TELKOM
NIKA
, Vol. 13, No. 4, Dece
mb
er 201
5, pp. 1422
~1
436
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i4.xxxx
1422
Re
cei
v
ed
Jun
e
26, 2015; Revi
sed Aug
u
st
13, 2015; Accepted Sept
em
ber 2, 201
5
Computing Game and Learning State in Serious Game
for Learning
Ririn D
w
i
Agustin, A
y
u P
u
r
w
arianti, Kridanto Surendro, Iping S Su
w
a
rdi
ST
EI IT
B, Jalan Ganesa N
o
. 10
Ban
d
u
ng, W
e
st Java, Indones
ia
*Corres
p
o
ndi
n
g
author, em
ail
:
ririn_d
w
i
a@
u
npas.ac.
i
d
, end
ro@inform
a
tika
.org
, a
y
u@i
n
fo
rmatika.org,
iping@informat
i
ka.org
A
b
st
r
a
ct
In order to s
upp
ort the ad
aptive SGfL,
teac
hi
ng
mate
rials
must b
e
represe
n
ted
i
n
ga
me
compo
nent th
a
t
beco
m
es th
e target of
ad
apti
v
ity. If adaptive
architectur
e
of
the ga
me
on
ly
use
‘
g
a
m
e stat
e
’
(GS) to recog
n
i
z
e
play
er'
s
state, SGfL req
u
ire
anot
her
i
ndic
a
tor –
‘le
ar
nin
g
state
’
(
L
S)– to id
entify
the
lear
nin
g
pr
ogr
ess. It is a n
e
c
essary to for
m
u
l
ate c
o
mp
utation
a
l fra
m
ew
ork for b
o
th st
ates in
SGfL. T
h
e
computati
o
n
a
l f
r
amew
ork w
a
s divid
ed
into tw
o
mod
u
ls,
mac
r
o-strategy a
n
d
micr
o-
strategy
. Macro-strateg
y
control the
lear
nin
g
path b
a
se
d on l
earn
i
ng
ma
p in AN
D-OR Graph d
a
ta stucture. T
h
is pap
er focus on
t
h
e
Macro-strategy
mod
u
l, that
us
ing o
n
li
ne, dir
e
ct, and centrali
z
e
d
ad
aptivity
meth
od. T
he a
daptiv
ity in ga
me
has five c
o
mp
one
nts as its t
a
rget. Bas
ed o
n
those
ta
rget
s, eight
deve
l
op
me
nt mod
e
l
s
of SGfL con
c
ept
w
a
s enu
mer
a
ted. With si
mil
a
rity an
d diffe
rence
ana
lysis
tow
a
rd possi
bility of
unite
d
LS an
d GS
i
n
computati
o
n
a
l framew
ork to imp
l
e
m
e
n
t the
nin
e
SGfL
con
c
ept into d
e
si
g
n
and
ap
plic
ati
on, there ar
e three
grou
ps of th
e
deve
l
op
ment
mo
de
ls
i.e. (
1
) better
unite
d
GS and
LS, (
2
)
must
ma
na
ge
LS a
nd GS
a
s
different e
n
tity, and (
3
) can c
hoos
e w
hether
to be u
n
ite
d
o
r
not. In the
mode
l w
h
ich is
u
n
ited
LS w
i
th
GS,
computi
ng
mo
del at the
ma
c
r
o-strategy
mo
dul us
e an
d-or
graph
and
for
w
ard chain
i
n
g
. How
e
ver, in t
h
e
opp
osite case,
macro-strate
g
y
requires tw
o intelli
ge
nt
comp
utin
g soluti
ons, those are
and-or gra
ph
w
i
th
forw
ard cha
i
ni
ng to
man
a
g
e
LS c
o
ll
abor
ated w
i
th F
i
nite
State Auto
mat
a
to
mana
ge
GS. T
he pro
p
o
se
d
computati
o
n
a
l
framew
ork
of
SGfL w
a
s res
u
lted
fro
m
the sim
i
la
ri
ty
a
nd d
i
ffe
ren
c
e ana
l
ysi
s to
wa
rd
a
l
l
possi
ble re
pre
s
entatio
ns of teach
i
ng
materi
als into
th
e ad
aptive co
mpo
nents of the g
a
me. It w
a
s n
o
t
dep
en
dent of type of lear
ni
ng
domai
n an
d al
so of the ga
me
genre.
Ke
y
w
ords
: Se
rious Ga
mefor
Lear
mi
ng, L
ear
nin
g
St
ate, Game State, And-
Or Graph, F
S
A
Copy
right
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Entertainme
n
t
game
re
qui
res a
daptivity for th
e g
a
m
e
mo
re f
un
a
nd u
n
p
r
edi
ctable [1].
While in th
e seriou
s g
a
me f
o
r lea
r
nin
g
(S
GfL), ada
ptivity is a necessity beca
u
se
of SGfL sho
u
l
d
be abl
e to adjust to the progress of player skill pr
ofi
c
iency and achievem
ent of learning targets.
