TELKOM
NIKA
, Vol.14, No
.1, March 2
0
1
6
, pp. 156~1
6
1
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i1.2676
156
Re
cei
v
ed Se
ptem
ber 12, 2015; Revi
se
d De
cem
ber
9, 2015; Acce
pted De
cem
b
er 28, 201
5
Design of a New Telescope Control System f
o
r Use in
Astronomical Tr
ansient Events
Selcuk Helhel*
1
, Murat Di
ndar
2
, Ekrem K
a
ndemir
2
, Sani
y
e
Din
d
ar
2
, Tunca
y
Oz
ı
ş
ı
k
2
1
Department o
f
E.E.E., Engineeri
ng F
a
cult
y,
Akdeniz U
n
ive
r
sit
y
, 07
058, A
n
tal
y
a, T
u
rke
y
2
T
U
BIT
AK Nati
ona
l Observato
r
y
,
Akde
niz Un
i
v
ersit
y
C
a
mp
u
s
, 07058, Anta
l
y
a, T
u
rke
y
*Corres
p
o
ndi
n
g
author, em
ail
:
selcukhe
lh
el
@akd
eniz.e
du.
tr, murat.dindar
@tubitak.g
o
v.tr,
ekrem.kan
dem
ir@tubitak.
gov.
t
r, sani
ye.din
da
r@
tubitak.gov.tr, tuncay
.o
zi
s
i
k@
tu
b
i
tak.gov.tr
A
b
st
r
a
ct
Rob
o
tic auto
n
o
mous te
lesco
pes pr
ovid
e h
i
gh l
e
vel
c
ontro
l by sel
e
ctin
g
astrono
mical t
a
rgets for
observ
a
tion,
a
nd they
usu
a
lly
run u
n
d
e
r the
control
of a sc
hed
uler. T
a
l
o
n
V
IEW
is a new
l
y
desi
gne
d ro
b
o
tic
auton
o
m
o
u
s telesc
ope c
ontr
o
l syste
m
(TC
S
) for 16 i
n
ch
es telesc
op
e
mo
unt for us
e
in astro
n
o
m
ic
al
transie
nt eve
n
ts. T
he tele
scope co
ntrol
algor
ith
m
w
a
s impl
e
m
ent
ed in PXI c
hassis w
r
itten
in
GProgra
m
mi
ng
(LabVIEW) on
real-t
i
m
e
oper
ating syste
m
(
P
harL
ab) fro
m
scratch. A ne
w
TCP/IP
libra
ry
w
a
s also
i
m
pl
e
m
e
n
ted
in T
a
lo
n softw
are to c
o
mmunic
a
te w
i
t
h Pharl
ab
in P
X
I chassis. Initi
a
l setu
p w
i
tho
u
t
any p
e
r
m
an
ent
pier a
nd
pol
ar
alig
n
m
e
n
t sho
w
ed that
the p
o
inti
ng err
o
r of
the telesc
op
e h
a
s be
en o
b
tai
n
ed
as 2.22 arc
m
in
utes (13
2
arc s
e
con
d
s) in RA
axis (
hor
i
z
o
n
t
a
l
axis of the i
m
age) a
nd
25 ar
c secon
d
s in D
e
c
axis (vertical
a
x
is of the imag
e), and trackin
g
erro
r has b
e
e
n
observ
ed as
4.8 arc secon
d
s
per secon
d
.
Ke
y
w
ords
:
Autono
mous R
obotic T
e
l
e
sco
pes, Astrono
mi
ca
l T
r
ansi
ent Events, G-Programming T
e
lesc
ope
Contro
l Softw
are.
