TELKOM
NIKA
, Vol. 13, No. 4, Dece
mb
er 201
5, pp. 1121
~1
126
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i4.1740
1121
Re
cei
v
ed Ma
rch 2
3
, 2015;
Re
vised June
22, 2015; Accepte
d
Jul
y
2
0
, 2015
Resear
ch on Electromagnetic Excitation Resonant
Sensor Based on Microelectromechanical System
Gang Li
1
, Xiaofeng Zh
ao
2
, Dianzh
ong
Wen
*3
, Yang Yu
4
Ke
y
Lab
orator
y of Electronics
Engi
neer
in
g, Colle
ge of
H
e
il
o
ngji
a
n
g
Provi
n
ce, Heil
ong
jia
n
g
Univ
ersit
y
No.74 of
Xufu
Roa
d
, Nan
gan
g district, Haer
bin,
He
ilo
ngj
ia
ng Provi
n
ce, C
h
in
a, +
86-45
1-
866
09
073
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: liga
ng@
hlj
u
.edu.cn
1
, zha
o
x
i
aofen
g@h
l
j
u
.e
du.cn
2
,
w
e
n
d
ia
nzh
ong
@hlj
u.ed
u.cn
3
, 108
55
625
84@
qq.com
4
A
b
st
r
a
ct
In this pap
er
, an electro
m
a
g
n
e
tic exci
tation res
ona
nt sensor w
a
s desig
ne
d b
a
sed
o
n
Microelectromechanical system
(MEMS)
technology. In this new sensor,
four nc-Si/c-Si heterojunction p-
MOSF
ET
s are ma
nufactur
e
d
by usi
ng th
e
techni
qu
e
of
MEMS on the
N-type <
1
0
0
>
orie
ntatio
n hi
g
h
resistanc
e si
lic
on w
a
fer, a
nd
a W
h
e
a
tstone
brid
ge
is co
mp
osed
of four
nc
-Si/c-Si het
eroj
unctio
n
MOSF
ET
s
chan
nel res
i
stances, out
put voltag
e
of the brid
ge circu
i
t chan
ges acc
o
rd
ing to the a
ppl
ied pr
essure.
A
vibrati
on w
ill
b
e
ge
nerat
ed w
hen
an
altern
ating c
u
rrent is
a
ppli
ed to t
he i
n
ductanc
e co
il o
f
electro
m
a
g
n
e
tic
excitatio
n
reso
nant sens
or, the max
i
mu
m p
o
w
er produce
d
in the central
part of
the four
edges of sil
i
c
o
n
me
mbra
ne, w
hose freq
uency
and a
m
plit
ude
are assoc
i
ate
d
w
i
th the current in the in
duct
ance co
il, an
d th
e
app
lie
d press
u
re P can be
d
e
tected. Usi
n
g
mec
han
ics
an
d electro
m
ag
n
e
tism c
oup
lin
g
field an
alys
is by
Ansys softw
are, the si
m
u
lati
on to vi
bration situation
of the silic
on
membrane of
sens
or w
a
s carried on
w
hen
vertica
l
ma
gn
etic
fiel
d and alte
rn
atin
g
current w
e
re l
oad
ed. Exp
e
ri
me
ntal r
e
sults
show
that, as the
oper
ating v
o
lta
ge is const
ant, w
i
th the incre
a
se of cu
rre
nt in the in
ductan
c
e coil the c
o
n
v
ersio
n
of app
l
i
e
d
pressur
e
incr
e
a
ses, an
d the
output v
o
ltag
e of nc-S
i/c-Si
hetero
j
u
n
ction
MOSF
ET
s pressure s
ens
or
i
s
prop
ortion
al to the incre
a
se of
coil ma
gn
etic field i.
e. the incr
ease of press
u
re,
the experi
m
ental res
u
lts are
consiste
nt w
i
th the simulati
on
results.