This p
ape
r o
u
tlines a
stu
d
y of adaptivity in SG
fL b
y
utilizing theorie
s, con
s
truct
s
, metho
d
s,
techni
que
s, tools, or oth
e
r artifacts of
adaptivit
y in the game, in
struction
a
l de
sign frame
w
o
r
k,
adaptivity in a se
riou
s ga
me itself. The study re
su
lts manife
ste
d
in the form of a flexible
comp
uting m
odel to the variety of ada
ptive
game compon
ent wh
ich represent
ed the tea
c
hi
ng
material, so
versatile
also
for the learni
ng dom
ain
and gam
e genres. O
n
this stu
d
y, ITS
(intellige
n
t tutoring
sy
stem) will be
u
s
ed
to evaluate th
e co
mplete
ne
ss
of comput
ational mo
del
s
SGfL feature
s
an intelli
ge
nt learni
ng
system. Th
is
pape
r is
a subset of the
resea
r
ch on
the
developm
ent
of co
ncept
model
s a
n
d
de
sign
m
odel
s of S
G
fL with thi
s
ap
proa
ch:
th
e
transfo
rmatio
n of non-g
a
m
e
instru
ction
a
l
desig
n into the game.
There a
r
e
three
re
sea
r
ch
are
clo
s
ely
a
s
soci
ated
wit
h
this pa
pe
r. The
main
o
ne i
s
the
result of
a
su
rvey by L
ope
z a
bout th
e
p
r
og
re
ss an
d t
he m
o
vemen
t
of re
se
arch
at ada
ptivity in
the area
of
game [1]. Se
con
d
i
s
the
basi
c
th
eor
y from Reygel
u
t
h
abo
ut
in
structio
nal de
si
gn
frame
w
ork,
whi
c
h
ha
s a
micro-strate
gy and
ma
cro-strat
egy t
e
rmin
ology i
n
organi
zatio
nal
strategy,
whi
c
h
certai
nly h
a
ve an imp
a
ct on t
he deliv
ery strategy
and ma
nag
e
m
ent strategy
[3].
Third, the p
a
per M
D
Kickm
e
ier-Rust, whi
c
h p
r
op
oses
about ad
aptivity in a seriou
s gam
e, nam
ely
a non
-inva
s
ive metho
d
of
micro-a
daptiv
ity, with
in the meanin
g
a
d
aptivity towards le
arni
ng d
oes
not interfere with the flow
of game. The
Rust
'
s
meth
od appli
ed in
the case stu
d
y on narati
v
e
game b
a
sed
learni
ng. The
pape
r al
so touched o
n
th
e need fo
r m
a
cro-ada
ptiv
ity that one of its
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 142
2 – 1436
1423
function
s is t
o
mana
ge th
e seq
uen
ce o
f
the curr
iculu
m
. Macro-a
d
aptivity is expected to b
e
n
on-
invasive as
well [3]. Paper from
MD
KNickmei
er-Rust will be
used as
the
primary means of
c
o
mparis
on with SGfL models
pr
o
p
o
s
ed
in
th
is
p
a
per
.
Lope
z
cla
ssif
y
diversity of
re
sea
r
ch result
s ab
out a
d
aptivity in the game
ba
sed
on the
purp
o
se, met
hod
and
the
targeted
g
a
m
e
comp
one
nt wa
s ad
apte
d
. Thi
s
a
r
ticl
e di
scuss
ab
out
SGfL flexible
co
mputing
model
s fo
r t
he 5
di
fferen
t
game
com
pone
nts
as
adaptivity target.
Studied ada
p
t
ation method
in this paper was limit
ed to the online method with
dire
ct adaptiv
ity
and centralized me
chani
sm, and varia
b
le input only
from player
skill p
r
ofi
c
ien
c
y asp
e
ct. O
n
line
adaptivity me
ans that
ada
ptation
ca
rrie
d
out
du
ring
runnin
g
g
a
me,
co
ntroll
ed
by the
data
abo
ut
learni
ng p
r
og
ress of playe
r
. Dire
ct ada
ptivit
y means that the rules for d
e
ci
si
on-m
a
ki
ng a
n
d
choi
ce
of acti
ons th
at ca
n
be sele
cted i
n
the de
ci
sio
n
, has
bee
n p
r
epa
re
d by th
e game
de
sig
ner
before
ru
nni
ng the
gam
e. Cent
rali
ze
d me
cha
n
ism mean
s th
at all de
cisi
on an
d a
c
tio
n
for
adaptatio
n are done a
nd controlle
d by one modul
e, not
distribute
d
to some ind
e
pend
ent age
n
t
s.
The
scope
of adaptatio
n t
he lea
r
nin
g
t
a
sk in m
a
cro
-
strategy i
s
co
ntrol the l
earning p
a
th
based
on m
a
p of
comp
ete
n
cie
s
. Amo
n
g
compete
n
cy have a
pre
r
equi
site
relat
i
onship. Ma
cro
-
strategy en
su
re
that a co
mpet
en
cy ca
n only b
e
stu
d
ied if its p
r
e
r
equi
site
ha
s bee
n ma
stered.
