TELKOM
NIKA
, Vol.11, No
.1, March 2
0
1
3
, pp. 127~1
3
6
ISSN: 1693-6
930
accredited by D
G
HE (DIKTI
), Decree No: 51/Dikti/Kep/2010
127
Re
cei
v
ed
No
vem
ber 1
3
, 2012; Re
vi
sed
Jan
uar
y 26, 2
013; Accepte
d
February 4,
2013
Resear
ch on Mixed Data Rate and Format
Transmission in WDM Networks
Li Li
1,*
, Wei
Jian-y
i
2
, Zhang Xiu-tai
1
,Li Hong-an
1
1
Departments
of Electronic In
formation a
nd
Elec
trical E
ngi
neer
ing, An
ya
n
g
Institute of
T
e
chnolog
y/A
n
ya
ng, Ch
in
a 45
500
0
2
An
y
a
ng Voc
a
tiona
l an
d T
e
chnic
a
l Co
lle
ge/
An
yang, Ch
in
a 455
00
0;
* e-mail: li
lifkb
@16
3
.com
A
b
st
r
a
k
Untuk
mem
e
n
u
h
i
p
e
rminta
an l
a
lu lintas
dat
a ya
ng
ter
u
s
tum
buh di apl
ikasi
telekom
unik
a
si
,
jumla
h
pan
jan
g
ge
lo
mban
g jari
ng
an serat opt
is tulan
g
pu
ngg
un
g jari
ng
an telek
o
mu
n
i
kkasi di
na
ikk
an.
Pertumbuhan lay
a
n
an inter
n
et y
ang eks
p
onensial, kapas
itas tr
ansmisi menjadi tantan
gan luar bias
a bagi
jarin
g
a
n
. Seka
rang, s
y
st
em transmisi 1
0
Gb/s di
gu
naka
n
dalam ap
likas
i komersia
l. Dalam
w
a
ktu
ya
n
g
sama, efek
no
nlin
ear s
e
p
e
rti
F
W
M, SRS,
XPM, SPM
da
n dis
persi
ju
ga
meni
ngk
at sa
at juml
ah
pa
nj
an
g
gel
omba
ng
ya
ng me
le
w
a
ti s
y
stem tra
n
smi
s
i bertam
b
a
h
. Untuk
an
alis
i
s
format mod
u
lasi
efisi
e
n
b
a
g
i
DW
DM dan
s
y
stem trans
misi lon
g
-h
aul,
kita akan memaka
i bera
n
e
ka mod
u
las
i
sistem DWDM.
Kecep
a
tan
dat
a maksim
a
l for
m
at modu
lasi
NRZ
-OOK
ada
lah
10
gb/s, se
dan
gka
n
u
n
tuk
RZ
-OOK adal
ah
sebes
ar 5
0
Gb/s. Karen
a
m
odu
lasi Z
-
OOK meng
gu
naka
n
leb
a
r p
i
ta d
u
a
kal
i
b
ila
di
b
and
ingk
an
de
n
a
n
modulasi NRZ-OOK.
Format
maodulas
i sebagain dinaiktar
a
fan dari
OOK menjadi PSK,
pengaruh siny
al
OOK terhadap
sin
y
a PSL ha
sil pen
aiktar
afa
n
harus
ikut di
pertimb
angk
an
apab
ila me
ng
gun
aka
n
konv
ers
i
pan
jan
g
ge
lom
ban
g multika
n
a
l
. Modulas
i PSK juga ik
ut dia
nalis
a.
Ka
ta
k
unc
i:
ko
munik
a
si serat
optis, DW
DM, NRZ
-OOK, spektrum, nonli
n
e
a
ritas
A
b
st
r
a
ct
T
o
meet the gr
o
w
in
g
data traf
fic dema
nds
in
t
he tel
e
comm
unic
a
tion
ap
pl
i
c
ations, th
e n
u
m
ber of
w
a
vel
e
n
g
ths i
s
to be incre
a
sed i
n
a fib
e
r-optic b
a
ckb
one of the te
lecommu
nic
a
ti
on net
w
o
rk. T
h
e
expo
ne
ntial
gr
o
w
t
h
of inter
n
et services, tr
ansmissi
on
ca
pacit
y is
a tre
m
end
ous c
hal
l
eng
e to
net
w
o
rks.
No
w
a
da
ys, 10
Gb/s transmission s
y
stems ar
e bei
ng use
d
for commercia
l app
licati
ons. At the same time,
the n
on-l
i
n
ear
effects such
a
s
F
W
M, SRS, XPM, SPM,
and
Dis
persi
o
n
ar
e a
l
so
inc
r
ease
d
,
w
h
en
the
numb
e
r of
w
a
v
e
le
ngths p
a
ssi
ng thro
ugh th
e
singl
e fiber is
incre
a
sed. T
he anal
ys
is of efficient mod
u
l
a
tio
n
formats for
DW
DM s
y
ste
m
and
l
o
n
g
-
hau
l transmis
s
ion s
y
stem,
w
e
g
o
for v
a
ri
ous mo
du
latio
n
s fo
r
DWDM s
y
stem
.
T
he max
i
mum data rate for NRZ-OOK
m
odulation format is 10
Gb/s.
For RZ-OOK
t
h
e
maximum rate
is 50 Gb/s. Since RZ
-OOK
modu
latio
n
use
s
t
w
ice th
e ban
d
w
i
dth
w
h
en c
o
mpar
ed to N
R
Z
-
OOK modul
ati
on. T
he mod
u
l
a
tion
format is
partia
l
l
y
up
gr
ade
d from OO
K to PSK, the
influ
enc
e of
OOK
sign
als
on th
e
upd
ated P
SK s
i
gn
als m
u
st be
consi
dere
d
w
h
en us
in
g mu
lti-
chan
nel
w
a
v
e
l
ength
conv
ersi
on.
