TELKOM
NIKA
, Vol.13, No
.1, March 2
0
1
5
, pp. 32~4
0
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i1.131
32
Re
cei
v
ed Au
gust 18, 20
14
; Revi
sed
De
cem
ber
8, 20
14; Accepted
Jan
uary 12, 2
015
Implementation of Maximum Power Point Tracking on
Photovoltaic Using Fuzzy Logic Algorithm
Arto
n Joha
n
Lubis
1
, Er
w
i
n Susanto
2
, Unan
g
Suna
r
y
a
3
1,2
F
a
cult
y
of El
ectrical En
gin
e
e
rin
g
, T
e
lkom
Univers
i
t
y
, Ba
n
dun
g, Indon
esi
a
3
F
a
cult
y
of Ap
plie
d Scie
nce,
T
e
lkom
Univer
sit
y
, Ban
dun
g, Indon
esi
a
Jl.T
elekomunik
a
si No 1.,Da
y
e
uhko
l
ot Ban
d
u
ng,40
25
7
e-mail: jart
on3
2@gma
il.com
1
, er
w
i
n
e
lektro
@
t
elkomu
nivers
ity.ac.i
d
2
,
una
ngs
unar
ya
@telkomu
niv
e
r
s
it
y
.
ac.id
3
A
b
st
r
a
ct
Most en
ergy s
ources t
hat ar
e co
mmo
n
ly
u
s
ed i
n
th
e w
o
r
l
d to
day
are fr
om fossils. T
h
i
s
kind
of
ener
gy is u
n
re
new
abl
e a
nd l
i
m
ite
d
. Use
of solar
pan
els (P
h
o
tovolta
i
c, PV) to gen
erate
ele
c
tricity is grow
i
n
g
fast and it can
be used
as a
n
altern
ative e
nergy i
n
st
ea
d of fossils. T
he probl
e
m
face
d by use of sola
r
pan
els is
that
the g
ener
ate
d
pow
er is
no
t opti
m
u
m
for
a partic
u
l
a
r l
oad. It is a
l
w
a
ys cha
n
g
i
ng
an
d
influ
ence
d
by
the l
e
ve
l of l
i
gh
t (irradi
ance)
a
nd te
mp
eratur
e. T
herefor
e w
e
ne
ed
a w
a
y
to maxi
mi
z
e
th
e
pow
er output o
f
solar pan
els. Maxi
mu
m Pow
e
r Point T
r
acki
ng (MPPT
) is a metho
d
for fin
d
in
g its maxi
mu
m
pow
er p
o
int. In
this res
earch,
the MPPT
is d
e
sig
ned
to l
o
c
a
te the
po
int o
f
gen
erated
maxi
mu
m
pow
er
on
solar p
ane
ls. MPPT
controll
er desi
gne
d in
this resear
c
h
is
using fu
zz
y
l
o
gic. T
he volta
g
e
and c
u
rrent from
the so
lar
pa
nel
s are
fed t
o
th
e fu
zz
y
log
i
c c
ontrol
l
er. T
h
e
output
of fu
zz
y
lo
gic
in th
e for
m
of a
pu
lse
w
i
dt
h
mo
du
latio
n
(PW
M) signal re
gul
ates the pr
ocess of sw
itchin
g bo
ost con
v
erter. Experi
m
e
n
tal res
u
lts show
that output p
o
w
er from PV increas
e 15.9
%
and th
e effi
ciency of d
e
si
gne
d bo
ost co
nverter ran
ges
in
appr
oxi
m
ate
lly 90.97
%.
Ke
y
w
ords
: PV, MPPT
, fu
zz
y
l
ogic, PW
M, boost converter
1. Introduc
tion
Becau
s
e
of the in
creasi
n
g
of popul
atio
n grow
th, d
e
m
and fo
r ele
c
tri
c
ity also i
n
crea
se
s
rapidly. In fact, most powe
r
sou
r
ces o
b
ta
ined t
oday a
r
e from fossil fuels that a
r
e
not ren
e
wabl
e
and limited.
Then, we n
eed rene
wab
l
e ene
rgy so
urces to ove
r
co
me the
crisi
s
in future.
Photovoltaic
is
o
ne of
the
rene
wa
ble en
ergy re
sou
r
c
e
s i
n
re
cent
y
ears.
