
uri
ng
off-sola
r day
s.
2. HOME
R
Soft
w
a
r
e
The Hybri
d Optimizatio
n Model for Electri
c
Re
ne
wable (HOME
R
) is
softwa
r
e that is
use
d to perfo
rm co
mpa
r
ati
v
e econ
omic
analysi
s
on d
i
stribute
d
gen
eration p
o
wer system
s. The
data inputted into the HOMER software will perf
orm an hourly
simulation for every possi
ble
combi
nation
of the compo
nents. T
h
e
s
e
inputs are
u
s
ed to
ra
nk the sy
stem
s a
c
cordi
ng to
u
s
er-
spe
c
ified
crit
eria,
su
ch a
s
cost of
e
nergy
(C
OE
)
or capit
a
l co
st
s.
Fu
rt
h
e
rmo
r
e,
HO
ME
R
simulatio
n
s
can perfo
rm ‘sensitivity analysis’, in wh
i
c
h the values of certain pa
rameters, su
ch as
co
st of fuel cells, are va
rie
d
in orde
r to determi
ne the
i
r impa
ct on the COE [9].
3. Load
Profile
In the first st
ep of the de
sign p
r
o
c
e
s
s, l
oad analy
s
i
s
is p
erfo
r
me
d by con
s
ide
r
ing the
electri
c
al
loa
d
s
over an
a
v
erage
d
a
y. In real-life
dat
a, the l
oad
profile will
vary
from
day to
day
due to th
e
size and
shap
e
of the loa
d
co
nsum
ption.
In
simul
a
tion, to achieve th
e
real
co
nditio
n
s,
some
noise inputs a
r
e a
d
ded to the lo
ad data p
r
of
il
e. In both ca
se
s, day-to-d
a
y and time-step-
to-time-step,
a small
ra
nd
om vari
ability of 3%
ha
s
been
ap
plied
.
Variation
s
due to
sea
s
o
nal
affects a
r
e al
so con
s
ide
r
e
d
as an
other f
a
ctor of vari
ation in the loa
d
.
The daily
con
s
umptio
n of e
l
ectri
c
al e
n
e
r
gy
in village
durin
g June t
o Octo
ber i
s
sho
w
n i
n
Table 2. It wa
s a
s
sumed th
at the load
of each ho
ur
wo
uld be
red
uce
d by 2 kW d
u
r
ing
Novem
b
er
to Febru
ary, while the lo
a
d woul
d be redu
ced to 3
kW fo
r ea
ch
hour d
uri
ng
March to Ma
y. Th
e
daily load
de
mand in
Al-G
owai
r village
durin
g June
to Octo
be
r is
sho
w
n i
n
Fig
u
re
1 [10]. Fi
gure
2 sho
w
s the monthly average loa
d
profi
les [11].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Perform
a
n
c
e
Analysis of a
PV/FC Hybrid
System
for Generating Ele
c
tri
c
ity Iraq
’
s
… (Z. Na
wa
wi)
413
Table 2. The
daily con
s
um
ption of elec
trical en
ergy in
Al-Gowair village
Load (kW)
Ti
me (Hou
r)
Load (kW)
Ti
me (Hou
r)
28.3
13
16.3
1
29.8
14
8.2
2
27.8
15
9.0
3
33.7
16
12.1
4
37.4
17
13.5
5
54.5
18
21.5
6
50.0
19
22.3
7
31.8
20
24.3
8
28.6
21
30.9
9
23.1
22
32.0
10
22.9
23
29.7
11
16.8
24
37.3
12
641.8kWh
T
o
tal load
Figure 1. The
daily load de
mand in Al-G
owai
r village
durin
g Ju
ne to Octob
er [11
]
Figure 2. Monthly average
s load p
r
ofile
Figure 3. Monthly average
daily radiatio
n and
clea
rne
s
s ind
e
x
4.
Solar Radia
t
ion Res
ourc
e
The daily sunshine
profile as a
m
onthly averag
e over the
course
of a year i
s
illustrated
in Figu
re 3. It rep
r
e
s
ent
s the monthly
cl
earn
e
ss
in
de
x of Al-Gowai
r. All the dat
a wa
s g
a
thered
for latitude 3
4
” 9’ North a
nd longitu
de
42” 2
6
’ East
[12]. It should be note
d
that duri
ng th
e
summ
er season, solar radi
ation attain
s i
t
s maximu
m
l
e
vel. The
hig
hest l
e
vel i
s
d
u
ring
June,
with
daily radiatio
n levels rea
c
hing aroun
d 7.6 kWh/m
2
/d. Then, durin
g the winter
sea
s
o
n
it attains
the minimum
value, whi
c
h take
s pla
c
e d
uring
De
cem
ber
with daily
radiation l
e
vels of aroun
d 2.6
kW
h/
m
2
/d. These level
s
are simila
r to the reliabl
e sol
a
r ra
diation le
vel in Iraq.