Ke
y
w
ords
: Electromagnetic
Excitation
Resonant Sens
or; MEMS; Ansys;
nc-Si/c-
Si heter
ojunct
i
on
MOSFET
Copy
right
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Electrom
agn
etic ex
citatio
n
reso
nant
sensor
ba
sed
on
MEMS
te
chn
o
logy ha
s
be
come
one
of the
ho
tspots of Mi
croele
c
trom
ech
anical
syst
em
(MEMS) research fo
r it
s
small
si
ze, lig
ht
weight, compact st
ructure,
fast
temperature response, impact
dur
ability, easiness
of integration
and ma
ss produ
ction [1-5
]. The sen
s
o
r
can b
e
u
s
ed
in the manuf
acture of sili
con micro
-
pu
mp
comp
one
nts,
having bro
a
d
appli
c
ation
prospe
ct
s i
n
MEMS micro
-
flo
w
devi
c
e
s
and me
dical
s
c
i
entific
res
e
arch [6].
At prese
n
t, cantilever be
a
m
stru
cture i
s
ado
pt
ed in most of elect
r
oma
gneti
c
excitation
resona
nt sen
s
or,
but its sensitivity to magneti
c
fiel
d is
not hi
gh
[7-13], a
nd t
he ma
nufa
c
turin
g
pro
c
e
s
s is rel
a
tively compli
cated. In thi
s
pape
r, the
sensor i
s
m
a
n
u
factured
by
a ne
w m
e
tho
d
that the pl
an
ar
spi
r
al i
n
d
u
ctor
coil i
s
pla
c
ed
in t
he
cente
r
of a p
r
e
s
sure
se
nsor which is
comp
osed of
four nc-Si/c-Si
heterojun
ction p-MOSF
ETs. The me
thod is sim
p
l
e
and ha
s hi
gh
sen
s
itivity to magneti
c
field, and the
integrat
e
d
circuit can
meet the re
quire
ment of
high
integratio
n an
d low cost.
On the
ba
si
s
of the d
e
si
gn
and m
anufa
c
t
u
re
of ele
c
tro
m
agneti
c
ex
ci
tation sen
s
or
based
on MEMS
technolo
g
y, the
cou
p
led
phy
sics an
alysi
s
i
s
a
dopte
d
wh
en
studying
the fo
rce, current
and
mag
neti
c
field
of th
e sen
s
o
r
by
usi
ng
Ansy
s
softwa
r
e.
The
re
sults
sho
w
e
d
that
the
electroma
gne
tic excitatio
n
re
son
ant
sensor
de
sig
n
is re
ason
able, a
nd
si
licon
mem
b
rane
vibration
can
be produ
ce
d wh
en loa
d
i
ng alternatin
g cu
rrent in
indu
ctan
ce
coil with verti
c
al
magneti
c
fiel
d. Mean
while
, the freque
n
c
y of vibr
atio
n ca
n be d
e
tected
by the sen
s
o
r
which
is
comp
osed of
four nc-Si/c-Si
het
erojun
ction MOSFE
T
s
cha
nnel
resi
stan
ce
s, a
nd the
re
sult
s of
detectio
n
are
given in this p
aper.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 112
1 – 1126
1122
2. The Electr
o
magne
tic Excita
tion Re
sonan
t
Sens
or Struc
t
ure
Figure 1 is
cross-sectio
n
of the elect
r
o
m
agnet
i
c
excitation re
son
a
n
t sen
s
o
r
. Its silico
n
cup i
s
manuf
actured by <100
> orie
ntation of m
ono
crystalline
silicon chi
p
, whi
c
h is N-type with
high resistance and
doubl
e-
si
ded poli
s
hing. On the
center
of
surf
ace
of silicon cup, we
made
an
indu
ctan
ce
coil ado
pting
the metho
d
of an in
te
rn
al do
wn-l
ead
pro
d
u
c
ed
b
y
ohm conta
c
t
electrode
wh
ich i
s
co
nstructed
by h
e
a
vily
boro
n
-d
iffused and
the
Al
evap
orated, and
a
W
h
ea
ts
to
ne
b
r
id
ge
w
h
ic
h is
c
o
mp
os
ed
o
f
f
our nc-Si/c-Si heterojun
ction MO
SFETs ch
an
nel
resi
stan
ce
s is used
to d
e
te
ct the
vibratio
n of
silicon
m
e
mbrane. Ma
gnetic
mate
ri
als
are fixed
on
the pede
stal,
whi
c
h is
ma
de of insulati
ng mate
rial
s,
and the in
du
ctan
ce
coil
is right ab
ove the
magneti
c
mat
e
rial
s. Figu
re
2 sho
w
s the l
a
yout of
the electro
m
ag
neti
c
excitation
reso
nant sen
s
or
chip.