H
o
w
e
v
e
r,
P
V
mo
d
u
les
still have lo
w efficien
cy d
ue to the at
mosp
he
ri
c
co
ndition
s until
right no
w al
though th
e e
a
rth
receives h
u
g
e
energy from the sun. Therefo
r
e, a system that can cont
rol an
d gain maximu
m
power poi
nt tracking for the
solar a
r
ray is urgently nee
ded [1].
The m
a
ximu
m po
we
r op
e
r
ating
point
chang
es
with
irra
diation l
e
vel an
d temp
e
r
ature.
The cha
r
a
c
t
e
risti
c
cu
rve
sp
ecifie
s a
uniq
ue
o
p
e
r
ating
point
at whi
c
h
ma
ximum po
ssi
b
le
delivere
d
po
wer. At the Maximum Power Point
(M
PP), the PV
system op
era
t
es at its highest
efficien
cy. The MPPT working p
r
in
ciple
is bas
ed on
the maximum powe
r
tran
sfer theo
ry. Th
e
power delive
r
ed from the source to the l
oad is m
a
ximized
whe
n
the
input re
sista
n
ce
see
n
by the
sou
r
c
e
m
a
t
c
h
e
s t
h
e
so
ur
ce
re
si
st
an
ce.
F
o
r t
h
e f
i
xed
lo
ad, the
eq
uivalent
re
sista
n
c
e
se
en
by th
e
panel
can b
e
adju
s
ted by changi
ng po
wer co
nverte
r duty cycle [2].
Many metho
d
s have b
e
e
n
develop
ed
to determin
e
the MPP such as the in
creme
n
tal
con
d
u
c
tan
c
e
[1], a state
space a
pproa
ch [2], a
nd t
he p
e
rtu
r
bati
on a
nd
ob
servation [3]. In
the
simple
st met
hod, i.e. [3], the sy
stem n
e
eds to
be p
e
rturbed to
sen
s
e the
maxim
u
m point a
n
d
it
works
well if
the weathe
r i
s
con
s
tant o
r
slo
w
ly
chan
ged. Oth
e
rwi
s
e,
sy
stem cannot
o
b
tain its
maximum po
int. Although
incremental
cond
ucta
nc
e method h
a
s
high
accu
racy but it leaves
difficult com
p
utation so tha
t
the respon
se be
come
s
sl
ow a
nd its im
plementatio
n
co
st is relatively
high
be
cau
s
e
it u
s
e
s
di
gita
l sig
nal
proce
ssi
ng
(DSP)
board [2]. In
[2], mathemati
c
s mo
del
mu
st
be p
r
ovide
d
t
o
tra
c
k the
maximum p
o
w
er poi
n
t.
Howeve
r,
the photovoltai
c
power gen
eration
system mo
de
l is very comp
lex since it co
ntains n
on lin
ear pa
ram
e
te
rs.
Some re
port
s
on artificial i
n
telligent ba
sed;
parti
cle swarm optimi
z
ation, neu
ral
netwo
rk
and fu
zzy log
i
c; for MPPT
desi
gn
ca
n b
e
foun
d in
[4]-[7] an
d references therein
.
Motivated b
y
the sim
p
licity
of these
met
hod
s, in thi
s
pape
r
we p
r
o
pose fuzzy lo
gic
cont
rolle
r
(FL
C
)
app
roa
c
h
to design a
n
d
implement
MPPT on photovoltaic sy
stem. The tracker is b
u
ilt to adjust the
PV
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Im
plem
entati
on of Maxim
u
m
Power Point Tracki
ng on Photovoltai
c
.... (Arton Johan Lubi
s)
33
system in
order to o
b
tain
maximum p
o
we
r from
so
lar cell what
ever envi
r
on
ment co
nditio
n
is
happ
ened.
T
he a
d
vantag
e
of F
L
C is tha
t
it doe
sn
ot
n
eed th
e m
a
th
ematical
mo
d
e
l. It red
u
ces
the
compl
e
xity of mod
e
ling
an
d comp
utatio
n via h
e
u
r
isti
c a
p
p
r
oa
ch.
Then,
an i
n
te
lligent F
L
C b
a
se
d
MPPT pre
s
e
n
ted in this
pape
r sh
ows some te
stin
g and me
asurem
ent data
for analysi
s
and
illustrating the advantegous
of the proposed method.
2. Sy
stem Descriptio
n
The main p
a
rts of the built system in
clud
e
photovoltai
c
array, boo
st converte
r an
d fuzzy
logic b
a
sed
MPPT control
l
er.