5. Sy
stem
Des
cription
A hybrid-typ
e power g
e
n
e
ration
syste
m
con
s
i
s
ts o
f
a PV module equi
ppe
d
with a
controlle
r tha
t
is use
d
to a
ttain maximum power
-poi
nt tracke
rs, a
pre
s
suri
zed
stora
ge tan
k
for
0
6
12
18
24
0
10
20
30
40
50
60
Lo
a
d
(
k
W)
D
a
i
l
y P
r
o
f
ile
Ho
u
r
J
a
n
M
ar
M
a
y
J
ul
S
ep
N
ov
A
n
n
0
10
20
30
40
50
60
70
A
ver
ag
e V
al
u
e (
k
W
)
A
C
P
r
im
a
r
y
Loa
d M
ont
h
l
y
A
v
e
r
a
g
e
s
M
ont
h
ma
x
da
i
l
y
hi
g
h
me
a
n
d
a
il
y
lo
w
mi
n
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
J
an
F
eb
M
ar
A
pr
M
a
y
J
u
n
J
u
l
A
ug
S
ep
O
c
t
N
ov
D
ec
0
2
4
6
8
D
a
i
l
y
R
a
di
a
t
i
o
n
(
k
W
h/
m
²
/
d)
G
l
oba
l
H
o
r
i
z
onta
l
R
a
di
a
t
i
on
C
l
ea
r
n
es
s I
n
d
e
x
Da
i
l
y
Ra
d
i
a
t
i
o
n
C
l
ea
r
ne
s
s
I
n
de
x
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 411 – 42
2
414
H2
storage, f
uel cells, inve
rter
(DC-A
C
)
and el
ect
r
ol
y
z
er for
H2
pro
ductio
n a
s
sh
own i
n Fig
ure
4.
The
whole
system ha
s b
een d
esi
gne
d usi
ng
HO
MER a
s
sho
w
n in
Figu
re
5. Furthe
rm
ore,
several co
mp
onent pri
c
e
s
for this
study are obt
ai
ned f
r
om previou
s
l
y
publish
ed p
apers [13, 14]
.
Figure 4. The config
uratio
n of a
PV/FC hybrid po
we
r
gene
ration
system
Figure 5. The config
uratio
n of a PV/FC hybr
id po
we
r
gene
ration
system in HOM
E
R software
5.1. PV
Sy
stem
The PV syst
em co
nsi
s
ts
of array
s
of sola
r
cells, which a
r
e
com
m
ercially ava
ilable in
many types o
f
power
and
voltage
ran
g
e
s
. For
ex
ampl
e, the
simple
st PV po
we
r
module
is fou
nd
in many types of sm
all cal
c
ulato
r
s a
nd wris
t
w
atches. La
rg
er
PV module
s
are utilised
for
electri
c
al
wa
ter p
u
mp
s,
comm
uni
cati
on to
we
rs,
home
appli
a
nce
s
, et
cete
ra [11,
15].
The
utilization of
PV systems for ele
c
tri
c
ity gener
ation provid
es sub
s
t
antial
advantage
s over
conve
ntional
power
so
urce
s, for
exa
m
ple: (1
) P
V
is environ
mentally frie
ndly-the
r
e a
r
e no
harmful
gree
nhou
se
ga
s
emission
s
du
ring th
e g
en
era
tion
of el
ectri
c
ity; (2
)
sola
r e
ne
r
gy
is
obtaine
d fro
m
natural re
source
s, whi
c
h are free
an
d in abund
an
ce; (3
) the cu
rre
nt cost of PV is
on a fast-red
ucin
g track a
nd this red
uction is ex
pect
ed to continu
e for the next several yea
r
s,
therefo
r
e, PV panel
s have
a promi
s
ing
future in
terms of eco
n
o
m
ic viability;
(4) PV pan
el
s
conve
r
t sunli
ght into
elect
r
icity in
a di
re
ct
way; and
(5) PV p
anel
s have ve
ry lo
w o
peration
and
maintena
nce co
sts [16].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
Perform
a
n
c
e
Analysis of a
PV/FC Hybrid
System
for Generating Ele
c
tri
c
ity Iraq
’
s
… (Z. Na
wa
wi)
415
In ord
e
r to
cater to th
e el
ectri
c
al
dema
nd in Al
-Go
w
air, the
ca
pa
city of the P
V
modul
e
has
bee
n det
ermin
ed a
s
n
eedin
g to be
cap
able
of p
r
odu
c
in
g bet
w
ee
n 0
kW to 280
kW. T
his
informatio
n will be applie
d
to the HOME
R, along
wi
th
the capital
cost, repl
acem
ent co
st, O&M
co
st, lifetime
and trackin
g
system.