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Comp
uter-ba
s
ed
ro
botic te
lescop
e
syste
m
s h
a
ve the
advantag
es o
f
low
ope
ratin
g
cost
s
with high op
erating effici
e
n
cy and hig
h
scientific
p
r
odu
ctivity
[1, 2]. Some d
e
mon
s
tratio
n
s
of
sci
entific u
s
a
ge of the ro
botic tele
sco
pe we
re
giv
en in [1-5]. Gene
rally the term ro
boti
c
in
telescop
e sy
stems
stand fo
r gui
ding
a tel
e
scop
e to a
g
i
ven po
sition
and ta
ke im
a
ges
or
pe
rform
more
co
mpli
cated t
a
sks. The te
rm a
u
t
onomou
s
ob
servato
r
y in
astro
nomy m
ean
s a
rob
o
tic
telescop
e a
n
d
do
me
are
compute
r
cont
rolled
in
su
ch
man
ner,
that
all i
ndispen
sable
actio
n
s
o
f
observation
a
r
e do
ne auto
m
atically, incl
uding p
r
o
c
e
s
sing of
weath
e
r conditio
n
s,
dome d
r
iving,
cho
o
si
ng o
b
j
e
cts to
ob
se
rve, exposin
g
by cam
e
ra
s
or oth
e
r o
p
tical se
nsors, takin
g
calibration
image
s, and
so forth. Neither hu
man i
n
tera
ction
no
r activity is nece
s
sary for
observation [
5
].
Removin
g
hu
man control from the
ob
se
rving p
r
o
c
e
s
s allows fa
ster observation
respon
se tim
e
,
so th
at it m
a
kes
ro
botic tel
e
scop
es resp
ond
qui
ckly t
o
ale
r
t b
r
oa
d
c
a
s
ts f
r
om
sa
tellites a
nd
b
egin
observing
wi
thin se
con
d
s. This prope
rty lets
the astro
nom
ers
to obse
r
ve tran
sient eve
n
ts
(Gam
ma-Ray
Bursts et
c.) i
n
the sky.
Telesco
pe
control al
go
rithm can be
exec
ute
d
on
variou
s pl
atf
o
rm
s where
LabVIEW
runtime i
s
av
ailable, amo
n
g
them; Wind
ows and
Li
nu
x, real-time e
x
tension fo
r Wind
ows (RT
X
),
and real
-tim
e
op
eratin
g system
s (Ph
a
rLa
b
ETS,
VxWorks etc.). Some tel
e
scop
e
control
softwa
r
e ap
pl
ication
s
on L
ab-VIEW plat
form have al
so been give
n in [6, 12].
Talon, ob
serv
atory cont
rol softwa
r
e (OCS
), have alre
ady been imp
r
oved an
d integrate
d
to new
syste
m
s at TUBIT
AK National
Observat
o
r
y (TUG) by u
s
i
ng advanta
g
e
s of its o
p
e
n
-
sou
r
ce software
stru
cture
[13, 14]. This pape
r
prese
n
ts a ne
wly d
e
sig
ned T
C
S
and ad
apted
to
Talon i
n
o
r
d
e
r
to
co
ntrol t
he tele
scop
e
mount,
nam
ed T
U
Y 4
0
, to be
an
auto
nomou
s
ro
bo
tic
telescop
e.
2. TUY 40 Au
tonomou
s Robotic Tele
s
c
ope
TUY 40 tele
scop
e mount i
s
co
ntrolle
d b
y
a new TCS
written in G
-
P
r
og
rammi
ng called
as Talo
nVIEW, whi
c
h is i
m
pleme
n
ted i
n
PXI real
-tim
e system. Th
e control arch
itecture of T
U
Y
40 is sim
p
ly shown in Figu
re 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
De
sign of a New Tele
scop
e Control System
for Us
e in Astron
om
ical Tran
sie
n
t… (Selcuk
Helhel)
157
2.1 Hard
w
a
r
e
Archi
t
ec
tu
re
Motion co
ntrol algorith
m
for the main
axes
of RA
and Dec
wa
s implem
ent
ed within
motor
drive
r
s and
motion
controlle
r
cards. T
w
o
se
rv
o moto
rs we
re u
s
e
d
to
move the
axes.
Preci
s
e
motio
n
control i
s
a
prere
qui
site
for a
te
le
scop
e. The
r
efo
r
e,
clo
s
ed
loo
p
P
I
D control
wa
s
impleme
n
ted
for a
c
curate
positio
n
con
t
rol withi
n
hi
gh resolution
motor
drive
r
s with
en
co
d
e
rs
(Figu
r
e
2).