T
he PSK modulatio
n is also a
nal
y
z
ed.
Ke
y
w
ords
:
opt
ical fib
e
r comm
unic
a
tion, DW
DM, NRZ
-OOK, RZ
-OOK, spectrum, nonli
n
e
a
rities
1. Introduc
tion
Comm
uni
cati
on system t
r
an
smits info
rmat
ion fro
m
one pla
c
e
to another,
wheth
e
r
sep
a
rate
d by a few kilom
e
ters o
r
by tra
n
so
ce
ani
c
di
stan
ce
s. Information is ofte
n ca
rrie
d
by an
electroma
gne
tic ca
rri
er
wave wh
ose frequ
en
cy
ca
n vary from
a few M
ega
hertz to severa
l
hund
red
Te
ra
hertzes.
Opti
cal
com
m
uni
cation
sy
ste
m
s u
s
e
hig
h
carrie
r freque
ncie
s
(10
0
THz) i
n
the visible o
r
near-infrare
d
region
of the elect
r
oma
g
netic spe
c
tru
m
. Fiber opti
c
co
mmuni
ca
tion
system
s a
r
e
a light wave
system
that
employs
opti
c
al fibe
r fo
r i
n
formatio
n transmi
ssion
si
nce
1980 [1]. Bef
o
re
ninetee
nt
h ce
ntury, all
comm
uni
ca
ti
on sy
stem
s
were o
perate
d
at a ve
ry low
informatio
n rate and invol
v
ed only optical o
r
acou
stic mea
n
s
su
ch as si
gnal l
a
mp or h
o
rns. In
the en
su
ring
years,
an in
crea
sing
large
pro
por
tio
n
o
f
the ele
c
tro
m
agneti
c
me
ssage f
r
om
o
n
e
place to anot
her.
In co
ntra
st to
ele
c
trical
co
mmuni
cation,
tran
smi
ssi
on
of informatio
n in
an o
p
tica
l format
is not only
carri
ed out by
freque
ncy
modulatio
n o
f
the carrie
r, but also
by the variatio
n of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 11, No. 1, March 2
013 : 127 – 1
3
6
128
intensity of the opti
c
al carrier [2]. After the vi
ability of transmitting light
over fiber had been
establi
s
h
ed, the next step in the
develop
ment of fiber optics wa
s to
find a light so
urce that wou
l
d
be sufficientl
y
powe
r
ful a
nd mon
o
chro
matic na
rrow. The light-e
mitting diode
(LED) an
d the
lase
r diode proved cap
able of meeting these requireme
nts [3].
Lasers went throug
h seve
ral
g
ene
ratio
n
s sin
c
e it
s i
n
vention in
the 1
960
s, cu
lminating
with the se
micon
d
u
c
tor la
sers th
at are
most wid
e
ly use
d
in fiber
optics today. Light frequ
en
cie
s
are of the ord
e
r of 1014
Hz.
The first ge
n
e
ration of lig
ht wave syst
em
s op
erate
d
near 0.8
(micromete
r)
and u
s
ed
GaAs
semi
co
ndu
ctor la
se
r. They are
o
perate
d
at
a
bit rate of 45
Mb/s an
d all
o
we
d re
peat
er
spa
c
in
g of up to 10 km. The repe
ater sp
acin
g of
the seco
nd- g
ene
ration light wa
ve systems
was
limited by th
e
fiber lo
sses
at the
ope
rati
ng
wavele
ngt
h
of 1.3
µ m (typically 0.5 dB/km). Lo
sses
of sili
ca fibe
rs be
come
mini
mum n
ear 1.
55µm.
Th
e
d
i
spe
r
si
on pro
b
lem can
be overcome either
by using di
sp
ersi
on
-shifted
fibers d
e
si
g
ned to
have
minimum di
spersion n
e
a
r
1.55 microm
eter
or by limiting
the laser
spe
c
trum to
a si
n
g
le lon
g
itudin
a
l mode
[4]. The third
gen
e
r
ation
rep
eat
ers
spa
c
in
g can
be in
crea
sed
by ma
king
use
of
a ho
modyne or h
e
terodyn
e
d
e
t
ection sche
me
becau
se it
s
use
imp
r
ove
s
re
ceiver
sensitivity. Th
e fou
r
th g
e
n
e
ration
of li
g
h
t wave
syst
ems
make
s u
s
e
of optical a
m
plification f
o
r in
cre
a
si
ng
the repe
ate
r
sp
aci
ng an
d of Wavele
ngth-
Divisio
n
Multi
p
lexing (WDM) for i
n
crea
sing th
e bit ra
te. The WDM
techni
que
st
arted a
revol
u
tion
in doubli
ng th
e system
ca
p
a
city every 6
months
and l
ead to light
wave system
s
operating at
a
bit rate of 10 Tb/s by 2001. In most WDM syst
e
m
s,
fiber losse
s
are compe
n
sated peri
odi
cally
usin
g e
r
biu
m
-dope
d fibe
r
a
m
plifiers
spa
c
ed 6
0
-80
km
apart.
The
cu
rre
nt em
pha
si
s of
WDM
lig
h
t
wave
system
s is
on i
n
cre
a
sin
g
the
system ca
pa
city by tran
smitting mo
re a
n
d
more
ch
ann
els
throug
h the WDM tech
niq
ue.