T
he
details of the
input d
a
ta for the PV m
o
d
u
le a
r
e
provided
in Table 3.
Table 3. PV input detail
s
Size to consider (kW)
0-255-260-2
65-2
70-280
Capital cost ($/kW)
5600
Replacement cost ($/kW)
5600
O
&M cost (
$/kW/y
r
)
0
Lifetime (y
ea
r)
25
Tracking s
y
stem
Tw
o
ax
is
5.2. Fuel
Cells
A fuel cell
co
mbine
s
hyd
r
o
gen a
nd oxyg
en to produ
ce ele
c
tricity. The ba
si
c p
r
i
n
cipl
e of
a fuel cell i
s
illustrated in
Figure
6. Hy
drogen i
s
fed to the fuel
electrode (anode),
where it is
oxidize
d, pro
duci
ng hyd
r
o
gen io
ns
and
elect
r
on
s.
In
the mea
n
time, oxygen i
s
fed to the
air
electrode
(ca
t
hode),
whe
r
e the hydro
g
en ion
s
from
the anod
e ab
sorb ele
c
tro
n
s
and
rea
c
t with
the oxygen to
prod
uce wat
e
r. The diffe
rence betwe
e
n
the re
spe
c
ti
ve energy levels of the an
o
d
e
and the
cath
ode i
s
the vo
ltage pe
r u
n
it cell.
Ho
wev
e
r, the
cu
rre
n
t flows in th
e extern
al ci
rcuit
depe
nd o
n
th
e chemi
c
al
a
c
tivity and th
e amo
unt
of
sup
p
lied
hydrogen. T
he flo
w
of th
e current
will co
ntinue
as lon
g a
s
th
ere i
s
a supp
ly of
reacta
nts (hyd
rog
en
and oxygen
)
[17]. Detaile
d
data of FC for the current st
udy is provid
ed in Table 4.
Figure 6. The basi
c
pri
n
ci
ple of a fuel cell
Table 4. Fuel
cells d
e
tails.
Table 5.
Spe
c
ificatio
n of an in
verter input details
Size to consider (Kg)
0-50-5
5
-60
-
65
Capital cost ($/Kg)
3000
Replacement cost ($/kW)
2500
O
&M cost (
$/kW/y
r
)
0.02
Lifetime (hour)
40000
Size to consider (kW)
0-55-6
0
-65
-
70
Capital cost ($/kW)
900
Replacement cost ($/kW)
900
O
&M cost (
$/kW/y
r
)
0
Lifetime (y
ea
r)
15
Efficiency
%
90
5.3. Conv
erter
All PV and
FC
system
s pro
d
u
c
e
DC p
o
wer,
which
cann
ot
be di
re
ctly a
p
plied
to
particula
r ma
chin
es an
d h
ome appli
ances. To co
nve
r
t the DC po
wer to AC po
wer, an inve
rter
device i
s
req
uired. Sin
c
e
most el
ectri
c
al appli
a
n
c
e
s
have n
o
buil
t-in facility fo
r a
c
cessin
g
DC
power, an i
n
verter i
s
of u
t
most ne
ce
ssity as par
t of
the overall
system. Inverter devices
a
r
e
available
with
different sp
e
c
ificatio
ns of
output
wattag
e
[18]. The in
verter spe
c
ification
s
detail
ed
in
Error! Re
fe
rence s
o
urce
not found.
a
r
e
the values n
eede
d to cate
r the load p
r
o
f
ile.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 411 – 42
2
416
5.4. Electroly
zer
Electroly
s
is is the process i
n whi
c
h an el
ectri
c
cu
rrent is pa
ssed through water (H2O
) in
orde
r to
brea
k the
bo
nd
s
betwe
en th
e
hydrog
en
an
d
the oxygen
,
yielding hydroge
n (H2) a
nd
oxygen (O2)
in se
parate
states. In this
proje
c
t, t
he e
l
ectroly
s
is proce
s
s is
use
d to get
H2
and
store it in a
hydrog
en tank [19]. A stand
-alo
ne
electrolyze
r
system, kno
w
n a
s
a Proton
Exchang
e Membrane (PE
M
) ele
c
trolyzer, purcha
s
e
d
from Proto
n
Energy Inc., was use
d
to
obtain a cost
estimate of a stand
-alo
n
e (hydr
oge
n by wire
) ele
c
trolyze
r
. The
details of the
electrolyze
r
a
r
e
provid
ed i
n
Tabl
e 6. All
thes
e comp
on
ents co
uld be
improved up
on-fo
r
exa
m
pl
e,
by re
placi
ng f
i
ttings
with
welded
tube
a
s
sembli
es-i
n
o
r
de
r to
achiev
e furth
er
co
st
redu
ction
s
[2
0].