An alternatin
g magneti
c
field will be ge
nerate
d
wh
en
an alternatin
g curre
n
t is applied to
the indu
ctan
ce coil. The m
agneti
c
force
prod
uced by
the interaction
with the fixed magn
etic field
whi
c
h was p
r
odu
ced by m
agneti
c
materials cau
s
e
s
the silicon mem
b
ran
e
to vibra
t
e.
Figur
e 1.
The
cro
s
s-
se
ct
io
n of the electromagn
etic
excitation re
sonant sen
s
or
Figure 2. The
layout of the
electroma
gne
tic
excitation re
sonant sen
s
or
chip
3. Ans
y
s Modeling Proce
s
s
The comp
on
ents
stru
cture is
compl
e
x, ther
efore, some si
mplifications
we
re
adopte
d
whe
n
the finite element model was e
s
tabli
s
he
d, only inducta
nce coil an
d sil
i
con me
mbra
ne
model was b
u
ilt, as sho
w
n in Figure 3. The elem
ent type of indu
ctan
ce coil is “solid 2
36”,
material mo
d
e
l is aluminu
m
, and cro
ss sectio
nal area is 100
μ
m×
1
0
0
μ
m. The
element type of
silicon mem
b
rane i
s
“solid
185”. “S
wee
p
” was a
dop
ted to mesh
inducta
nce coil an
d sili
con
membrane re
spe
c
tively.
Figure 3. The
picture of ind
u
ctan
ce
coil a
nd
silicon mem
b
rane
Figure 4. The
picture of me
sh ge
neration
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
sea
r
ch on
Electrom
agn
etic Excitation Re
son
ant Sensor Ba
sed
on …
(Gan
g Li)
1123
Cho
o
se “an
a
l
y
sis type” for “harmoni
c”, l
oad
alternati
ng cu
rrent of 10 + 10i mA
on the
middle e
nd o
f
inducta
nce
coil, at the freque
ncy of
5
0
Hz, provid
e
voltage=0 o
n
the othe
r e
nd.
Fix all sid
e
s
of silicon
me
mbra
ne, ap
pl
y perp
endi
cul
a
r m
agneti
c
f
i
eld an
d
set t
he Z
=
0
su
rfa
c
e
energy excha
nge interfa
c
e
as coupli
ng fiel
d, as sho
w
n
in Figure 4 af
ter setting.
4. The Res
u
lts of Simulation
The
solving
orde
r i
s
f
r
om
mag
netic fie
l
d to fo
rce fi
eld. We
set
the force
pa
ss from
indu
ctan
ce coil to silicon
membrane, a
nd the displ
a
ceme
nt pass from silico
n
membra
ne to
indu
ctan
ce coil, all objects of converge
nce to
1e-7, the analysi
s
type of electro
m
agneti
c
field is
“ha
r
moni
c”, and the analysis type of force field is “s
tat
i
c”. The si
mul
a
tion re
sults
sho
w
e
d
that the
indu
ctan
ce
coil ca
n g
ene
rate ma
gneti
c
field, t
he v
e
ctor dia
g
ra
m of indu
cta
n
ce
coil
current
den
sity are a
s
sh
own in Fi
gure 5, the vector di
agra
m
of inductan
c
e coil magn
etic field intensity
are a
s
sh
own
in Figure 6.