M
o
tion
cont
roll
er
ca
rd
s
relia
bly execut
e
p
r
og
ram
s
with
very preci
s
e
t
i
ming. Th
ey a
r
e
playing th
e
key rol
e
to
deli
v
er the
target
po
sition
and
velocity values sent by the softwa
r
e to the
drivers. Bran
d ne
w
de
sign
s
with
diffe
re
nt actu
ators
a
nd
with diffe
rent eq
uipme
n
t
coul
d b
e
ea
sily
adopte
d
by the telescop
e
control
syste
m
without an
y modificatio
n
in the code
beca
u
se of the
excellent compatibility of the mo
tion control cards. Therefore,
in the long run, hardware
architectu
re
sets the stag
e for furthe
r de
velopment
s.
Figure 1. The
control a
r
chit
ecture of TUY 40
Figure 2. Hardwa
re a
r
chite
c
ture of T
U
Y
4
0 telesco
p
e
The comm
an
ds comi
ng
from
the co
m
puter
i
s
eval
uated
by Re
al Time E
m
bedd
ed
Controlle
r. Th
en it send
s a
ppro
p
ri
ate val
ues to
the m
o
tion controll
er
cards.
Re
q
u
ired
pul
se
a
n
d
dire
ction volt
age
s are received by
servo drivers a
s
target p
o
si
ti
on value
an
d they sta
r
t the
motion of the axes. Then i
t
reads e
n
co
der feed
ba
ck signal
s
and
run
s
the PID control lo
op
to
carry out preci
s
e po
sitio
n
ing within
specifie
d
time interval. When it ac
complis
hes
acc
u
rate
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 1, March 2
016 : 156 – 1
6
1
158
pointing
then
it start
s
tra
c
ki
ng in
orde
r to
ena
bl
e th
e t
e
lesco
pe to
o
b
se
rve the
ta
rget
obje
c
t
with
a define
d
spe
ed value.
Lim
i
t switche
s
a
r
e used to
ach
i
eve safe
mo
vement of tel
e
scop
e. Moti
on
controlle
r cards have precaution actio
n
.
As so
on as
they receive
a
limit switch
signal, they
st
op
the telescop
e
movement immediately.
2.2 Soft
w
a
re
Architectur
e
The ne
w T
C
S control sof
t
ware
call
ed
as Tal
onVIEW. The n
e
w
architectu
re i
s
sim
p
ly
based on th
e Client/Serv
e
r mod
e
l. Th
e client
side
of new T
C
S softwa
r
e i
s
b
a
se
d on Tal
o
n,
whi
c
h is
an o
pen-so
urce o
b
se
rvatory co
ntrol so
ftware
and written i
n
GNU/C [15
], with a newl
y
written TCP/I
P
library and
applicatio
n functio
n
s of
this
library. It
is
us
ed to mak
e
as
tronomic
al
cal
c
ulatio
ns, control ca
me
ra and o
b
servatory modul
es such as
GPS, meteo station etc. T
a
lon
has
also
bee
n usin
g in T6
0 autono
mou
s
tele
scope i
n
TUG i
n
different
softwa
r
e and h
a
rdware
architectu
re [
13, 14]. Talon
has two
m
a
in daemo
n
s of
telrun and tel
e
scop
ed.
The telru
n
daemon i
s
re
spo
n
si
ble for operatin
g the sche
dule
on roboti
c
mode by
sen
d
ing ap
p
r
op
riate co
mmand to telescop
e daemon (tel
e
s
cope
d). Th
e telescope
d is
respon
sibl
e for the control
of t
he dome,
focus, filter
whe
e
l and th
e telescop
e axes by send
ing
the lo
w-level
comm
and
s to
the motio
n
controlle
rs. Th
e motion
con
t
roller card
s
can
have
be
en
prog
ram
m
ed
by using b
u
ilt-in functio
n
s.