In conventio
n
a
l system
s,
an ele
c
troly
z
er produ
ce
s
hydrog
en at l
ow p
r
e
s
sure
s (100
-20
0 p
s
i)
.
The hyd
r
oge
n is then
co
mpre
ssed to
elevate the p
r
essu
re fo
r g
as
stora
ge. In re
cent d
ecade
s,
the resultant pre
s
sure is a
bout 250
0-3
0
00 psi, wh
ich
is expecte
d to increa
se up
to 6,000 psi
in
the very nea
r future, thro
ugh the ap
pl
ication of
im
proved te
chn
i
que
s. As a result, it wou
l
d
eliminate the
need fo
r
com
pre
ssors. Giv
en this
co
nt
e
x
t, it is assum
ed that a
co
mpre
ssor will
not
be req
u
ired for the current
study [9].
5.5. H
y
drogen
Tank
A tank for
storin
g th
e
hydrog
en
is a
ne
ce
ssary eleme
n
t. The
hydro
g
e
n
sto
r
a
g
e
spe
c
ification i
s
sho
w
n in T
able 7, in
whi
c
h the va
riati
on of si
ze i
s
0 kg to 1
40
kg. Duri
ng the
25-
year se
rvice perio
d, this tank
will need
to
be maintained an
nuall
y
. The cost o
f
operation a
nd
maintena
nce
of the hydrog
en sto
r
ag
e is $15 pe
r kg p
er an
num. Th
e stored hyd
r
ogen e
ne
r
gy is
use
d to overcome
daily a
nd seasonal
discre
pan
ci
e
s
in ord
e
r to
meet the de
mand fo
r reli
ably-
sou
r
ced en
ergy.
Table 6. Electrolyze
r
input
details
Size to consider (kW)
0-230-
235-2
40-2
45-250
Capital cost ($/kW)
2000
Replacement cost ($/kW)
1500
O
&M cost (
$
/kW/y
r
)
20
Lifetime (y
ea
r)
15
T
y
pe
DC
Efficiency
%
75
Table 7. Hyd
r
oge
n sto
r
ag
e details
Size to consider (Kg)
0-125-
130-1
35-1
40
Capital cost ($/Kg)
1300
Replacement cost ($/Kg)
1200
O
&M cost (
$
/Kg/y
r
)
15
Lifetime (y
ea
r)
25
6.
Resul
t
s and
Discus
s
ion
The
simul
ation
wa
s
carri
ed o
ut ba
se
d on
a
25-y
ear-lon
g p
r
oj
ection
pe
riod
and
6%
annu
al re
al i
n
tere
st rate.
The aim
wa
s to ensure t
he hig
h
e
s
t le
vels of reli
ab
ility in terms of
sup
p
ly security, efficiency
of the
stan
d-al
o
ne PV/
FC
system
and to
prop
erly defin
e t
h
e
operational
strategy n
eed
ed to
mainta
in the
gen
erator,
all
of which
can be summ
ari
z
ed
as
follows
:
(a)
The first sce
n
a
rio
wa
s the
PV system
supplie
s the
el
ectri
c
ity imm
ediately to th
e load
deman
d. In this sce
nari
o the power of the
PV syste
m
was e
qual
to the load demand
(P Lo
ad);
(PV supply =
P Load).
(b)
The
se
cond
scen
ario
wa
s if
the po
we
r of
the PV syste
m
exce
ed
s th
e P Loa
d. In su
ch
a situ
ation, th
e PV sy
stem
woul
d imme
di
ately su
pply the P L
oad
a
s
well
as di
stri
bute the
exce
ss
power from th
e PV system to the el
ectrol
yzer in o
r
de
r to prod
uce H
2
; (PV supply > P Load
).
(c)
Another sce
n
a
rio
wa
s th
at the PV
syst
em p
r
ovide
s
l
e
ss el
ectri
c
al
po
wer than
t
he P
Load. In this scena
rio, the
P Load woul
d be su
p
p
lied
by both the
PV system and the FC; (PV
sup
ply < P Load).