Variety ad
apti
v
ity that must
be
p
r
ovide
d
in ma
cr
o-strat
egy of SGfL
a
r
e
(1
) to i
n
tervene
whe
n
th
e
player i
n
the
stu
ck,
wh
ere no
gam
e
state ca
n
b
e
explore
d
(3) lowe
r/rai
s
e
th
e
minim
u
m
t
h
e
threshold
crit
eria for mast
ery of
competenci
e
s based on the trends of
the player's ability to le
arn
(4) en
co
urag
e the player to
repeat the game for
achi
eve a higher level of
mastery of the
comp
eten
cie
s
.
If the ada
ptivity model tha
t
be p
r
op
ose
d
by
M
D
Kickmeier-Rust i
s
non
-inva
s
ive
[3] [9],
this rese
arch
cont
rary
wa
nt to examin
e ho
w to
int
egrate l
e
a
r
ni
ng with
com
pone
nts, flow and
logic
of the
game. T
he
reason i
s
"be
c
au
se
S
G
fL
must b
e
ad
a
p
tive based
on the l
earni
ng
prog
re
ss of the playe
r
, an
d the pri
m
ary
obje
c
t to be
adapte
d
are teaching m
a
te
rials
and
deli
v
ery
techni
que, so
the teaching
material sh
o
u
ld be re
pre
s
ented in a ga
me com
pon
e
n
t that beco
m
es
the target of adaptivity". Rese
ar
ch qu
e
s
tion of the studie
s
revie
w
ed in this p
aper i
s
how
the
invasive
patte
rns of th
e
rep
r
esentation
of
the l
ear
ning
material
into
5 different
co
mpone
nts of t
he
game, and th
en to found flexible com
p
uting model
f
o
r ada
ptivity
in seri
ou
s ga
me for learni
ng
(SGfL).
Reu
s
e
co
mp
onent fo
r varian of impl
e
m
entation
co
ntext is key comp
one
nt o
f
flexible
comp
uting m
odel. Dom
a
in
analysis i
s
a
method to find the reu
s
e
compo
nent, usin
g simila
ri
ty
and differe
nce analysi
s
in
the domain
probl
em.
Re
search in thi
s
pape
r used
FODA (F
eatu
r
e
Oriente
d
Do
main Analy
s
i
s
)
co
nsi
s
t of
context an
al
ysis: In o
r
de
r to e
s
tabli
s
h
scope, d
o
m
a
in
modelin
g: in
orde
r to
d
e
fine the
proble
m
spa
c
e, a
r
chitectural m
o
deling, i
n
o
r
d
e
r
to
ch
ara
c
t
e
rize
the solutio
n
space [4] [5].
Detail of the
s
e stag
e
wa
s
descri
bed i
n
rese
arch meth
od. The
soluti
on
spa
c
e
will be
manifeste
d
in
functional m
odel an
d arch
itecural mod
e
l
.
2. Rese
arch
Metho
d
Picture
1 de
scrib
ed d
e
tail
step of resea
r
ch i
n
this
pa
per. Contex
analysi
s
give
sou
r
ce
material to
further
re
sea
r
ch
. Based
on lit
eratu
r
re
view,
in this chapt
er
will be
expl
ained
abo
ut the
material. The
spa
c
e of problem in the
form
of an enume
r
atio
n of the varian
ts developm
ent
model
of SG
fL con
c
e
p
t. The vari
ants wa
s d
e
velo
ped b
a
sed o
n
re
pre
s
e
n
tations
of tea
c
h
i
ng
material
s o
n
a variety of g
a
me
comp
on
ent. The n
e
xt step i
s
a
nal
ysis of
simila
rity and differe
nce
of the functio
nal feature
s
t
hat req
u
ire
d
for co
mputin
g the game e
n
g
i
ne. That is n
o
t on asp
e
ct
s of
multimedia in
teractio
n. Including exp
e
ri
ments
to gai
n a firmer
cl
arity about h
o
w to man
a
ge
learni
ng
stat
e and
Game State the game
will
be
descri
bed al
so i
n
the research m
e
thod.
Cha
r
a
c
teri
stics of th
e
solu
tion is found
in the
form
of
feature
s
a
nd comp
utational
m
odel
s be
written in result and analy
s
is.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Com
puting G
a
m
e
and Lea
rning State in
Seriou
s Gam
e
for Lea
rnin
g
(Ririn Dwi
A
gustin)
1424
Figure 1. Re
search Meth
od
ology
2.1. Conte
x
t Analy
s
is
2.1.1 Adap
ti
v
i
t
y
in Game and the Ad
option into S
G
fL
Adaptivity archite
c
ture
in
game
could
be
se
e
n
in
F
i
gure
2. Ad
a
p
tation m
e
ch
anism
is
listed bel
ow.
1.
Monitori
ng pl
ayer actio
n
2.
Interpret player action into
variables in pl
ayer modelling
3.
Assig
n
value
s
into player
mode
4.
Predi
ct Next State Experience u
s
in
g ga
me
state and
informatio
n from player mo
del
5.