For a lo
ng time, non-retu
rn-to-ze
ro (NRZ) ha
s be
en t
he domi
nant
modulatio
n fo
rmat in
intensity mod
u
lation di
rect
detection
(IMDD) fi
be
r o
p
t
i
cal c
o
mmu
nicat
i
o
n
sy
st
ems.
Th
e m
a
jor
rea
s
on
s for u
s
ing NRZ in
the early days of fiber
optical co
mmuni
cation were a relatively low
electri
c
al
ba
n
d
width fo
r th
e tran
smitters an
d
rece
iver
s compar
ed to retur
n
-to-z
e
ro
(RZ) [5]. In
gene
ral, NRZ
modul
ated o
p
tical sign
al has
the
m
o
st
com
p
a
c
t sp
ectru
m
comp
ared
to that
with
other m
odul
a
t
ion format
s.
Ho
wever, thi
s
do
es
not
mean th
at NRZ o
p
tical
si
gnal h
a
s
su
p
e
rio
r
resi
stan
ce to
resi
dual
chromatic di
spe
r
sio
n
in an
amplified fib
e
r sy
stem. In addition,
NRZ
modulate
d
op
tical sig
nal ha
s bee
n found
to be less re
sistive to fiber nonlin
earitie
s [6].
RZ modul
atio
n has be
com
e
a popula
r
solutio
n
for 10Gbit/s sy
ste
m
s be
cau
s
e i
t
has a
highe
r pea
k p
o
we
r, a high
e
r
sig
nal-to
-
noi
se rati
o (SNR), and lo
wer b
i
t erro
r rate (BER) that NRZ
encodin
g
. Despite the
s
e
advantag
es, conve
n
tional
RZ
sig
nal is
not well suite
d
for the use
in
den
se wavele
ngth divisio
n
multiplexing (DWDM
)
syst
ems du
e to its bro
ad spe
c
tral width [7].
By encodin
g
multiple bits per
symbol,
non-bin
a
ry modul
ation tech
niqu
es can
accompli
sh
si
gnifica
nt sp
ectral e
fficie
n
cy.
Spectral na
rrowin
g alo
ne
can al
so
red
u
ce the effe
ct of
chromati
c di
spe
r
si
on. En
codi
ng multi
p
le bits pe
r symbol al
so
gives rise to longe
r sy
mbol
duratio
n that can in tu
rn in
cre
a
se ro
bu
stness
to fiber
prop
agatio
n impairm
ents.
Duo
b
ina
r
y (Duo
)
is a th
ree lev
e
l co
de
whi
c
h
sub
s
tantially
redu
ce
s the
b
and
width o
ccupan
cy
of a
signal
comp
ared
to c
oding with NRZ or RZ [
8
].
Mixed WDM system
s hav
e seve
ral pro
b
lems to b
e
overcome. T
hese pro
b
lem
s
incl
ude
wavele
ngth
d
i
spe
r
si
on, di
spersion
sl
ope
, pola
r
izat
io
n-mode
dispe
r
sion, an
d n
onli
near effe
cts
of
the tra
n
smi
ssion lin
e. Othe
r
critical i
s
su
es
are
the
lin
ear and
no
nli
near cro
s
stal
k from a
d
ja
cen
t
cha
nnel
s an
d the cost in
cre
a
se of the mixed
WDM signal
con
t
rol. Therefo
r
e, the compl
e
te
unde
rsta
ndin
g
of multiform signal
s mixed tr
ansmissi
on is compul
so
ry for future
s WDM
netwo
rks.
2. Measurem
e
nt Te
chniq
u
e and Sy
stem Model
Our
re
se
arch
is
ba
sed
on
the eval
uati
on
su
ch
sy
st
em pa
ram
e
te
r a
s
the
bit e
rro
r
rate
(BER)
usi
ng
powerful te
ch
nique
s
whi
c
h
are
in
corpo
r
ated
in OptSim
4.7 sim
u
lati
on
softwa
r
e. In
the
pre
s
ent
work, we
sh
o
w
spe
c
tru
m
and eye
dia
g
ram
s
for vari
ous
s
i
mu
la
tion
se
tu
p
s
, s
i
nc
e
th
e
y
ar
e
a
fa
s
t
way h
o
w to
ap
pro
x
imately evaluate a
sy
stem
perfo
rman
ce;
re
spe
c
tively, an
eye h
a
s to be
op
en
ed
wide
eno
ugh
and
spe
c
trum
dia
g
ra
ms
sho
u
ld b
e
re
gulars
witho
u
t
negative m
u
ltipea
k st
ru
cture fo
r go
od
system
pe
rforma
nce. An
eye
diagram
sh
o
w
s the
patterns
of the
ele
c
trical
si
gnal
af
ter d
e
tectio
n.
The
eye h
e
ig
ht is an
indi
ca
tor
of noise, wh
erea
s the
sig
nal width
at the cent
re
of an eye dia
g
ram re
pre
s
e
n
ts a me
asure
of
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
sea
r
ch on
Mixed
Data Rate and Fo
rm
at Tran
sm
issi
on in WDM Networks (Li Li
)
129
timing
jitter. The
u
s
e of simulatio
n
so
ftware a
llo
ws for p
r
elimin
ary re
sult
s, thoug
h p
r
e
c
ise
enou
gh to be
con
s
id
ere
d
a
s
true [9-11].