(d)
Finally, if sol
a
r irradi
ation
is un
available
,
electri
c
ity might be
sup
p
li
ed from th
e F
C
to
the load dem
and; (PV sup
p
ly = 0).
Furthe
rmo
r
e, experim
ents were cond
uct
ed
in
o
r
de
r to
find the opti
m
um value
s
of each
deci
s
io
n vari
able si
ze, wi
th the possib
l
e deci
s
ion v
ariabl
es b
ein
g (1) PV array, (2) fuel cell
gene
rato
r, (3
) conve
r
ter, (4) ele
c
trolyze
r and (5
)
hyd
r
oge
n storag
e tank. Figure 7. The overall
optimizatio
n result
s sh
owi
n
g system
con
f
iguration
so
rted by the total net pre
s
e
n
t
cost presen
ts
the overall o
p
timization
re
sults for th
e
prop
osed
system, inclu
d
in
g a li
st of dif
f
erent p
o
ssibl
e
sizes fo
r the
comp
one
nts.
The first ro
w
sho
w
s
the o
p
timum syste
m
co
nfiguration-m
eani
ng t
h
e
one with the l
o
we
st net pre
s
ent cost.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Perform
a
n
c
e
Analysis of a
PV/FC Hybrid
System
for Generating Ele
c
tri
c
ity Iraq
’
s
… (Z. Na
wa
wi)
417
6.1. Equipment
Optimiza
tion
Analy
s
is
It was dete
r
mined that 2
65 kW of PV output wa
s th
e optimum si
ze for the p
o
tential Al-
Gowair PV/F
C
sy
stem. If lowe
r si
ze
s a
r
e used, t
hey will re
sult in
an in
sufficien
t energy
sup
p
ly
for the required loads, whil
st hi
gher si
zes will si
gnificant
ly increase
the capital
cost. The mont
hly
averag
e PV output from
Janua
ry to De
cemb
er i
s
illu
strated i
n
Fig
u
re 8. It sho
u
l
d be note
d
that
the maximu
m avera
ge
o
u
tput app
ea
rs du
rin
g
the
summ
er
se
aso
n
, with th
e winte
r
sea
s
on
having the lo
we
st possibl
e
averag
e out
put. A summ
ary of the PV output re
sult
s ca
n be
see
n in
Table
8. Su
mmary of PV
output results, whi
c
h
pro
v
ides e
s
senti
al inform
atio
n re
garding
the
quantity of PV output for Al-Go
w
ai
r.
Figure 7. The overall opti
m
ization
re
su
lts sho
w
in
g system co
nfiguration
so
rted
by the total n
e
t
pre
s
ent cost
Figure 8. Monthly average
output of PV
Table 8. Summary of PV output re
sults
Quantit
y Value
Units
Rated capacit
y
265
kW
Mean output
83
kW
Mean output
1,981
kWh/d
Capacit
y
factor
31.1
%
Minimum output
0.00
kW
Maximum outpu
t
327
kW
Hours of ope
ratio
n
4,385
hr/
y
r
Total production
722,970
kWh/yr
In orde
r to accou
nt for the requi
re
d load
, the optimum size of the
FC sho
uld b
e 60 kW.
This i
s
enou
g
h to supply the ne
ce
ssary
load ev
en when the outp
ut of PV turns to ze
ro du
ri
ng
the night. The re
sults of
the FC outpu
t in t
he simulation have b
een summa
ri
zed in Ta
ble
9
.
Summary of
fuel cell outpu
t
re
sults. Mea
n
whil
e,
Fi
gu
re 9
co
ntain
s
t
he d
a
ta in
re
gard
to th
e d
a
ily
profile
of FC
output. As
ca
n be
se
en from the
sup
p
l
ied data, th
e
maximum F
C
outp
u
t o
c
curs
mostly at
06
:00 PM.
Ho
wever,
the
F
C
o
u
tput
ra
mps do
wn
d
u
ring
the
su
nlight h
ours
and
become
s
zero if PV output attains a thre
shol
d point
where it can h
a
ndle the e
n
tire load. In terms
of the monthl
y average o
u
t
put of FC, as sh
own
in F
i
gure
10, it can be seen t
hat duri
ng th
e
winter sea
s
o
n
, the FC out
put inten
s
ifie
s a
s
the
PV
o
utput goe
s
do
wn d
ue to
a redu
ction in
solar
radiatio
n.