Figure 5. The
vector diag
ra
m of current
den
sity vector of inducta
nce coil
Figure 6. The
vector diag
ra
m of magneti
c
field
intensity of inducta
nce coil
After the solution, by observing
the stress
dist
ribution
of s
ilicon membrane, as
shown in
Figure 7, the
large
s
t st
re
ss wa
s
foun
d in
the ce
ntral p
a
rt of t
he fou
r
edge
s of
sili
con m
e
mb
ra
ne,
large
r
o
u
tput
voltage ma
y be obtai
ne
d if four
nc-Si/c-Si hete
r
ojun
ction M
O
SFETs
ch
a
nnel
resi
stances were
pl
aced
in these positions. And
in the
process of
simul
a
tion, the
silicon
membrane
deformation was obse
rved, certifying that the
silic
on membrane
of
sensor
can
prod
uce vibration u
nde
r
alternat
in
g
current ex
citation, an
d con
f
irming th
e sensor
de
sign
of
origin
ally envision
ed is rea
s
on
able, the
def
orm
a
tion situation is sho
w
n in Figu
re
8.
Figure 7. The
simulation di
agra
m
of the
stress distri
bution of silicon membrane
Figure 8. The
picture of the
deformatio
n
situation of sil
i
con me
mbra
ne
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 112
1 – 1126
1124
5. The Exper
i
mental Res
u
lts
Figure 9
is th
e sampl
e
of t
he el
ect
r
oma
gnetic
excitati
on re
son
ant sen
s
o
r
.
Th
e stru
cture
picture of n
c
-Si/c-Si hete
r
o
j
unctio
n
MOS
F
ET ch
ann
el
resi
stan
ce
which
are pla
c
ed in th
e cent
ral
part of the four edg
es of si
licon me
mbra
ne is sho
w
n i
n
Figure 10.
Figure 9. The
sample of th
e electroma
g
netic
excitation re
sonant sen
s
or
Figure 10. Th
e stru
cture
pi
cture of n
c
-Si
/
c-Si
heteroj
un
ctio
n MOSFET chann
el re
sist
ance
Figure 10
sh
ows the b
a
si
c stru
ct
ure
of p-MOSFET d
e
vice with
n
c
-Si/c-Si
hete
r
o
j
unctio
n
as
so
urce
(S
) an
d d
r
ai
n (D), the
thickn
ess of
s
ilic
o
n me
mbr
a
ne
is
56
n
m
, the c
h
a
n
n
e
l
as
pe
c
t
ratio i
s
2:1. T
e
sting I
DS
-V
DS
cha
r
a
c
t
e
ri
st
i
cs
of
t
he n
c
-
S
i/
c-S
i
hete
r
o
j
unctio
n
p-M
O
SFET by u
s
ing
HP414
5B se
micon
d
u
c
tor
para
m
eter a
n
a
lyzer,
an
d the results a
r
e
sho
w
n in Fig
u
re 11.
Figure 11. I
DS
-V
DS
characte
ristics of the
nc-S
i/
c-Si het
eroju
n
ctio
n p-MOSFET
Figure 12 sh
ows the inp
u
t-output
cha
r
acte
ri
st
ic
s e
x
perime
n
t
a
l curv
e
s
of
M
O
S
F
E
T
s
pre
s
sure se
n
s
or u
nde
r the
working volta
ge V
DD
= 1.5 V.
20
-7
V
-8
V
-6
V
0
V
-5
.
0
V
-4
V
-3
.
0
V
-2
V
-1
V
x
y
O
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
sea
r
ch on
Electrom
agn
etic Excitation Re
son
ant Sensor Ba
sed
on …
(Gan
g Li)
1125
Figure 12. Input-outp
u
t ch
ara
c
teri
stics
experim
ental
curve
s
of MO
SFETs pressure sen
s
o
r
.