2.1. Photov
o
l
taic model
A s
o
la
r ce
ll is
a p-
n
ju
c
t
on
se
mic
o
nd
uc
to
r d
e
v
ic
e
.
It r
e
c
i
e
v
es
e
n
e
r
g
y fr
om th
e
s
u
n a
nd
conve
r
t it into
ele
c
tri
c
al
en
ergy. Th
e
si
mple e
qui
val
ent ci
rcuit of
PV has be
en
sh
ow in fig
u
re
1
whi
c
h co
nsi
s
ts of a curre
n
t source m
odel of
the luminou
s flux, the losse
s
modele
d
by two
resi
st
o
r
,
shu
n
t
resi
st
or R
sh
, a seri
es
re
sistor R
s
, and di
ode [8]-[11].
Figure 1. Equivalent circuit of PV
Acco
rdi
ng to the figure 1, th
e I-V cha
r
a
c
teristi
c
equ
ation of a PV cell is given as
:
1
(1)
To illustrate
the I-V and
P-
V characteristics [8],
we sim
u
late t
he PV module usi
ng
Matlab-Sim
u
li
nk. Fig
u
re
2
sho
w
s the
(I-V) and
(P
-V) ch
ara
c
teri
sti
c
s with
sol
a
r irra
dian
ce
le
vel
and
ambie
n
t
air tem
p
e
r
atu
r
e i
n
1
000
W/
m
2
and
25
o
C,
re
sp
ectively. The
ph
oto-g
enerated
ele
c
tric
curre
n
t depe
nds o
n
variab
le irra
dian
ce
and ambi
ent tempe
r
ature.
2.2. Boos
t Conv
erter
Boost
conve
r
ter is
used to
gene
rate o
u
tput voltage hi
gher th
an in
p
u
t voltage. Fi
gure
3
pre
s
ent
s b
o
o
s
t converte
r
circuit
whi
c
h
consi
s
ts
of ind
u
ctor,
diod
e,
MOSFET, ca
pacito
r
, an
d l
oad
[13]. Boost
converte
r
wo
rks in
two
stat
es.
Du
ring
th
e switch S
is ope
n, el
ectri
c
cu
rre
nt o
n
the
indu
ctor in
creased lin
earl
y
, and the di
ode
D is tu
r
ned off at th
e time. Wh
e
n
the switch
S is
clo
s
ed, the e
nergy sto
r
e
d
in the indu
ctor is re
lea
s
e
d
throu
gh the di
ode to the out
put RC
circuit
.
The m
a
in e
q
uation a
s
so
ci
atedto d
u
ty cycle a
nd in
pu
t-output volta
ge of b
o
o
s
t converte
r
is
given as
follows
:
(2)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 32 – 40
34
(a)
(b)
Figur
e 2. (a)
P-V curv
e a
n
d
(b) I-V cu
rv
e
Figure 3. Boost co
nveter
2.3. Fuzzy
lo
gic based M
PPT controll
e
r
Figure 4
sho
w
s the
overa
ll syste
m
a
r
chit
ecture. Th
e p
r
opo
se
d
MPPT co
ntro
ller h
a
s
been
built up
on the
simpli
city of fuzzy logic. T
h
is
m
e
thod is i
n
tro
d
u
ce
d for tracking the MPPT
in
PV system.T
he de
sig
ned
system
s i
s
ro
bust
and
rela
ti
vely
simple as well as do
not
requi
re
t
he
kno
w
le
dge of
the exact mo
del [6].
FLC
co
nsi
s
t
of three
mai
n
part
s
: fu
zzy
inferen
c
e
sy
stem, fuzzy in
feren
c
e
engi
ne, an
d
defuzzifier. F
u
zzy inferen
c
e system is f
u
zzifier with
t
a
sk to conve
r
t the variable
s
in real valu
e to
the variable
s
in fuzzy rule.
Fuzzy infere
n
c
e en
gine
pr
oc
es
se
s
da
ta
o
f
r
u
zz
y r
u
le
. T
h
e
las
t
p
a
r
t
is
defuzifie
r and
it converts th
e
fuz
z
y
set to the real value.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Im
plem
entati
on of Maxim
u
m
Power Point Tracki
ng on Photovoltai
c
.... (Arton Johan Lubi
s)
35
Figure 4. MPPT system config
uratio
n
s
In this p
ape
r the FL
C in
p
u
ts a
r
e volta
ge inp
u
t (V
in
)
and cu
rrent input
(C
in
)
.