The a
c
cepted
method of ca
lculatio
n is b
a
s
ed o
n
the
so
lving a com
p
l
e
x set of differential
equatio
ns, ta
king i
n
to a
c
co
unt optical an
d ele
c
trical n
o
ise
as
well
a
s
line
a
r a
nd n
online
a
r effe
cts.
We
use
d
mo
del whe
r
e
si
gnal
s a
r
e p
r
opag
ating a
s
time dom
ai
n sa
mple
s o
v
er a
sele
cta
b
le
band
width
(in
ou
r ca
se, a band
width
th
at
co
ntain
s
al
l
ch
ann
els). The Time Do
main
Split
Step
(TDSS
)
meth
od
wa
s em
pl
oyed to
simul
a
te linea
r
an
d no
nlinea
r
b
ehaviou
r
fo
r
both o
p
tical
and
electri
c
al
co
mpone
nts. T
he Split Step method is
u
s
ed in
all co
mmercial
sim
u
lation tool
s
to
perfo
rm the integratio
n of the
fiber p
r
op
agation e
quat
ion (1
):
)
,
(
}
{
)
,
(
z
t
A
N
L
z
z
t
A
(1)
Here A(t, z) is the opti
c
al field, L is the
linea
r op
e
r
ator th
at sta
nds fo
r di
spe
r
sion a
nd
other lin
ear
e
ffects, and
N
is the op
erato
r
that is
re
spo
n
sibl
e for all
nonlin
ear
effects. Th
e idea
is
to calculate the equ
ation o
v
er small
spa
n
s of fiber
△
z by inclu
d
ing
either a line
a
r
or a n
online
a
r
operator. Fo
r instan
ce, on
the first spa
n
△
z only lin
ear effe
cts are con
s
id
ere
d
, on the se
co
nd-
only nonline
a
r
, on the third-ag
ain only linear o
n
e
s
, and so on. Two way
s
of cal
c
ulatio
n are
possibl
e: Fre
quen
cy
Dom
a
in Split Ste
p
(F
DSS)
an
d the
ab
ove
mentione
d Ti
me
Domai
n
Split
Step (T
DSS)
method
s. Th
ese
metho
d
s
differ in
ho
w l
i
near op
erato
r
L
is calcul
ated: F
D
SS do
es
it in a frequ
e
n
cy dom
ain,
whe
r
ea
s T
D
SS - in t
he time dom
ain b
y
calculating
the co
nvoluti
o
n
prod
uct in
sa
mpled time. The first met
hod is e
a
sy
to fulfill, but it may produ
ce seve
re errors
durin
g com
p
utation.
In
o
u
r
simulatio
n
we have em
ployed
th
e seco
nd
m
e
tho
d
,
TDSS, wh
ich
,
despite its co
mplexity, ensure
s
an effect
ive and time - efficient solut
i
on.
2.1. NRZ
-On
-
Off Ke
y
i
ng (
NRZ
-O
OK) M
odulation
In the case of ASK (Intensity Modulation) fo
rmat, the amplitude ‘A
s’ i
s
modulat
ed while
k
e
ep
in
g ‘
ω
0’ and
‘
φ
s’
co
n
s
tant. Fo
r
bin
a
ry digital
m
odulat
io
n, ‘As’ ta
ke
s o
ne
of the t
w
o fix
ed
values
du
ring
each bit p
e
ri
od, dep
endi
n
g
on
wh
ether
‘1’ or ‘0’ bit i
s
bei
ng tran
smitted. The A
S
K
format i
s
the
n
also
calle
d
as
on-off keyi
ng (OOK
) an
d is i
denti
c
al
with the
mod
u
lation
sche
me
comm
only used for non
- coh
e
re
nt (IM/DD) digital
light wave sy
stem
s [12].
The ele
c
tric f
i
eld
asso
ciated
wi
th an optical
sign
al ca
n be
written a
s
(2
).
)]
(
cos[
)
(
)
(
0
t
t
t
A
t
E
S
S
S
(2)
whe
r
e,
S
A
is amplitude
,
0
ca
rrie
r
freq
uen
cy,
S
is pha
se
The implementation of ASK for c
o
herent s
y
s
t
em
s
differs
from the c
a
s
e
of the direc
t
-
detectio
n
systems. The o
p
tical bit st
re
am fo
r di
re
ct-dete
c
tion
system
s ca
n b
e
gene
rate
d by
modulatin
g a
light-emitting
diode (LED)
or a semicon
ducto
r la
ser d
i
rectly, extern
al modulatio
n
is
necessa
ry for co
he
rent
co
mmuni
ca
tion
system
s. T
h
e
amplitu
de ‘A
s’ i
s
ch
ange
d
by mo
dulatin
g
the curre
n
t applied to a se
micon
d
u
c
tor l
a
se
r. The si
tu
ation is entire
l
y different in the ca
se of For
the cohe
rent
system
s, the
pha
se
dete
c
tor res
pon
se
depe
nd
s
u
p
o
n
the pha
se
of
the re
ceived
s
i
gnal. The .implement
ation of ASK format for
c
o
herent
s
y
s
t
ems requires
the phas
e
‘
φ
s’ t
o
remai
n
nea
rl
y consta
nt. All external m
odulato
r
s h
a
v
e some in
sertion lo
sses,
a powe
r
pe
nalty
occurs
whe
n
e
ver an
external
modul
ator is
used
; it can be
redu
ce
d to
belo
w
1 dB
for
monolithi
cally
integrated m
odulato
r
s [13]
.