J
an
M
ar
M
ay
J
ul
S
ep
N
o
v
A
n
n
0
50
10
0
15
0
20
0
25
0
30
0
35
0
A
ver
ag
e V
al
u
e (
kW
)
Mo
n
t
h
ma
x
d
a
ily
h
ig
h
me
a
n
d
a
ily
lo
w
mi
n
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 411 – 42
2
418
Table 9. Summary of fuel
cell output re
sults
Quantit
y Value
Units
Hours of ope
ratio
n
5,072
hr/
y
r
Oper
ational life
7.89
yr
Capacit
y
factor
19.6
%
Electrical production
103,001
kWh/yr
Mean electrical output
20.3
Kw
Fuel energ
y
inpu
t
206,002
kWh/yr
Mean electrical efficiency
%
50.0
%
Figure 9. Dai
ly profile of fuel cell out
Figure 10. Monthly averag
e output of fuel cell
FC rep
r
e
s
ent
s an
attra
c
tive option
a
s
an inte
rmittent sou
r
ce of
electri
c
ity ge
neratio
n
bec
au
se of
it
s cha
r
a
c
t
e
ri
st
ics,
su
ch
a
s
high ef
f
i
cien
cy, fast load
resp
on
se, mo
dularity a
nd f
uel
flexibility. Unlike batteri
es,
FC doe
s no
t need to
be
rech
arged. In fact, FC will continuo
usly
prod
uce ele
c
tricity as lo
ng
as fuel is
sup
plied to t
he u
n
it. This is in
dire
ct contra
st to batterie
s
,
who
s
e
ele
c
trode
s are pe
rman
ently co
nsum
ed d
u
ri
ng their ope
rating time,
whi
c
h ultimat
e
ly
results in th
e
batterie
s
run
n
ing o
u
t of
ene
rgy [21
]. A
c
cording to
Georgi, L.[22], some advantages
of FC are its high ele
c
trical and total effici
en
cy potential (mu
c
h
highe
r than the com
bu
s
tio
n
engin
e), low
emission
s (ze
r
o emi
ssi
on),
low mainte
na
nce a
nd lo
w noise.
For both
sma
ll and large-scale
system
s, one
efficient
method of o
b
taining hyd
r
ogen i
s
by using
an
electrolysi
s
method, whe
r
eby PV ca
n
be couple
d
with an el
ect
r
olyzer to
pro
duce
hydrog
en. T
h
is i
s
the
cleane
st sou
r
ce of
pro
d
u
c
ing
hydroge
n witho
u
t causi
ng p
o
llut
ant
emission
s. PV-ba
sed hyd
r
ogen p
r
od
ucti
on plant
s are
flex
ible syste
m
s, in other
words, it is e
a
sy
to custo
m
ise
[9] such a
system to meet a spe
c
ific re
gio
n
’s ne
ed
s.
In order to d
e
sig
n
a
n
effe
ctive PV/FC
system
,
one
i
m
porta
nt thin
g to b
e
con
s
i
dere
d
i
s
the conve
r
ter (inve
r
ter) eff
icien
cy fa
ctor. The i
n
ve
r
t
er
e
ffic
i
e
n
c
y
fa
c
t
o
r de
p
e
nds
on
c
o
ns
ta
nt
power
being
sup
p
lied
over a certain
du
ration. He
nc
e, a pe
rfect PV
/FC de
sig
n
in
volves p
r
op
erly
determi
ning t
he input/outp
u
t wattage o
f
the inve
rter. From the
HOME
R sim
u
lation, it was
observed
that
65
kW i
s
th
e
suitabl
e
cap
a
c
ity for th
e P
V
/FC sy
stem
in this in
stan
ce. Some
deta
ils
rega
rdi
ng the
req
u
ire
d
q
u
a
n
tity output for the
inverte
r
a
r
e give
n in
Table
10
Me
anwhile, in li
n
e
with lo
ad
profile, the
dai
ly profile
of
the inve
rt
er,
as
detaile
d i
n Fig
ure
11
sho
w
s that
the
maximum out
put of the inverter o
c
curs a
t
06:00 PM.
The ele
c
troly
s
er
requi
re
s 230 kW in order to pro
du
c
e sufficient h
y
droge
n for u
t
ilization
of the F
C
. Informatio
n reg
a
rdin
g the
m
onthly av
erag
e ele
c
tri
c
ity consumption
a
b
so
rbe
d
by t
h
e
electrolyze
r
(electrolyze
r i
nput), a
s
well
as t
he
outpu
t, is illustrate
d in Figu
re 1
2 and Fi
gu
re
13
respe
c
tively. Duri
ng
su
nlig
ht hou
rs-at
which
poi
nt P
V
pro
du
c
e
s
an el
ectri
c
al
power
output
-the
sha
pe of the curve
s
of the
electr
olyze
r
o
u
tput power, as sho
w
n
Figure 14, is
simila
r to the curve of the
PV output.