Con
s
tru
c
t ga
me eleme
n
ts
based on the
Next State Experie
nce
Gene
rally, a
daptivity in seri
ou
s ga
m
e
co
ul
d b
e
done
by onli
ne o
r
offline
.
Offline
mech
ani
sm was do
ne by survey app
roa
c
h to us
er wh
en user logi
n and befo
r
e th
e game loa
d
e
d
,
so the
en
gin
e
wa
s
call
ed
as
“content
g
eneration
”
. M
ean
while
onli
ne me
ch
ani
sm is
done
al
ong
the game
ba
sed
on data
obtaine
d fro
m
model pl
a
y
er (d
riven a
ppro
a
ch data
)
so th
e en
gi
ne fit
with the nam
e “co
n
tent ad
aptation”.
In online m
e
cha
n
ism,
rule
s an
d tech
ni
que for
de
cision ma
king
a
nd types of d
e
ci
sion
s
coul
d be ta
ke
n may use two app
roa
c
h
e
s, which are
di
rect a
daptatio
n (all thin
gs
a
r
e p
r
ep
are
d
b
y
desi
gne
r)
or
indire
ct ad
ap
tation (u
sing
machi
ne’
s le
arnin
g
to fin
d
cu
stomi
z
ed
com
b
ination
of
action
). To use indire
ct ad
a
p
tation, need
long
en
oug
h learni
ng p
r
o
c
ess towa
rd
s the syste
m
an
d
a lot of data for autom
atic l
earni
ng.
Refer to the
figure
2, the
r
e
are
5
differe
nt com
pon
en
ts of the
gam
e that
could
be the
target of ad
aptivity.
If a
daptivity is limited onl
y by the player compete
n
ce
proficie
ncy,
not
motivation or other mental
conditio
n
s, then the
5
kinds of comp
onent
s it is a
n
oppo
rtunity to
rep
r
e
s
ent the
teachin
g
ma
terials. T
hat rule wa
s
in
du
ced from fact
that teachin
g
material
s a
n
d
delivery me
chani
sms th
at
will be th
e target of t
he ad
aptivity in SGfL. Map of le
arnin
g
em
bo
died
in the orga
ni
zation of co
mpeten
ce in
AND-
OR G
R
APH. Co
ntrol over the students' le
arning
pathways are
the same a
s
controlling th
e posit
io
n of stude
nts in th
e map of learning
Set of differe
nt status i
n
the gam
e wh
er
e the
play
er mu
st hav
e been i
n
on
e of the
decl
a
re
d stat
us is th
e gam
e states
sp
ace. When th
i
s
architectu
re i
s
ado
pted int
o
SGfL, positi
on
of the players can be vie
w
ed from two angle
s
,
the
play map (g
ame state
)
, and the a
ngl
e of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 142
2 – 1436
1425
learni
ng
(lea
rning
state). It can
be p
r
e
s
umed that
i
n
SGfL
sh
ould be
man
age
d game state
(GS)
spa
c
e
and l
earni
ng
state
(LS)
sp
ace. Ho
w spa
c
e
mana
geme
n
t
for the GS
and LS, if i
t
is
asso
ciated
wi
th the rep
r
e
s
entation of te
achi
ng mate
ri
als in five opt
ion co
mpo
n
e
n
ts of the ga
me
that be
ta
rg
et of the
ad
aptivity is a
rese
arch
qu
estion that
be
comes the
ma
in subje
c
t
of
this
pape
r.
Figure 2. Architecture of Adaptivity in
Game – su
mm
arized from [1
]-[6-10]
2.1.2 Scope
of Macr
ostr
a
t
eg
y
in
Instructional Des
i
gn
Reig
eluth def
ines frame
w
o
r
k of in
structi
onal
d
e
sig
n
consi
s
ted
of three el
eme
n
ts,
whi
c
h
are
Condition
, Method,
an
d Out
c
om
e [2
]. The p
u
rpo
s
e of
de
sign
is to
set the
ri
g
h
t metho
d
th
at
suite the
con
d
ition existed
and t
he o
u
tcome expe
cte
d
. There are f
our a
s
pe
ct o
f
Condition, i.
e.:
learni
ng
cont
ent, learner context,
learni
ng context, a
nd spe
c
ific
re
quire
ment. M
e
thod
con
s
i
s
ts of
orga
nizationa
l strategy, de
livery strateg
y
, and
mana
gement st
rat
egy. Organi
zational strate
gy
divided into two levels, wh
ich are macro strategy
an
d micro
strat
egy. Macro
strategy mana
ges
“wh
a
t do I want the Student to learn” a
nd “what di
d
I know a
bout
the Student”. Practically, it is
orga
nizi
ng le
arnin
g
co
nten
ts, what the students h
a
ve to learn to a
c
hieve the lea
r
ning out
come
,
how to sort,
con
c
lu
de, o
r
synthe
size th
em. Deliv
e
r
y
strategy i
n
m
a
cro level
introdu
ce
s lea
r
ni
ng
activity and
controls Mi
cro strategy m
odule.