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 11, No. 1, March 2
013 : 127 – 1
3
6
130
Figure 1. Blocks Di
agram
of NRZ
2.2. Stimulated Raman S
cattering (S
RS)
Ac
c
o
rding Stimulated B
r
illouin
S
c
attering (SBS) aff
e
c
t
s a
s
i
ngle c
h
annel Fiber optic
comm
uni
cati
on sy
stem. O
n
ly Stimulated Ram
an S
c
attering affe
cts DWDM
sy
stem. Stimulated
Rama
n Scattering i
s
cau
s
ed by the int
e
ra
ction of
lig
ht with mole
cular vib
r
ation
s
. Light in
cid
ent
on the mol
e
cules
create
s
scattered
ligh
t
at a l
onge
r
wavele
ngth t
han that of th
e inci
dent lig
ht.
The light traveling at e
a
ch
freque
ncy in
a Ram
an a
c
ti
ve fiber i
s
do
wn
shifted a
c
ross
a re
gion
of
lowe
r freq
uen
cie
s
. The lig
ht gene
rated
at the lowe
r frequ
en
cie
s
is called a
s
Stoke
s
wave. The
rang
e of freq
uen
cie
s
occu
pied by the stoke
s
wa
ve i
s
dete
r
mine
d
by the Ram
an gain
spe
c
t
r
um
whi
c
h covers the rang
e of arou
nd 40 T
H
z belo
w
the freque
ncy of the input light.
2.3. Analy
s
is
of NRZ-O
O
K
Modula
t
io
n Using 4 –
Chan
nel
Con
s
id
er a
4
cha
nnel
WDM system
wit
h
va
riou
s
wa
velength of 1
530 to 15
35
nm with
variou
s ce
nte
r
frequ
en
cy can be set in the multip
lexe
r as in
se
rtion
loss “0
” and
chann
el sp
aci
n
g
as 0.12
5nm. Dispersio
n
as 16 ps/nm/km
, Power
10 m
w
, Loss 0.2 d
B
, Fiber lengt
h as 50 Km can
be set in the
fiber itself. In De-multiplexe
r
si
de the
n
calcul
ate the center fre
que
n
c
y and chan
n
e
l
spa
c
in
g
can be
given as 0.125nm and
inse
rtion
lo
ss a
s
“0”. Th
e
n
the outp
u
t Spectrum bef
ore
fiber an
d afte
r fiber
can
b
e
noted fo
r variou
s d
a
ta rate and diffe
rent input po
wer l
e
vel will
be
given to the Lase
r
so
urce.
A large
nu
mb
er of
publi
c
ati
ons in the
wo
rld a
r
e
devot
ed to m
odul
a
t
ion form
ats,
starting
from the ela
boratio
n of n
o
vel efficient
numer
i
c
al
method
s an
d
ending
with
the cre
a
tion
o
f
compl
e
x mul
t
iform WDM
system
s. Th
e aim of o
u
r simulatio
n
wa
s to comp
are th
e vario
u
s
modulatio
n
fo
rmats (NRZ/
R
Z/Do
u) com
p
lex
tran
smi
s
sion
at differe
nt bit rates
(2
.5/10 Gb/s) a
nd
found th
e m
o
st resilie
nt
so
lution for mix
ed
WDM n
e
twork Fig.2. I
n
pa
rticul
ar, t
he o
p
tical
po
wer
spe
c
tru
m
a
n
d
the
sp
ect
r
al b
and
widt
h of the
di
fferent
signa
ls a
r
e i
n
vestigated at t
he
multiplexer/d
e
multiplexe
r output/input
ports. T
h
e
s
e results t
ogethe
r with
disp
ersion
and
nonlinear effects will be com
pared to the system perf
or
mance of optical net
work.
Figure 2. Mixed WDM sy
stem simul
a
tio
n
scheme
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
sea
r
ch on
Mixed
Data Rate and Fo
rm
at Tran
sm
issi
on in WDM Networks (Li Li
)
131
The tra
n
smitter blo
c
k
con
s
ists of 3
multi
p
lexed
ch
a
n
n
e
ls, ea
ch
of
them con
s
isting of
a data source, a driver, a lase
r and ext
e
rnal
m
odulat
or. The data
sou
r
ce produ
ce
s a bit stre
am
that presents the informati
on to be tran
smitt
ed via fiber opti
c
al li
nk. Then
we
need a driv
er,
whi
c
h form
s different co
d
e
pulse
s fro
m
incomin
g
bits. The pul
se
s are the
n
modulated
with
contin
uou
s wave (CW) la
ser ra
diat
ion to
obtain optica
l
pulse
s.
Referen
c
e wavelength
λ
= 1550 nm. At
the fiber end the cha
nnel
s
are dem
ultipl
exed, so
that
ea
ch ch
annel co
uld be
an
alyze
d
sep
a
rately.
A
fter that, ea
ch ch
ann
el i
s
optically filtered,
conve
r
ted
to
electri
c
al
o
n
e
and
the
n
el
ectri
c
ally
filte
r
ed.
To
evalu
a
te the
sy
ste
m
pe
rform
a
n
c
e
several m
e
a
s
urem
ents hav
e be
en
take
n.
We
were int
e
re
sting
in
ob
servin
g th
e o
p
tical
sp
ect
r
u
m
at the beginni
ng and at the
end of optical
link,
as well as eye dia
g
ra
ms and BERs quantity.
The ide
a
is
to comp
are t
he differe
nt mixed WDM
system pe
rf
orma
nce wh
en usi
ng
distin
ctive modulation form
ats sim
u
ltane
ously.