J
an
M
ar
M
ay
J
ul
S
ep
N
ov
A
nn
0
10
20
30
40
50
60
Av
erag
e V
al
u
e (
kW
)
Mo
n
t
h
ma
x
d
a
ily
h
ig
h
m
ean
d
a
ily
lo
w
mi
n
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Perform
a
n
c
e
Analysis of a
PV/FC Hybrid
System
for Generating Ele
c
tri
c
ity Iraq
’
s
… (Z. Na
wa
wi)
419
Table 10. Su
mmary of inverter o
u
tput result
s
Quantit
y Inverter
Rectifier
Units
Hours of ope
ratio
n
65
0
hrs/
y
r
Mean output
25.1
0.00
kW
Minimum output
0
0.00
kW
Maximum outpu
t
60.1
0.00
kW
Capacit
y
factor
38.6
0.0
%
Energ
y
in
244,301
0 kWh/yr
Energ
y
out
219,871
0 kWh/yr
Losses 24,430
0
kWh/yr
Figure 11. Daily profile of the inverter
Figure 12. Monthly averag
e electri
c
ity
con
s
um
ed by
the electroly
z
er
Figure 13. Monthly averag
e output of the
electrolyze
r
Figure 14. Daily profile of electrolyze
r
o
u
tput
Figure 15. Monthly averag
e store
d
hydrogen
A hydro
gen
tank with
a
ca
pacity of
135
kg i
s
req
uired
to sto
r
e
the
h
y
droge
n p
r
o
d
uce
d by
the elect
r
olyzer. A su
m
m
ary of re
sults in
acco
rdan
ce with
hydr
og
en
-tan
k produ
ction
and
con
s
um
ption is sho
w
n in Table 11. Su
mmary
of
the hydrogen ta
nk re
sult
s, re
veals that every
year the
r
e i
s
a 2 kg surplu
s of hyd
r
oge
n obtain
ed. Howeve
r, a de
tailed an
alysi
s
rega
rdin
g the
impact
of the hydrogen
surplu
s for
a
25-ye
ar
se
rvice is still
uncertain
sin
c
e n
o
a
c
curate
informatio
n could be u
s
e
d
as ju
stificat
io
n. Meanwhile
, it should be
noted that
Figure 15
sh
ows that the
mont
hly average am
ount
of stored hy
d
r
oge
n is
affected by the
PV and elect
r
olyze
r
outpu
ts, in which t
he minimu
m
values a
r
e d
u
ring the mo
nths of minimum
output of PV
and FC a
nd vice versa.
J
a
n
M
ar
M
a
y
J
u
l
S
e
p
N
ov
A
n
n
0
50
100
150
200
250
A
v
er
a
g
e V
a
l
u
e
(
k
W
)
Mo
n
t
h
ma
x
dai
l
y
hi
g
h
me
a
n
dai
l
y
l
o
w
mi
n
J
an
M
ar
M
ay
J
u
l
S
ep
N
ov
A
nn
0
1
2
3
4
5
A
v
er
ag
e V
a
lu
e (
k
g
/
h
r
)
M
onth
ma
x
dai
l
y
hi
g
h
me
a
n
d
a
ily
lo
w
mi
n
J
an
M
ar
M
ay
J
ul
S
e
p
N
o
v
A
nn
0
20
40
60
80
10
0
12
0
14
0
Avera
g
e V
al
u
e (
kg
)
S
t
or
e
d
H
y
dr
o
ge
n
M
o
nt
hl
y
A
v
e
r
a
ge
s
Mo
n
t
h
ma
x
da
i
l
y
h
i
g
h
m
ean
da
i
l
y
l
o
w
mi
n
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 411 – 42
2
420
Table 11. Su
mmary
of the
hydrog
en tan
k
re
sult
s
Variable Value
Units
H
y
dr
ogen p
r
oduc
tion
6,182
kg/
y
r
H
y
dr
ogen consu
m
ption
6,180
kg/
y
r
H
y
dr
ogen tank a
utonom
y
178
Hours
Even though
lead a
c
id bat
teries m
ay be use
d for lo
ng-te
rm ene
rgy stora
ge, h
y
droge
n
stora
ge ha
s
many advant
age
s over b
a
tteries. Fo
r
in
stan
ce, batteries ne
ed con
s
tant monito
ri
ng
and m
ainten
ance in
orde
r to e
nsure t
he p
ower
st
o
r
age
is in
go
od
con
dition,
whil
st hyd
r
o
gen
stora
ge requi
res n
o su
ch
continuo
us
care.