M
ana
gement Strategy ma
ke
d
e
ci
sion
s to
ward
s
whi
c
h conten
ts of learnin
g
delivere
d
in what
conte
x
t at every
T (time) in l
earni
ng p
r
o
c
ess.
Manag
eme
n
t strate
gy nee
ds
kno
w
le
dg
e abo
ut 1)
co
ndition a
nd p
r
og
re
ss
of st
udent’
s
lea
r
ni
ng,
2) map of ma
terial’s o
r
ga
ni
zation, conte
x
t, and in
teraction
s
, and 3
)
strate
gy to
match stu
den
t’s
c
o
ndition with material.
Subject
s
lea
r
ned are ma
nage
d as a
set of
learning state (L
S). LS is a cro
s
s of
comp
eten
cy levels (Blo
om/
A
nderso
n taxonomy) in
on
e domai
n and
kno
w
led
ge o
b
ject (se
e
tab
l
e
1). LS, one with anoth
e
r,
have a relati
on between,
whi
c
h is u
s
u
a
lly made in pre
r
eq
uisite f
o
rm.
One
LS coul
d contain
on
e or mo
re
kn
owle
dge
obj
e
c
t. To me
asu
r
e
stude
nt’s
ability towa
rd
s a
n
LS, will be ne
eded a
stan
d
a
rd d
e
finition
of player
’
s
m
a
stery ove
r
a
n
LS. Learnin
g
method u
s
ed
for an LS
also nee
d to be
defined.
Deta
ils of subj
e
c
ts in an LS
will
be man
age
d i
n
Micro
strate
gy
module.
Referred to [11], in the mic
r
os
trategy was
pr
op
osed t
w
o
kind of a
c
tivity. Those
activities
are l
earning
activity and a
s
sessme
nt a
c
tivity. In t
he learni
ng a
c
tivity, SGfL will provide
varia
n
of
support for learning ba
sed
on player capability to learn t
he new
competencies
. Judgment about
player’
s
skill
profici
e
ncy was taken
from
assessm
ent
activity only.
So
the player is
not judged by
the length of the learning p
r
oce
s
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Com
puting G
a
m
e
and Lea
rning State in
Seriou
s Gam
e
for Lea
rnin
g
(Ririn Dwi
A
gustin)
1426
Table 1. Lea
rning State wa
s build fro
m
cognitive level x Knowledg
e Obje
ct
Cognitif Level
Kno
w
ledge Object
P Q
R
S
Remembering
P1
Q1
R1
S1
Understanding
P2
Q2
R2
S2
Appl
y
P3
Q
3
R3
S3
Example of learni
ng map
in Figure 3,
sho
w
that learni
ng targ
e
t
consi
s
ted o
f
three
comp
eten
ce
s. Compete
n
ce K1 is a
set
of comp
eten
ce
s in n
ode
P1, node P2,
node S1, n
o
de
S2, node P3,
and n
ode S3.
Comp
eten
ce
K2 is a
set of
com
peten
ce
s in n
ode P1,
node
Q1, no
d
e
S1, node Q
2
, node T1,
node T2, a
nd nod
e T3. Meanwhile
comp
eten
ce
K3 is a set
o
f
comp
eten
ce
s in node P1, node Q1, no
d
e
Q2, node R1, node R2, n
ode Q3, and
node R3. LS Q1
need
s ma
stery of LS P1
to
be played.
Manag
eme
n
t strategy take respon
sibil
i
ty
to drive the learning
path ba
sed
on the
learni
ng
map
.
Example in
figure 3, th
e path
only
be
starte
d from P1, b
e
ca
use
the
r
e i
s
n
o
pre
r
eq
uisite
of P1. Learni
ng state P2, Q1, and S1 can be le
arn
ed after play
er have ma
stered
P1. Learni
ng
state S2 wa
s opene
d for p
l
ayer if and
o
n
ly if they have mastered
P2 and S1, that
is the me
anin
g
of the two a
rro
ws into the
S2 is
united
with curved li
nes.
Crite
r
ia
of the maste
r
i
n
g
of com
peten
cie
s
i
s
d
e
termined
by th
e a
s
sessme
n
t
re
sult of th
e playe
r
skill
profi
c
ien
c
y i
n
a
learni
ng state
.
Figure 3. Rel
a
tionship Pre
r
equi
site bet
wee
n
LS
Learning Pol
i
c
y
Adapta
tion in Macro
Lev
e
l
Strate
g
y
Along le
arni
ng p
r
o
c
e
ss,
learne
rs’
a
b
ility is diffe
rent o
ne to
anoth
e
r. F
o
r p
r
ovid
e
adaptivity, the thre
shol
d value
could
be
differ for ea
ch LS, depe
nd
s on it
s difficu
lty level. If
it sets
an absolute score for every learner in e
v
ery LS
, then some lea
r
ne
r did not experien
c
e le
arni
n
g
process in a
few LS, because they
can't fulfill
threshold value of
prerequisite LS. To solve this,
learni
ng d
e
si
gner can a
ppl
y three type
s
of policy
o
r
a
combi
nation
of them. Belo
w a
r
e the th
ree
polici
e
s.give
the le
arn
e
rs
chan
ce to
try
again
in fail
e
d
LS,
with m
a
ximum limit
of ch
an
ce
s af
ter
he get game
over state.