This n
e
w a
r
chitecture ma
ke
s the Talo
n depe
nde
nt on the sp
ecif
ic motion
co
ntrolle
rs.
The ch
allen
g
e
is to integrate Talon to more robu
st platform than
already u
s
ed
. The serve
r
side
of new T
C
S software i
s
wri
tten in G-p
r
o
g
rammi
ng
wh
ich i
s
ru
nning
on the PXI chassi
s with
re
al-
time embed
d
ed co
ntrolle
r
and motion
controlle
r card
s.
Both Talon a
nd TalonVIE
W GUI are shown in
Figu
re 3 and Fig
u
re 4. All su
bVIs are
written fro
m
scrat
c
h in o
r
d
e
r
to cont
rol th
e sub
s
yste
m
s
such
as tel
e
scop
e axes,
filter, focus a
nd
dome. The su
bVIs calle
d b
y
main VI which interpret
s
and pa
rses th
e comm
and
s from client si
de
(Talo
n
) an
d
pro
c
e
s
ses
all the com
m
and
s in re
al-time an
d simultan
eou
sl
y by using the
multithrea
d feature of G-prog
ram
m
ing
.
The r
eal-ti
m
e queu
e function
s are used to provide the
synchro
nou
s
of the pro
c
esse
s in
Re
al-Ti
m
e Ope
r
ating
System.
Figure 3. TALON G
U
I
All s
u
bs
ys
tems
on
s
e
r
v
e
r
s
i
de
ar
e
id
en
tic
a
l
to
sub
systems on
cli
ent si
de. Th
e
y
have a
spe
c
ial
com
m
and tag
s
to sen
d
the comm
and
s to the relate
d
module
s
on
serve
r
and
rea
d
relevant data
with spe
c
ified
tags re
ceive
d
from t
he client, thus it is
guarantee
d that the receiv
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
De
sign of a New Tele
scop
e Control System
for Us
e in Astron
om
ical Tran
sie
n
t… (Selcuk
Helhel)
159
data from
se
rver is ta
ken b
y
sub
s
ystem
s
from c
lie
nt correctly. The
architectu
re o
f
whole T
U
Y
40
TCS (Tal
on a
nd TalonVIE
W) a
r
e sho
w
n in Figure 5.
Figure 4. TALON VIEW GUI
Figure 5. The
softwa
r
e architecture of TUY 40 TCS
3. Experimental Setup
The experi
m
ental setup of
TUY 40 auto
nomou
s
tele
scop
e system
is sho
w
n in F
i
gure 6.
Comm
ercially
present o
p
tical tu
be
wa
s used fo
r
th
e
sky te
sts
of
the tele
scope
. The
sky tests
were reali
z
ed
in orde
r to t
a
ke
pointin
g
and trac
kin
g
errors of T
U
Y 40. Fo
r th
e expe
riment
al
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 1, March 2
016 : 156 – 1
6
1
160
results of the
TUY 40, usi
n
g very roug
h polar
ali
gnm
e
n
t without pe
rmanent pie
r
, Can
on EOS 20
Da
Digital S
L
R 1
00
Cam
e
ra was u
s
ed
a
s
ima
ge
dete
c
tor sy
stem o
n
the tel
e
sco
pe fo
cal
plan
e.
The
came
ra
has
350
4 x 2
336 pixel
are
a
. Co
rre
sp
on
ding to thi
s
p
i
xel are
a
, field of view
of the
came
ra i
s
19.
1 x 12.8 arcm
in
2
and pixel scale of the image is 0.3
2
arc
se
con
d
s
per pixel.
Figure 6. Experime
n
tal set
up of TUY40
telescop
e
Targ
et obje
c
t (star) is
sho
w
n in a white
bor
de
r squa
re area of t
he image.
The red-cross
sho
w
s lo
catio
n
where the
telesco
pe p
o
i
n
ted a
nd th
e
gree
n cross shows real
lo
cation of th
e
star
as
sho
w
n in
Figure 7. So, the differen
c
e betw
een th
ese
point
s gi
ves tele
scop
e pointing
error.