Re
cently, co
st-effe
ctive pre
s
suri
ze
d tank
s, whi
c
h
can be u
s
ed safely for most
appli
c
ation
s
,
have be
co
m
e
availabl
e for hyd
r
og
en stora
ge.
In case
s
of unfa
v
ourabl
e
wea
t
her
con
dition
s
, a
stora
ge
sy
ste
m
is a ve
ry n
ece
ssar
y
pa
rt of a
sta
nd-al
one
ene
rgy
system in
o
r
de
r to
ensure
that
energy can
still be
provided i
n
em
ergen
cie
s
, such a
s
in
stant
aneo
us overl
o
a
d
con
d
ition
s
an
d sola
r off-da
y condition
s [23].
6.2.
Cos
t
to Build the Sy
stem
By using the
HOMER
si
mulation, it wa
s det
ermi
ned that the estimated cost of the
system i
s
rel
a
tively expensive
wh
en co
mpared
with the
avera
ge co
st of an eq
uivalent syst
em
that ma
ke
s u
s
e
of a
die
s
e
l gen
erator [1
4]. This
is b
e
c
au
se
the
ca
pital cost
of
PV and
FC a
r
e
more
expe
nsi
v
e than
that
of a
die
s
el
g
enerat
or.
Ho
wever,
taki
ng
advanta
ge
o
f
new em
ergi
ng
techni
que
s, the p
r
odu
ctio
n co
st
shoul
d be
signifi
ca
ntly redu
ced
in the future
whe
n
taki
ng i
n
to
accou
n
t an
efficient an
d
co
st-effe
ctive de
sign.
In
Figu
re 1
6
, the
cash-flo
w sum
mary
of the
annu
al estim
ated co
sts i
s
illustrate
d. Fu
rtherm
ore,
ne
t present co
st
(NPC) of the
system for 2
5
years of serv
ice i
s
sho
w
n
in Figu
re
17
. T
he
cash-fl
ow summ
ary
and NPC provide
a simil
ar
profile, in
whi
c
h PV cost
contribute
s
the
highe
st ov
erall co
st to the
proje
c
t. Thi
s
is be
ca
use the
curre
n
t price
of PV modu
les is still fai
r
ly ex
pensive
.
It should b
e not
ed that the cost of an
electrolyze
r
i
s
the se
co
nd
highe
st, followed by the F
C
, H
2
Tank
and c
o
nverter respec
tively.
It is
also
e
s
sential
to highli
ght t
hat the lifetim
e of a
n
ele
c
trolyzer is only
15 yea
r
s, after
whi
c
h time
it
sho
u
ld
be
re
placed
with
a ne
w
one.
As a
re
sult,
the repla
c
em
ent cost
mu
st be ta
ken
in
to
acc
o
unt, which obvious
ly affec
t
s
the total c
o
s
t
of the el
ectroly
z
e
r
portion of the system.
Figure 16. The ca
sh
-flow
summ
ary of the
annu
alize
d
costs
Figure 17. The ca
sh
-flow
summ
ary of the net
pre
s
ent cost (25 years)
6.3.
Energ
y
Prod
uction an
d Consumptio
n Analy
s
is
Data reg
ardin
g
the ene
rgy prod
uctio
n (a
s sho
w
n
in
T
able 12), and
ene
rgy con
s
umption
(as
sh
own in
Table 13
), as well as the
summary (as
sho
w
n in T
ab
l
e 14), was o
btained throu
gh
the use of the
HOME
R sim
ulation. From
Table 1
2 an
d
Table 1
3
, it is obviou
s
that
PV is the mai
n
energy sou
r
ce being utili
sed to suppl
y the entir
e primary loa
d
, includi
ng the electrolyzer.
Ho
wever, it i
s
impo
rtant t
o
also con
s
id
er that
the el
ectroly
z
e
r
ab
sorbs
60% of
the total ene
rgy
prod
uced
by the PV –
for 7
5
% ove
r
all efficie
n
cy
(see Tabl
e 6).
Fo
r
that rea
s
on,
it wil
l
be
essential to t
horo
ughly
stu
d
y the ele
c
tro
lyzer
effi
cien
cy being utili
se
d by the
real system prio
r
t
o
actual in
stalla
tion. Between
the current two fore
m
o
st types of electrolyzers, nam
ely alkaline a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.