(1)
lower treshol
d
for learners who
have
si
gns
of
having less ability, so
those learners
could
experie
nce th
e next LS but
with de
grade
d qualit
y of
challen
ges. S
G
fL ca
n p
r
ovi
de 3
kind
s
grad
e, low, m
edium, and hi
gh for the tre
s
hol
d.
(2)
to learn
e
rs who have
su
cce
s
thro
ugh
the w
hol
e L
S
requi
red, b
u
t not with their o
p
timal
result (hig
h tresh
o
ld), will b
e
given ch
an
ce to re
peat a
gain
By repeating,
learn
e
rs are
expecte
d to mast
e
r
the L
S
better. Ord
e
r of LS ope
ned can b
e
cha
nge
d to p
r
event lea
r
ne
rs from gettin
g
bored. It
is better for n
o
n
linierity aspe
ct if SGfL have
many altern
ative material reso
urce.
2.1.3. Rule Analy
s
is For
Combine 5
Game Comp
oment as T
a
rget o
f
Ada
p
tiv
i
t
y
Based
on Fi
gure 3, the
r
e are five types of
comp
onent
s that have po
ssi
bil
i
ties to be
adaptive. T
h
e o
r
de
r
and
co
mbin
ation
s
can
not
be
don
e freely, ho
weve
r. It ha
s to
refe
r to
comp
one
nts’
relation
s in g
a
me de
sign a
s
pe
cts.
Combi
nation
prop
osed in F
i
gure 4 i
s
ba
sed on detail
s
belo
w
.
a)
Definition of g
a
me co
mpo
n
ents a
c
cordi
n
g to
Rich
ard
Rou
s
e [12] a
nd Dave Mo
rris [13]
P2
P1
Q1
R2
S2
P3
R3
Q3
R1
Q2
T1
S1
T2
S3
T3
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 142
2 – 1436
1427
b)
Thre
e types o
f
order in a
r
ra
nging g
a
me concept acco
rding to
[
12
]
, whi
c
h are,
i)
Gam
eplay
te
c
h
no
lo
gy
Story
;
ii)
Tech
nolo
g
y
st
o
r
y
ga
m
eplay;
and
iii)
Story
ga
me
p
l
ay
tech
nolog
y
c)
Frame
w
o
r
k of gameplay de
velopment
s a
nd
game m
e
chani
c from Carlo Fa
bri
c
ato
r
e [14]
A few prop
osi
t
ion obtaine
d are liste
d bel
ow.
a)
Que
s
t /Challe
nge/Puzzle i
s
core of inte
ra
ction bet
wee
n
game with
player
b)
Gamepl
ay, Game Me
cha
n
i
c
, and NP
C can n
o
t defin
e sep
a
rately
(G
amepl
a
y
X
Game Mechanic
X PC/NP
C
)
c
)
Ques
t is
weak
entity
toward s
t
ory or toward (Gam
eplay X Game Mechanic X NP
C)
d)
Story can be
followe
d by Gameplay or
Gamepl
ay be
followed by
Story
e)
Game
wo
rld
must b
e
rele
vant with pl
o
t. Pl
ot is eve
n
in that
all
of game
co
mpone
nt
colla
borate to
make sto
r
y.
chan
ge
s i
n
the ga
me
world m
a
ke im
pact o
n
the
chang
e in
the majority o
f
compon
ents.
f)
At player sto
r
y or eme
r
ge
n
t
story, stor
y
wa
s create
d
by Gamepl
ay X Game Me
cha
n
ic X
PC/NPC.
(Gameplay X Game Mec
hanic
X PC/NP
C
) X Story
Figure 4. Dia
g
ram of Com
b
ination
Ru
le
for Adaptif Co
mpone
nt in Game
2.2. Domain Modelling
2.2.1. Enumeration Spac
e
of Problem w
i
th Rule
In this section will be di
spla
yed eight ki
nds of development models of the concept of
seri
ou
s g
a
m
e
s
(see figu
re 5),
ba
sed
on rule at
fig
u
re
4 an
d u
s
ing the te
rmi
nology of
Ca
rlo
Fabri
c
ato
r
e
and ga
me d
e
velopme
n
t frame
w
o
r
k
ga
meplay me
chani
c that is con
c
e
r
ne
d with
learnability. F
o
r
gameplay, starti
ng f
r
om
the
core gameplay i
s
fa
cilitated by a
core mechanic or
more
Game
p
l
ay can
be en
rich
ed
with co
re meta
game
p
lay witho
u
t changi
ng the
core m
e
chani
c.
Core me
ch
an
ic can
be e
n
riche
d
with
sa
telite mechan
ic, in the
form of enh
an
cement o
r
p
o
w
er-
up, or alte
rna
t
e mech
ani
c. Periph
eral
ga
meplay may
be used if th
e story force
d
to introdu
ce a
new g
a
mepl
a
y
to the player.