3. Results a
nd Discu
ssi
ons
The aim of this sectio
n is to verify syst
ems
simul
a
tion with th
e integrate
d
OptSim
packa
ge a
n
d
to num
eri
c
al
ly evaluate a
nd
comp
ar
e
the pe
rform
a
nce
of mixed
-
NRZ,
RZ a
n
d
Duo
-
mo
dulati
on format
s in WDM system
s
with typic
a
l
s
y
s
t
em parameters
.
The
eye p
a
ttern
is a
po
werful, yet
sim
p
le time
- d
o
m
ain to
ol for asse
ssing
the d
a
ta
capability of an opti
c
al digital transmissi
on sy
st
em. T
he eye pattern measurem
ents are made in
the time dom
ain an
d in
re
al time sho
w
i
ng the effe
cts of wavefo
rm
distortio
n
s im
mediately on
an
oscillo
scope.
Mu
ch
syste
m
pe
rform
a
n
c
e i
n
fo
rm
atio
n can
be
de
duced f
r
om t
he eye
-
patte
rn
displ
a
y. Information re
garding the si
gn
al amplit
ude
distortio
n
, timing jitter and
system ri
se ti
me
can
be
deriv
ed si
mply by
observin
g
certain fe
at
ure
s
of the
patt
e
rn. T
he eye
-
pattern obtai
ned
durin
g sim
u
l
a
tions
will b
e
analyzed to obtain an
d
to compa
r
e
various
syst
em perfo
rma
n
ce
cha
r
a
c
t
e
ri
st
ic
s.
Figure 3. NRZ-NRZ
-
NRZ
output optical
signal
sp
e
c
trum and outp
u
t
eye pattern of a 3-chann
e
l
WDM system
, after 80 km of SSMF
Figure
3
de
pi
cts output opt
ical sig
nal sp
ectru
m
a
nd
el
ectri
c
al
sig
nal
eye p
a
ttern f
o
r
NRZ
format
2.5
G
b
/s WDM system wh
ere
25
G
H
z cha
nnel i
n
terval
is
presente
d
. That
sol
u
tion
indicates that
for 50 GHz I
T
U-T stand
ard c
han
nel sp
acin
g can b
e
two times re
duced and the
BER value still sufficient for good sy
stem per
formance. For 10
Gb/s
WDM
system 25 GHz
cha
nnel
interval is not
suit
able
mainly
o
f
sign
al
disto
r
tion. Figu
re
4
sh
ows an
o
p
timal
cha
n
n
e
l
s
p
ac
ing for 10 Gb/s
NRZ f
o
rmat WDM
sys
tem.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 11, No. 1, March 2
013 : 127 – 1
3
6
132
Figure 4. NRZ-NRZ
-
NRZ
output optical
signal
spe
c
trum and outp
u
t electri
c
al eye pattern of a
3-
cha
nnel
WDM system, after 80 km of SSMF
For th
e n
e
xt gene
ration
WDM
syste
m
s the
mixe
d sig
nal fo
rmats tran
smi
ssi
on
will
be necessit
y
. Figure 5 presents o
u
t
put optical
signal spe
c
tru
m
and ele
c
trical si
gnal e
y
e
pattern
s for N
R
Z-
RZ
-N
RZ
mix
ed format
s.
Figure 5. NRZ-RZ-NRZ ou
tput optical si
gnal spe
c
tru
m
and output
electri
c
al eye
pattern
s of a 3
cha
nnel mixe
d WDM syste
m
, after 80 km of SSMF
This example
sh
ows
that optimal cha
n
nel
sp
ac
in
g fo
r
mixe
d NRZ
-
R
Z
-
N
R
Z
2
.
5
G
b
/s
system
s sho
u
ld be mo
re
than 25 G
H
z. For mix
ed
data rate
s in
the sam
e
sy
stem an
opti
m
al
cha
nnel
interval sh
ould
be
more th
an
5
0
G
H
z,
an
d o
n
ly in th
at ca
se th
e m
a
xim
u
m tra
n
smission
distan
ce
stay unchan
ged Fi
gure 6.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
sea
r
ch on
Mixed
Data Rate and Fo
rm
at Tran
sm
issi
on in WDM Networks (Li Li
)
133
Figure 6. NRZ-RZ-NRZ ou
tput optical si
gnal spe
c
tru
m
and output
electri
c
al eye
pattern
s of a 3-
cha
nnel mixe
d WDM syste
m
, after 80 km of SSMF
Figure 7 dep
icts outp
u
t optical si
gnal
spe
c
tr
u
m
an
d electri
c
al
si
gnal eye patt
e
rn
s for
NRZ
-Duo
-NRZ mixed formats
whe
r
e
the mo
st pe
rspe
ctive Duo
b
inary m
odul
ation form
at
is
pre
s
ente
d
.
Figure 7. NRZ-Duo-NRZ o
u
tput opt
ical
sign
al sp
ectrum and outp
u
t
electri
c
al eye pattern
s of a 3-
cha
nnel mixe
d WDM syste
m
, after 80 km of SSMF
Evaluation Warning : The document was created with Spire.PDF for Python.
TEL
K
134
NRZ
-
rate
o
Figu
r
K
OM
NIKA
V
Non
-
bin
a
-
D
u
o-
NRZ
m
o
f eac
h
cha
n
r
e 8. NRZ-D
u
V
ol. 11, No.
1
a
ry m
odulati
o
m
ixed tra
n
sm
n
n
e
l up to 10
u
o-NRZ o
u
t
p
cha
n
n
e
Figure 9.
O
Ey
e Diagr
a
Figure 10
.