The fuzz
y
output is duty cycle for swit
chin
g dc bo
o
s
t conv
e
r
ter. Figure 5 and
Figure 6 pre
s
ent membe
r
ship
function of th
e voltage inp
u
t (V
in
), and current input (C
in
).
Figure 5. Membershi
p
fun
c
tion of voltage input
Figure 6. Membershi
p
fun
c
tion of cu
rre
n
t input
3. Results a
nd discussio
n
s
Implementati
on of FLC ba
sed MPPT yields
some m
easure
m
ent d
a
ta as follo
ws
3.1. Solar panel charac
te
ristic
In this se
ction
the form of chara
c
te
risti
c
curve
s
indi
cat
e
voltage - cu
rre
nt and voltage -
power me
asu
r
eme
n
t results usi
ng PV so
lar pan
els Su
nlik SL05
0-12
M.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 32 – 40
36
Figure 7. Voltage versus
curre
n
t curve
Figure 8. Voltage versus p
o
we
r cu
rve
Experimental
test i
s
don
e
by
con
n
e
c
ting the
sola
r
panel
to th
e
load,
then
the
voltage
and
cu
rre
nt
measurement
issue
d
by th
e solar
pa
nel
s a
r
e
mea
s
u
r
ed
with a va
rying load.
Th
e
maximum p
o
w
er poi
nt 42.
3 Watt is
obt
ained
for th
e
voltage 1
6
.8
7 Volt an
d th
e current
2.51
Ampere. Rela
tion betwe
en
the load re
si
stance a
nd the
powe
r
ca
n b
e
figured in Fi
gure 9.
Figure 9. Load versus p
o
w
er
cu
rve
0
1
2
3
1
2
3
4
5
6
7
8
9
1
01
1
1
21
3
1
41
5
1
61
7
1
81
92
0
2
1
Current (
A)
V
o
ltage (
V)
Vo
l
t
a
g
e
‐
Curr
en
t
Cur
v
e
0
20
40
60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Power (
W
)
V
o
ltage (
V
)
Vo
l
t
a
g
e
‐
Po
w
e
r
Cur
v
e
0
2
4
6
8
10
12
14
16
18
10
13
16
19
22
25
28
31
34
37
40
43
Power
(W)
Resistance
(
Ohm)
Re
s
i
sta
n
c
e
‐
Po
w
e
r
Cur
v
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Im
plem
entati
on of Maxim
u
m
Power Point Tracki
ng on Photovoltai
c
.... (Arton Johan Lubi
s)
37
3.2 Testing a
nd analy
s
is
of curr
ent s
e
n
sor
Purpo
s
e of the testing is to investigate
the perfo
rmance of the curre
n
t se
nso
r
wh
en
anydifferent l
oad
sare give
n. The
volta
ge a
pplie
d in
this
mea
s
u
r
ement i
s
fixe
d 10
Volt. T
he
curre
n
t readi
ng for multim
eter and
cu
rr
ent sen
s
o
r
ca
n be sh
own in Figure 10.
Figure 10. Readin
g
of ele
c
tri
c
cu
rrents
by a multimeter and the
cu
rre
nt sen
s
o
r
The cal
c
ul
ation of output current error i
s
:
ƞ
100%
ƞ
6
.
1
8
%
3.3. Testing
and analy
s
is of
v
o
ltage s
e
nsor
The pu
rp
ose
of mea
s
ure
m
ent is to l
o
ok at
the
pe
rforman
c
e
of the voltage
sensorby
readi
ng the voltage
sdifere
n
ce
of powe
r
sup
p
ly vo
ltage and voltage
sensor outp
u
t with fixed load
30 ohm. Voltage is o
ne of the inputs to the
fuzzy sup
porting fu
zzy
output accu
ra
tion.
Figure 11. Voltage’
s rea
d
i
ng by a mu
ltimeter an
d the voltage se
n
s
or
0
0.2
0.4
0.6
0.8
1
10
15
20
25
30
35
40
45
50
55
60
70
Current
(
A)
Load(ohm)
Load
‐
Curr
en
t
Cur
v
e
using
multimeter
using
current
sensor
0
0.2
0.4
0.6
0.8
1
1.2
10
15
20
25
30
35
40
45
Voltage
(
V
)
Data
i
th
Vo
l
t
a
g
e
Cur
v
e
using
multimeter
using
voltage
sensor
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 32 – 40
38
The accu
ra
cy
of the experimental data i
s
don
e as
ƞ
100%
ƞ
0
.