Que
s
t is the
essen
c
e
of the intera
ction
of
the game t
o
create a
ch
alleng
e. In the que
st
to be represented SGfL teaching mat
e
rial
s. Fo
rm
s will vary based
co
m
ponent quest game
whe
r
e tea
c
hi
ng materi
als
are rep
r
e
s
ent
ed. The si
mpl
e
st is a p
u
zzl
e
. The mo
st compli
cate
d is if
the rep
r
e
s
ent
ation of the material in the form gam
epla
y
x mechanic
x item/NPC.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Com
puting G
a
m
e
and Lea
rning State in
Seriou
s Gam
e
for Lea
rnin
g
(Ririn Dwi
A
gustin)
1428
1. Quest as Adaptive C
o
mpo
n
ent, Stor
y
GamePlay
Quest
2. Quest as Adaptive C
o
mpo
n
ent, GamePla
y
Story
Quest
3. Stor
y
as ad
a
p
tive comp
on
e
n
t, Stor
y
Gamepl
a
y
Quest
4. Gamepla
y
x
Mecha
n
ic
x Item/Npc as ada
p
t
ive compo
n
e
n
t , Gamepla
y
Stor
y
Quest
5. Quest as ad
aptive com
p
o
n
ent, Gamepla
y
Quest ( Pla
y
er Stor
y
)
6. Gamepla
y
x
Mecha
n
ic
x Item/Npc as ada
p
t
ive compo
n
e
n
t, gamepl
a
y
Quest (Pla
yer
Stor
y
)
7. Game
w
o
rld
as ada
ptive co
mpon
ent Game
w
o
rl
d as LS, Game
w
o
rl
d
Gameplay
Sto
r
y
Quest
8. Game
w
o
rl
d as ada
ptive co
mpon
ent, Game
w
o
rl
d +
Gamepla
y
as LS ,
Game
w
o
rld
Gameplay
Sto
r
y
Quest
Figure 5. Enumera
s
i of Pro
b
lem Spa
c
e: 10 kin
d
s of Developme
n
t Model
s SGfL Con
c
e
p
t
2.2.2. Similarit
y
and Differ
e
nce Analy
s
is
Of ea
ch
enu
meratio
n
can
be
affirmed,
they h
a
ve t
he
sam
e
p
r
o
b
lem, ie
ma
nagin
g
learni
ng
state as
an e
n
tity that
represents a
co
mp
etenc
y. Characteri
stics of
learni
ng
state i
n
macro
s
trateg
y level of org
anizational a
nd man
agem
ent aspect
s
of the st
rate
g
y
outlined in
the
previou
s
se
ction. The im
p
a
ct of differe
nce
s
in th
e compon
ents
u
s
ed to
re
pre
s
ent the
co
urse
material in th
e game, led to a differen
c
e
in m
anaging
game state (GS) sp
ace, whether it ca
n be
combi
ned
wit
h
lea
r
nin
g
the
state
or
not i
n
the
scope
o
f
Macro
s
trate
g
y. Possi
bility analy
s
is
of a
n
integrate
d
ma
nagem
enttoward GS an
d L
S
for each e
n
u
meration ca
n be se
en in tabel 2.
ga
me
p
l
a
y
me
c
h
a
n
i
c
(fo
llo
w
ga
me
p
l
a
y
)
it
em
/
N
P
C
(fo
llo
w
ga
m
e
p
l
a
y
)
Stor
y
‐
1g
a
m
e
p
l
a
y
(c
o
r
e+
m
e
t
a
)
C
o
r
e
Me
c
h
a
n
i
c
[
1
,
2
]
(
que
s
t
as
it
e
m
/
N
P
C
)
P1
q
1
g
a
m
e
w
o
r
l
d
A
Stor
y
‐
1+
g
a
m
e
p
l
a
y
(c
o
r
e+
m
e
t
a
)
C
o
r
e
Me
c
h
a
n
i
c
[
1
,
2
]
(
que
s
t
as
it
e
m
/
N
P
C
)
P2
q
2
g
a
m
e
w
o
r
l
d
B
Stor
y
‐
1+
+
g
a
m
e
p
l
a
y
(c
o
r
e+
m
e
t
a
)
C
o
r
e
Me
c
h
a
n
i
c
[1
,2
,3
,4
]
(
q
u
e
st
as
it
e
m
/
N
P
C
)
P3
q
3
g
a
m
e
w
o
r
l
d
C
Le
a
r
n
i
n
g
St
a