1
, Marc
h 20
1
o
n techniqu
e
issi
on sho
w
s
Gb/
s
sy
st
e
m
p
ut optical
si
g
e
l mixed W
D
O
SA Multipl
e
a
m for cha
n
.
Rx
_end Ey
e
1
3 : 127 – 1
3
can p
e
rfor
m
s
g
r
eat
sign
a
m
c
h
ar
ac
te
r
i
s
g
na
l s
p
e
c
tru
m
D
M sy
st
e
m
,
a
Before Fib
e
e
xer Output
w
n
ne
l 1
D
i
a
g
e
Dia
g
ram
w
3
6
m
signifi
cant
s
a
l
s
quality o
n
s
t
i
cs r
e
main
s
m
and outp
u
t
a
fter 80 km o
er
w
ith B
i
t rate
o
g
ram for ch
a
w
ith bit rate o
s
pec
t
ral effi
c
n
o
u
tput and
s
settled Fig
u
t
electri
c
al e
y
f SSMF
o
f (10 Gb/s)
a
nn
el 2
f (10 Gb/s
)
ISSN: 169
3
c
iency. In
ou
r
t
o
i
n
cr
ea
se
t
u
re 8.
y
e pattern
s
o
3
-6
930
r
case
t
he
b
i
t
o
f a 3-
Evaluation Warning : The document was created with Spire.PDF for Python.
TEL
K
after
Ram
a
end
c
have
data
Multi
p
the i
n
4. C
o
K
OM
NIKA
R
e
From
Fi
g
the fiber will
a
n effect
wil
l
c
an b
e
sho
w
cle
a
r E
y
e
o
rate is
enc
o
u
p
lexer outpu
n
dividual wa
v
o
nclusio
n
e
sea
r
ch on
M
Ey
e Diagr
a
Figure 11
.
Figu
r
Ey
e Diagr
a
Figure 13.
g
u
r
e
8
to13,
be
corru
p
te
l
“ON” co
ndi
t
w
n in the
Fig
u
o
penin
g
a
nd
u
ntered in
to
t with four
w
v
ele
ngth ca
n
I
S
M
ixed Data
R
a
m for cha
n
.
Rx
_end Ey
e
r
e 12. O
SA
o
a
m for cha
n
Rx
_end Ey
e
it i
s
noted
t
d by
the fa
c
t
t
ion. Then
t
h
u
re 9 an
d
Fi
the Re
cei
v
i
the fiber.
W
h
w
ave le
ngth
w
n
be sho
w
n
i
n
S
SN: 1693-6
9
R
ate and Fo
r
m
n
ne
l 3
Ey
e
e
Dia
g
ram
w
Before Fib
e
o
utput with B
n
ne
l 2
Ey
e
e
Dia
g
ram
w
i
t
h
a
t when
d
a
t
or of SBS
“
O
h
e Eye diagr
gure 10. Th
e
ng end the
h
e
n
Eye op
e
w
ill be show
n
the Figure
9
30
m
at Tran
sm
i
Diagram fo
w
ith Bit rate
o
er
it rate of (10
Diagram fo
i
th Bit rate o
f
a
ta rat
e
is
h
O
N” conditio
n
am at the T
r
e
eye diag
r
a
Eye diagra
m
e
ning i
s
clea
r
n in the Fig
u
12 and Fig
u
r
i
ssi
on in W
D
r chann
e
l 4
o
f (10 Gb/s
)
Gb/s)
r chann
e
l 2
f
(100 Gb/s)
h
igh then th
e
n
and
SRS
“
O
r
ansmitting
e
a
m at the Tr
a
m
will be co
r
r
it refers
to
l
u
re8. In De-
r
e 13.
M Networks
e
output sp
e
O
N”
c
o
nditi
o
e
n
d
and Re
c
a
ns
mitting e
n
r
ru
pted wh
e
n
l
o
w
Bit Erro
r
m
u
ltiplexer
o
(Li Li
)
135
e
ct
ru
m
o
n
and
c
eiving
n
d will
n
hi
gh
Rate.
o
ut
put
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 11, No. 1, March 2
013 : 127 – 1
3
6
136
In this rep
o
rt
we have inv
e
stigate
d
the
performan
ce
of mixed 2.5 Gb/s an
d 10 Gb/s
optical
syste
m
s with si
mul
t
aneou
s prop
agation of variou
s mod
u
lation format
s. For mixed WDM
system
s with
25 GHz ch
annel
spaci
n
g,
nonli
nea
r crosstal
k o
r
iginated
fro
m
cro
s
s ph
ase
modulatio
n a
nd four-wave mixing is the major
sou
r
ce of system pe
rforman
c
e d
e
g
r
adatio
n.
Dispersio
n
limited distan
ces
for conve
n
tional NRZ external
mod
u
lated syste
m
s at 10
Gb/s i
s
ab
out
80 km, fo
r the mixed 1
0
Gb/s
N
R
Z
-
RZ
-N
RZ
sy
st
em t
h
e
s
e
dist
an
ce
s i
s
t
w
o
times sho
r
ter.
Tradition
al 1
0
Gb/s
NRZ
and 10
Gb/s
mixed NRZ-
Duo
-
NRZ
WDM sy
stem
s have
simila
r tran
smissi
on p
r
op
erties
and e
qually efficie
n
t for 80 km,
and efficient
chan
nel inte
rval
sho
u
ld b
e
mo
re tha
n
50
G
H
z.
Com
pare
d
togethe
r
all
investigate
d
modulatio
n fo
rmats, it
can
be
see
n
that all of them can b
e
use
d
for futu
re mixed traf
fic tran
smissi
on in WDM n
e
tworks.