Experimental
re
sults
sh
ow tha
t, as the
operating volt
age i
s
con
s
ta
nt, with the in
cre
a
se
of cu
rrent in
the ind
u
ctan
ce co
il
the co
nversi
on of
a
pplied pressu
re in
crea
se
s,
and
the o
u
tput
voltage of n
c
-Si/c-Si hete
r
o
j
unctio
n
MOS
F
ETs p
r
e
s
sure se
nsor i
s
p
r
oportio
nal to t
he in
cre
a
se o
f
coil ma
gnetic field i.e. the increa
se of pressure, the e
x
perime
n
tal
result
s are co
nsi
s
tent with t
h
e
simulat
i
o
n
re
sult
s.
6. Conclusio
n
The de
sign
o
f
elect
r
oma
g
netic excitati
on re
sona
nt sen
s
o
r
,
the
simulation ana
lysis and
experim
ental
testing
re
sult
s a
r
e
given
in
this pa
per.
A
Wh
eatsto
n
e
bridg
e
whi
c
h
is com
p
o
s
ed
of
four nc-Si/c-Si heteroju
n
cti
on MOSFETs chann
el resi
stan
ce
s
is manufactu
re
d by using t
he
techni
que of
MEMS on the N-type
<1
0
0
> o
r
ientatio
n
high re
si
stan
ce sili
co
n waf
e
r, and thi
s
is a
new st
ructu
r
e of p
r
e
s
su
re
sen
s
o
r
b
a
se
d o
n
M
O
SFET. The
input-output
ch
ara
c
te
risti
c
s
experim
ental curve
s
of MOSFETs pre
s
sure
sen
s
o
r
is given in this pap
er, which can be
see
n
that the se
nsor ha
s a
goo
d linea
rity wh
en V
DD
is 1.5
V. An Al inductan
c
e
coil i
s
mad
e
on th
e
central p
a
rt o
f
surfa
c
e
of
silicon m
e
mb
rane.
T
he i
n
tera
ction
of a
magn
etic fie
l
d gen
erated
by
curre
n
t in inductan
c
e coil with the fixed magnetic
fiel
d cau
s
e
s
the
silicon me
m
b
ran
e
to vibrate,
and f
r
eq
uen
cy and
amplitu
de a
r
e
a
s
soci
ated
with the
applie
d alte
ri
ng
cu
rre
nt. With the in
crea
se
of cu
rrent in
the ind
u
ctan
ce co
il
the co
nversi
on of
a
pplied pressu
re in
crea
se
s,
and
the o
u
tput
voltage of Wheatsto
ne bri
dge incre
a
se
s with the
incre
a
se of applied pressu
re, to detect the
vibration of
si
licon memb
ra
ne.
The re
sul
t
s
of
expe
rim
ent and
sim
u
lation have
p
r
oved th
at ou
r
desi
gn sch
e
m
e is fea
s
ible
.
Referen
ces
[1]
Z
hao
Xi
aofen
g, W
en Dia
n
z
hon
g, Li Ga
ng. F
abr
icati
o
n an
d char
ac
terist
ics of the nc-Si/c-Si
hetero
j
uncti
on
MOSF
ET
s pre
ssure sens
or.
Sensors
. 20
12;
12(5): 636
9-6
379.
[2]
Z
hao Xiaofe
ng,
W
en Dianzh
o
ng, Z
huan
g Cu
icui, et.al.
F
abrication an
d Cha
r
acte
ristics of the Magn
etic
F
i
eld
Se
nsors Based on
N
a
n
o
-Pol
ysi
lic
on
T
h
in-F
ilm
T
r
ansi
s
tors.
Journa
l of Semico
nduc
tors
. 2013
;
34(3): 03
60
01(
1-6).
[3]
W
en Di
anzh
o
n
g
. Sensitiv
it
y
A
nal
ysis
of
Junc
tion F
i
e
l
d Effe
ct-Pressure H
a
lltron.
R
e
view
of
Scientifi
c
Instrum
e
nt
. 19
95; 66 (1): 25
1
-
255.