The pointin
g error of the telesco
pe is 2
.
22 arcminut
es
(
1
32
a
r
c
s
e
c
o
nd
s)
in
R
A
a
x
is
(
h
o
r
iz
onta
l
axis of the image) a
nd 25
arc
se
con
d
s i
n
De
c axis.
Figure 7. Experime
n
tal re
sult of TUY40 telesco
pe for
pointing
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
De
sign of a New Tele
scop
e Control System
for Us
e in Astron
om
ical Tran
sie
n
t… (Selcuk
Helhel)
161
Tra
cki
ng test
s are reali
z
e
d
on the sky,
as well.
For the tracki
ng
tests, three
types of
image
s
wa
s t
a
ke
n, 20
s, 6
0
s
a
nd
100
s.
As a
re
sult
of
analy
z
ing
of
those
imag
es, tracking
e
r
ror
wa
s found a
s
4.8 arc se
co
nds pe
r seco
nd app
roxim
a
tely. These
test results were obtai
ned
in
experim
ental
setu
p
con
d
itions
where t
he mo
unt of
the tele
sc
ope
wa
s not
in
st
alled on rob
u
s
t
platform such
as perm
ane
n
t
pier or stron
g
base.
After
the installatio
n
of the telescop
e
and ma
ke
pointing model on sky will significantly improv
e the tracking and point
ing performance
of
telescop
e in near futu
re.
4. Conclusio
n
In this
study; TalonVIEW,
whi
c
h i
s
a
ne
w roboti
c
aut
onomo
u
s TCS, has b
een
desi
gne
d
on Pha
r
La
b,
Re
al-Tim
e
Operating Sy
stem, an
d i
m
pleme
n
ted
within
a real
time platfo
rm by
integratin
g to Talon. Sa
tisfying re
sul
t
s hav
e b
e
e
n
obtain
ed f
o
r poi
nting
and tra
c
king
in
experim
ental
setu
p. Fo
r
upcoming
studie
s
, tele
sc
ope
will
be
installe
d o
n
a robu
st pl
atform
where
will be located at B
a
ki
rlitepe, Ant
a
lya (Lat: 36
o
54’ 00’’
N.,
Long: 3
0
o
39’
13’’ E.)
so t
hat
pointing mo
d
e
l of the tele
scope will b
e
improved.
T
he new
software (al
e
rtd
)
, whi
c
h ru
ns u
nder
the Talon, h
a
v
e been
use
d
for ast
r
on
om
ical tra
n
si
ent
events in T
6
0
telescop
e at
TUG [1
4]. After
the commi
ssi
oning
of T
U
Y
40, the tel
e
scope
will
be
de
dicate
d to
cat
c
h fo
r
ast
r
ono
mical
tran
sie
n
t
events such as supe
rnova
e
, gamma-ra
y
burst
s et
c. by integrating
the alertd to the TCS.
Ackn
o
w
l
e
dg
ements
This
proj
ect
wa
s g
r
ante
d
by State Planning
O
r
gani
zatio
n
(DPT G
r
ant
Numb
er:
2010K1
201
7
0
), and we would like to thank M
r
. Cevd
et Bayar for h
i
s kin
d
co
ope
ration.
Referen
ces
[1]
Bo
yd LJ, Gen
e
t RM, Hall D
S
. APT
'
s
- Automatic ph
ot
oel
ectric teles
c
opes.
Sky and Telesc
ope
,
198
5;.70: 16-1
9
.
[2]
Drummon
d
M, Bresin
a J, Edgi
ngto
n
W
,
Sw
a
n
s
on K, He
nr
y
G, Drasc
h
er E.
Robotic Telescopes:
Current C
a
p
a
b
ilities
. Pres
ent
Devel
opm
ents, and F
u
ture P
r
os
pects for A
u
tomated Astr
onom
y, Pu
b.
Astron. Soc. Pac. San F
r
anci
sco. 1995: 7
0
-
112.