Ackn
o
w
l
e
dg
ement
This
wo
rk
wa
s supp
ort
ed by
sci
e
n
tific and
tech
nolo
g
ical
proj
ect of
Hen
an P
r
ovince
(122
102
210
0
17) an
d fund
of An
yang Institute of Tech
nology.
Referen
ces
[1]
Agra
w
a
l G.P. Fiber-Optic C
o
m
m
unic
a
tion S
y
s
t
ems. John W
i
l
e
y
.
3
rd
e
d
itio
n. 201
0.
[2]
G. E.
Keiser. Optica
l F
i
b
e
r Co
mmunicati
ons.
3
rd
Editio
n. Ne
w
York: McGra
w
-
H
il
l. 200
0.
[3]
Rajiv R
a
mas
w
ami, Sivara
jan.
Optical Net
w
o
r
k. Second Edit
ion. 20
08: 76-
8
1
, 92-93, 3
23-3
35.
[4]
Aja
y
K. Sharm
a
, S.K. W
adh
w
a
, T
.
S. Kamal.
Rob
u
stness
of NRZ
, RZ
, CSRZ
and C
R
Z
Mo
dul
ation
o
n
Fiber N
o
n
lin
ea
rities
and
Amp
lifier
Nois
e
at
40Gbps
for (O
C-78
6) L
o
n
g
Haul
L
i
nk.
J
o
u
r
nal
of Opti
k
Co
mmun
icati
o
n.
2008; F
ebru
a
r
y
2
0
0
8
.
[5]
Lei
brich J., R
o
senkr
anz W
.
Efficient N
u
merical
Simu
l
a
tion
of Multi
c
han
nel
W
D
M T
r
ansmissio
n
S
y
stems Lim
i
te
d b
y
XPM.
IEEE Photon
. T
e
c
hno. Lett. 2002.
[6]
Bobrovs V., Ivanovs G. Parameter
Evalu
a
ti
on of a Dens
e Optical Net
w
o
r
k Electronics a
nd Electric
al
Engi
neer
in
g. 2006; 4(2
5
): 33-
37.
[7]
Bobrovs
V., Ivanovs
G. Influe
ce of
Non
l
i
near
Opti
cal
Effects on
T
he NRZ
a
nd
RZ
Mod
u
l
a
tion
Sig
n
a
l
s
in W
D
M S
y
ste
m
s Electronics
and El
ectric
al
Engi
neer
in
g. 2007; 4(7
6
): 55-
58.
[8]
Vitesse S. NRZ
and Duobi
n
a
r
y
Com
pati
b
il
it
y
Luc
ent T
e
chno
l. 200
4; 1: 27-2
9
.
[9]
T
.
Sabapat
hi, S.Sundar
ava
d
i
v
elu. Ana
l
ysis
of
Bottleneck
s
in DW
DM F
i
ber Optic Communic
a
tio
n
S
y
stem. Optik Internation
a
l
Journ
a
l for Lig
h
t and Ee
l
e
ctron Optics. Article in Press D
o
i: 10.10
16
,
201
0.
[10]
Charles
Coax III, Edw
a
rd Ackerman,
Rogerb
Helk
ey
and Gray
E. Betts. T
e
c
hniques
and
Performanc
e o
f
Intensit
y
Mo
dul
ation
Dir
ect
Detectio
n An
alo
g
Optical
Li
nks.
Journ
a
l o
f
Lightw
a
v
e
T
e
chno
logy
. 2
009; 45(
8): 137
5-13
83.
[11]
Aiha
n Yin,
Li
Li, Xin
lia
ng Z
han
g. Ana
l
ysi
s
of Modu
lati
on F
o
rmat i
n
T
he 40 Gbi
t/s Optical
Communication Sy
stem.
Jour
nal of Optik Co
mmu
n
icati
o
n
. F
ebruar
y
2
0
0
9
.
[12]
Dho
dhi M.K an
d Stair. Bottlen
ecks in Nex
t
Generati
on D
W
DM Based Optical Net
w
o
r
k
s
Computer
Commun
i
cati
o
n
s. 2001; 2
4
: 1726 -1
73
3.
[13]
Peters N.A,
Toliver P,Ch
ap
uran
i T
E
, Runser R J,
McNo
w
n
SR, Pe
terson CG,
R
o
sen
berg
D
,
Dallm
an
n N.
Dens
e W
a
vel
e
ngth Mu
ltipl
e
xi
ng of
155
0-nm
QKM
w
i
t
h
St
rong
Class
ica
l
Cha
n
n
e
ls
Inreconfi
gur
abl
e Net
w
ork
i
ng E
n
viro
nments.
N
e
w
Journal of
Physics
. 200
9; 11: 1-17.
[14]
Ying Ji
an
g, Xu
efeng T
ang. El
ec
tronic Pre-c
o
mpens
ation
of Narro
w
Optic
a
l
Filtering for O
O
K, DPSK
and DQPSK Modu
latio
n
Formats.
Journal
of Lightw
a
ve T
e
chn
o
lo
gy
. 200
9; 27(16): 3
689
–36
98.
[15]
V. Bobrovs,
G. Ivanovs. Inve
stigati
on of
Mixed D
a
ta R
a
te an
d F
o
rm
at T
t
ransmissi
on i
n
W
D
M
Net
w
orks Elec
tronics an
d Ele
c
trical Eng
i
ne
e
r
ing. Kau
nas: T
e
chn
o
lo
gij
a
. 20
08; 4(84): 6
3
-6
6.
Evaluation Warning : The document was created with Spire.PDF for Python.