[4]
Gradol
ph, F
r
ie
dber
ger, Mull
er
, et.al.enviro
n
m
ents on p
i
ez
oresistiv
e
pres
sure sens
or Impact of hig
h
-g
and h
i
g
h
vibrati
on perform
anc
e.
Sensors a
n
d
Actuators. A,
Physica
l
. 200
9; 150(1): 69-
77.
[5]
Yoon
JB, Ch
oi YS, K
i
m B
,
et.al. CMOS Comp
atib
le
Surface-Micr
o
m
achi
ned
Sus
pen
de
d-Spir
a
l
Inductors for Multi-GHz Silic
o
n
RFICs.
IEEE
Electron Devic
e
Letters
. 200
2
;
23(10): 59
1-5
93.
[6]
Kinn
ell PK, Cr
add
ock R. Ad
vances i
n
sil
i
c
on res
ona
nt p
r
essure tra
n
sd
ucers.
Pro
c
ed
ia
C
h
emi
s
try
.
200
9; 1(1): 104
-107.
[7]
Jian
g Qi-fen
g
Li z
hen
g-fan
g
. Mod
e
li
ng
an
d
Ana
l
ysis
of S
p
iral
Ind
u
ctors
for Si-Bas
ed
R
F
IC’s.
ACT
A
Electron
ic Sini
ca
. 2002; 3
0
(8)
:
1119-1
1
2
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 112
1 – 1126
1126
[8]
Mengr
an
Liu,
Guoju
n
Z
h
a
ng,
Z
e
ming
Jia
n
e
t.al.
Desi
gn
of
Arra
y MEMS V
e
ctor Vi
bratio
n
Sensor
in
the
Locati
on
of Pi
peli
ne Int
e
rna
l
Inspector.
T
E
LKOMNIKA Indon
esia
n Jo
ur
na of El
ectrica
l
Eng
i
ne
eri
n
g
.
201
4; 12(9): 66
51- 66
57.
[9]
Z
hang Z
h
i-
yon
g
, Hai
Cha
o
-h
e
.
High Q-F
a
cto
r
On-chip S
p
ira
l
Inductors for
Bulk Si
lico
n
C
M
OS RF
IC’S.
Microel
ectron
ic
s
. 2003; 33(
1): 15-1
8
.
[10]
Xi
on
g Jij
un, Ya
ng F
a
n
g
, Li
ang
T
i
ng, et.al. In
fluenc
e of Q-F
a
ctor on Si
gn
al
T
r
ansmission
Performanc
e
of Passive Pressure Sens
or.
Nan
o
tech
nol
og
y and Precis
io
n Engi
ne
erin
g
. 201
2; 10(5): 42
9–4
33.
[11]
Achmad W
i
do
do, Lati
e
f Roz
aqi,
Ismo
yo
H
a
r
y
anto,
et.al. Devel
opm
ent
of W
i
reless S
m
art Sensor f
o
r
Structure an
d Machi
ne Mo
nit
o
rin
g
.
T
E
LKOMNIKA T
e
leco
mmu
n
icati
on
Co
mp
uting E
l
e
c
tronics an
d
Contro
l.
201
3; 11(2): 41
7-4
2
4
.
[12]
Peng
Gua
nbi
n, Li
u Ji
ng
qua
n,
W
and
Lo
ngfei,
et.al. C
i
rcuit
Desig
n
of a
n
I
m
pla
n
tabl
e ME
MS Pressur
e
Sensor S
y
stem
.
Nanotech
n
o
l
o
g
y and Prec
isi
on Eng
i
n
eeri
n
g
. 2013; 11(
1): 90–9
5.
[13]
W
augh
W
H
, Gallac
her
BJ, B
u
rdess
JS. A
High-S
ens
itivit
y
Res
ona
nt S
ensor
Re
aliz
e
d
T
h
rough
the
Exp
l
o
i
tation
of Nonl
in
ear D
y
n
a
mic Beh
a
vior.
Mess Sci Technol
. 201
1; 22(
10): 105-
20
2.
Evaluation Warning : The document was created with Spire.PDF for Python.