[3]
Smith AB: T
he deve
l
opm
ent a
nd im
plem
enta
t
ion of
a rem
o
te rob
o
tic tel
e
sc
ope s
y
st
em at
Appa
lach
ia
n
State Univers
i
ty'
s
Dark Sk
y
Obse
rvator
y. M.D. dissertat
i
on. North Car
o
lina: Ph
ys
ics a
nd Astronom
y,
Appa
lach
ia
n State Univ
ersit
y
;
200
9.
[4]
F
e
rrero A, Han
l
on L, F
e
ll
etti R
,
F
r
ench J, Mela
d
y
G, McBreen S, Kub_a
nek
P, Jelinek M, McBreen B,
Meintj
es P, Calitz J, Ho_m
an
M.
T
he photometr
y
pi
p
e
lin
e of
the W
a
tcher
Rob
o
t
ic
T
e
lescop
e
.
Advanc
es in A
s
trono
my
. 201
0.
[5]
Nekol
a
M, Hud
e
c R, Jel_
_n
ek
M, Kub_an
ek
P,
trobl J, Pol_
a_sek C. BAR
T
:
T
he Czech Autonom
ou
s
Observator
y.
Advanc
es in Astrono
my
. 20
10.
[6]
Z
agar K, Z
agar
A, Bauvir B, C
h
iozzi G, D
uho
ux P.
Inte
gratio
n of ALMA co
mmo
n
softw
are an
d nati
o
n
a
l
instru
me
nts La
bVIEW
.
Proceedi
ngs of PCa
PAC08. Lj
ub
lja
na. 200
8.
[7]
Micha
e
l A, Schumac
her G.
SOAR telescope contr
o
l system
: a rapi
d pr
ototype and developm
ent in
LabVIEW
.
Proc. of SPIE. Munich. 20
09; 40
09.
[8]
Michael A, Marco B, Steve H.
ArcVIEW: a
LabVIEW-bas
e
d
astron
o
m
ica
l
instru
me
nt co
ntrol syste
m
.
Proc. of SPIE.
Ha
w
a
ii. 20
02; 484
8.
[9]
Schumac
her
G, Michael A.
SOAR T
C
S: from
prototyp
e t
o
i
m
p
l
e
m
e
n
tati
on
. Proc. Of SPIE. Ha
w
a
ii.
200
2; 484
8.
[10] T
a
y
l
or
P.
T
e
les
c
ope co
ntrol us
ing L
abVIEW
for Lin
u
x.
NI Big Ph
ysics S
y
m
posi
u
m. Rome.
2010.
[11]
Paul J
L
, Da
nie
l
G, R
y
an G,
Phili
p T
.
Discovery Ch
ann
el
T
e
lesco
pe s
o
ftw
are deve
l
o
p
me
nt overv
i
ew
.
Proc. of SPIE.
Calif
or
ni
a. 201
0; 7740.
[12]
Gilles F, Shan
M, Philipp
e
L
,
Abdel A, Gill
es B, Isabelle
J.
Innovative
telescop
e
co
ntrol system
architectur
e
for SST
-GAT
E telescop
e
s at the CT
A Observatory.
Proc. of SPIE. Montral. 2014; 91
45.
[13]
Parmaksiz
ogl
u
M, Dind
a
r M, Helh
el S, Kir
b
i
y
ik
H.
Softw
are and E
l
ectron
ic
Devel
o
p
m
ents
for T
U
G-T
60
Rob
o
tic Telesc
ope
. Co
nf. Seri
es of Rev. Mex. de Astr
onomi
a
y
Astrofisic
a. 201
4; 45: 24-2
5
.
[14]
Dind
a
r M, H
e
l
hel S, Es
en
on
glu
H, Parma
ksi
zogl
u M. A
Ne
w
Soft
w
a
r
e
on
T
U
GT
60 Auton
o
mou
s
T
e
lescope for Astronomic
al T
r
ansi
ent Event
s.
Experimenta
l
Astrono
my.
2
015; 39: 2
1
-28.
[15]
Reference Manual for T
a
l
on (OCAAS) Version 2.0. 2000.
Evaluation Warning : The document was created with Spire.PDF for Python.