9
7
%
The test re
sult on the fixed irradian
ce
sh
o
w
s that the measure
m
ent error of
voltage
sen
s
o
r
and a
multimeteri
s
0.97 % and it can b
e
co
nsi
dere
d
quite well.
3.4. Testing
and analy
s
isof boos
t con
v
erter series
The test is ta
ken to mea
s
u
r
e the po
we
r effici
en
cy reg
a
rdin
g to the duty cycle variations.
Tabel1. Volta
ge test re
sult
s on bo
ost co
nverter
circuit
PWM
Dut
y
-
c
y
c
le
(%
)
Vin
(V)
Iin
(A
)
Vout
(V)
Iout
(A
)
Po
w
e
r
efficie
n
c
y
(%
)
11 4.3
5
0.24
4.92
0.24
93.08
22 8.7
5
0.26
4.98
0.25
94.32
34 13.4
5
0.29
5.23
0.26
92.3
38 15
5
0.31
5.33
0.26
87.03
55 21.6
5
0.36
5.73
0.29
91.02
78 31
5
0.46
6.46
0.33
92.10
90 35
5
0.53
6.87
0.35
90.23
102 40
5
0.61
7.73
0.37
94.22
115 45
5
0.71
7.84
0.4
88.38
128 50
5
0.86
8.48
0.44
87.29
Average
90.97
The average
of powe
r
efficiency is o
b
tai
ned by usi
ng
the formula :
ƞ
P
P
P
x100%
ƞ
100%
ƞ
= 90
.9
7 %
3.5 Testing a
nd analy
s
iso
f
MPPT implementa
tion
Both powe
r
m
easure
m
ent
s on syste
m
wi
th and
witho
u
t
MPPT implementation is f
i
gure
d
in Figure 12.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Im
plem
entati
on of Maxim
u
m
Power Point Tracki
ng on Photovoltai
c
.... (Arton Johan Lubi
s)
39
Figure 12. MPPT vs non-MPPT powe
r
perfo
rman
ce
It can be
see
n
that the out
put power g
e
nerat
e
d
by the sola
r pa
nel
s that are co
nne
cted
to the MPPT system p
r
od
uce
s
mo
re p
o
we
r than th
e sola
r p
anel
s that do n
o
t use MPPT.
Th
e
perfo
rman
ce
of the output power with M
PPT is obtain
ed as:
ƞ
x100%
ƞ
.
.
.
100%
ƞ
15.9%
The
cal
c
ulati
on
sho
w
s th
at the effici
e
n
cy
of th
e p
o
we
r o
u
tput
of sol
a
r
pan
els
usi
n
g
MPPT syste
m
is in
cre
a
sed 15.9 %
compa
r
ed to
non-MPPT system with a
con
s
tant loa
d
of
8.6ohm
Figure 13. MPPT hard
w
are impleme
n
te
d in the syste
m
25
26
27
28
29
30
1234
56789
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
Power
(
W
)
Number
of
E
x
periment
MPP
T
‐
NON
MPP
T
Po
w
e
r
MPPT
NON
MPPT
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 32 – 40
40
4. Conclusio
n
The impl
eme
n
tation of M
PPT usin
g fu
zzy lo
gic
co
n
t
roller i
s
p
r
e
s
ented. Me
asurem
ent
and data a
n
a
lysis
sho
w
that the pro
posed met
h
o
d
can
be ap
plied well. The po
we
r bo
ost
conve
r
ter inp
u
t and
outp
u
t are
not
sa
m
e
; it sh
ows
th
e presen
ce
o
f
losse
s
d
ue t
o
the
co
nvert
e
r
swit
chin
g pro
c
e
ss. Th
e efficien
cy boo
st conve
r
te
r d
e
signed i
s
abo
u
t
90.97%. Test re
sults
with
a
power o
u
tput
of MPPT and non
-MPP
T with a lo
a
d
of 8.6 oh
m sho
w
that
the MPPT power
efficien
cy increases 1
5
.9%.
R
e
ferences:
[1]
K Husse
in, I M
u
ta, T
Hoshino
,
M Osakada.
Maxi
mu
m phot
ovolta
ic
p
o
w
e
r
tracking: an al
gorith
m
fo
r
rapi
dly cha
n
g
i
n
g
atmosph
e
ric
cond
itions
. Pro
c
. Inst Elect. Eng. 199
5; 142(
1): 59-64.
[2]
EV Solo
dov
nik
,
S Liu, RA D
oug
al
.
Po
w
e
r
control
l
er d
e
si
gn for ma
ximu
m po
w
e
r tr
ack
i
ng i
n
so
lar
installations.
IEEE Trans. Power Elect
. 200
4; 19(5): 12
95-
13
04.
[3]
O W
a
s
y
nczuc
k
. D
y
n
a
mic b
e
havi
o
r of a cla
ss of photov
ol
taic po
w
e
r s
y
s
t
ems.
IEEE Tr
ans. Power
Appar
at. Syst.
198
3; PAS-102
(9): 3031-
30
37
.
[4]
Y Z
hao,
X
Zha
o
,
Y Zh
an
g
.
MPPT
for pho
tovoltaic s
y
ste
m
usin
g multi
obj
ective im
pr
oved
particl
e
s
w
a
rm optim
iz
ation a
l
g
o
rithm
.
T
E
LKOMNIKA Indon
esia
n
Journ
a
l
of Ele
c
trical Eng
i
n
e
e
r
ing
. 20
14;
12(1): 26
1-2
6
8
.
[5]
M Yaichi, MK Fellah, A Mammeri.
A N
eura
l
Net
w
ork
Based MPPT
T
e
chniqu
e Contro
ller fo
r
Photovo
l
taic P
u
mpi
ng S
y
ste
m
.
Internation
a
l Jour
nal
of Pow
e
r Electronics a
nd Dr
i
v
e Systems
(IJPEDS)
. 201
4; 4(2): 241-2
5
5
.
[6]
M Algazar
a, H Al-Moni
erb, HA
El-Halim
a, ME Kotb
Salem. Maximum po
w
e
r point
tracking using fuzz
y
logic c
ontrol.
Internati
o
n
a
l Jo
urna
l of Electri
c
al Pow
e
r & Energy Syste
m
s
.
2012; 39(
1): 21-28.
[7]
H Bo
un
echb
a, A Bo
uzi
d
, K
Nabti,
H B
ena
l
l
a. C
o
m
par
iso
n
of
pertur
b
&
obs
erve
an
d f
u
zz
y l
ogic
i
n
maximum po
w
e
r point tracker for PV sy
stem
s.
Energy Proc
edi
a
. 201
4; 50: 677-6
84.
[8]
J Kida, K
T
o
kuda, Y Ishihara,
T
T
odaka.
Analysis of DC-D
C
converter
for
the maxi
mu
m pow
er poi
nt
control of ph
ot
ovolta
ic
. IN
T
E
LEC'91, IEEE Procee
din
g
s. 1
991: 29
1-2
95.
[9]
S Yan, J Yuan, L Xu
. F
u
zz
y
lo
gic co
n
t
rol of MPPT for photovolt
a
ic pow
er sy
stem
. Proc.
9
th
Internatio
nal
Confere
n
ce o
n
F
u
zz
y
S
y
ste
m
s and Kno
w
l
edg
e Discov
e
r
y
. 20
12: 44
8-4
5
.
[10]
N Pand
iara
ja
n
,
R Muthu.
Mathe
m
atic
al
mo
de
lin
g of p
hotovo
l
taic
mo
dul
e w
i
th Simulink
. Proc.
Electrical E
ner
g
y
S
y
stems (IC
EES). 2011: 25
8-26
3.
[11]
MH Rashid.
Pow
e
r Electroni
cs: Circuits, Devices a
nd Ap
plicati
ons
. Prentice Hall.
F
e
rnun
iversität-
Gesamthochsc
hul
e Hag
en i
n
German
y
.
198
8.
[12]
T
Esram, PL C
hapm
an. C
o
m
paris
on
of p
hot
ovolta
ic
arr
a
y
maximum
po
wer p
o
int track
i
n
g
tech
niq
ue.
IEEE Trans. E
nergy Convers
i
on
. 200
7; 22(2)
: 439-44
9.
[13]
S Alsa
di, B
Als
a
yid. M
a
ximum
po
w
e
r
po
int tr
ackin
g
sim
u
lati
on for
p
hotovo
l
taic s
y
stems
u
s
ing
pertur
b
and
obs
erve
al
gorithm.
Int
e
rnatio
nal
Jo
urn
a
l of E
n
g
i
ne
eri
ng
and
Inn
o
vat
i
ve T
e
ch
no
logy
. 201
2; 2(6)
:
80-8
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.