t
e
Ga
m
e
w
o
r
l
d
(c
o
n
t
e
x
t
of
St
or
y
ga
me
p
l
a
y
,
me
c
h
a
n
i
c
,
i
t
e
m
/
N
P
C
,
qu
e
s
t
)
Kn
o
w
l
e
d
g
e
Obj
e
c
t
wa
s
p
r
es
en
t
e
d
in
qu
e
s
t
(in
s
p
i
r
e
d
by
st
or
y)
St
or
y
(
e
m
b
b
e
de
d)
In
s
p
i
r
e
d
by
St
o
r
y
‐
Suppo
r
t
th
e
Qu
e
s
t
game
p
l
ay
me
c
h
a
n
i
c
(fo
l
lo
w
game
p
l
ay
)
it
em
/
N
P
C
(
f
o
llo
w
ga
me
p
l
a
y
)
game
p
l
ay
(
c
or
e
+
me
ta
)
C
or
e
Me
c
h
a
n
i
c
[1
,
2
]
(
q
u
e
s
t
as
it
e
m
/
N
P
C
)
P
1
q
1
S
t
o
r
y
‐
1g
a
m
e
w
o
r
l
d
A
game
p
l
ay
(
c
or
e
+
me
ta
)
C
or
e
Me
c
h
a
n
i
c
[1
,
2
]
(
q
u
e
s
t
as
it
e
m
/
N
P
C
)
P
2
q
2
S
t
o
r
y
‐
2g
a
m
e
w
o
r
l
d
B
game
p
l
ay
(
c
or
e
+
me
ta
)
C
or
e
Me
c
h
a
n
i
c
[
1
,2
,3
,4
]
(
q
u
e
s
t
as
it
e
m
/
N
P
C
)
P
3
q
3
S
t
o
r
y
‐
3g
a
m
e
w
o
r
l
d
C
Can
be
Fi
x
e
d
Comp
on
e
n
t
Le
a
r
n
i
n
g
Sta
t
e
Kn
o
w
l
e
d
g
e
Ob
j
e
c
t
wa
s
p
r
es
en
t
e
d
in
qu
e
s
t
St
or
y
(c
o
n
t
e
x
t
of
que
s
t
)
Ga
m
e
w
o
r
l
d
(p
r
e
s
e
n
t
the
st
or
y
)
Ga
m
e
p
l
a
y
Ga
m
e
M
e
c
h
a
n
ic
I
t
em
/
N
P
C
Q
u
es
t
P1
S
t
o
r
y
‐
1
C
o
r
eg
a
m
ep
la
y
A
+m
e
t
a
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
e
n
e
m
y
E
1
q
1
G
a
me
w
o
r
l
d
A
P2
S
t
o
r
y
‐
2
C
o
r
eg
a
m
ep
la
y
A
+m
e
t
a
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
e
n
e
m
y
E2
,
A
llied
A
1
q
2
G
a
me
w
o
r
l
d
B
L
e
a
r
ni
ng
St
a
t
e
F
o
llo
w
th
e
St
o
r
y
Ga
m
e
w
o
r
l
d
f
o
llo
w
st
or
y
,
ga
me
p
l
a
y
,
me
c
h
a
n
i
c
,
it
em
Kn
o
w
l
e
d
g
e
Obj
e
c
t
wa
s
p
r
es
en
t
e
d
in
St
or
y
G
a
me
pl
a
y
G
a
me
Me
c
h
a
n
i
c
I
t
e
m
/
N
P
C
P1
Co
r
e
g
a
m
e
p
l
a
y
[1
]
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
en
e
m
y
E1
,
A
llie
d
A1
,
A2
,
A3
St
o
r
y
‐
1q
1
G
a
m
e
w
o
r
l
d
A
P2
Co
r
e
g
a
m
e
p
l
a
y
[1
,
2
]
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
en
e
m
y
E2
,
A
llie
d
A1
St
o
r
y
‐
2q
2
G
a
m
e
w
o
r
l
d
A
P3
Co
r
e
g
a
m
e
p
l
a
y
[1
,
2
]
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
+
P
o
w
e
r
U
p
en
e
m
y
E1
,
A
llie
d
A1
,
A2
,
A3
St
o
r
y
‐
3q
3
G
a
m
e
w
o
r
l
d
B
G
am
e
w
o
r
ld
fo
l
l
o
w
st
o
r
y
an
d
ot
he
r
s
e
l
em
en
t
Le
arn
i
n
g
St
a
t
e
Kn
o
w
l
e
d
g
e
Ob
j
e
c
t
wa
s
p
r
es
en
t
e
d
in
St
o
r
y
,
In
s
p
i
r
e
d
by
G
a
m
e
pl
a
y
,
M
e
c
h
a
ni
c
,
It
e
m
/
N
P
C
Qu
e
s
t
f
o
llo
w
th
e
St
o
r
y
,
ga
me
p
l
a
y
,
me
c
h
a
n
i
c
,
i
t
e
m
/
N
P
C
ga
m
e
p
l
a
y
me
c
h
a
n
i
c
(f
o
l
l
o
w
ga
me
p
l
a
y
)
i
t
e
m
/
N
P
C
(f
o
l
l
o
w
game
p
l
a
y
)
ga
m
e
p
l
a
y
(c
o
r
e
+
m
e
t
a
)
Co
r
e
Me
c
h
a
n
i
c
[
1
,
2
]
(
que
s
t
as
subse
t
of
it
e
m
/
N
P
C
P1
q
1
g
a
m
e
w
o
r
l
d
A
ga
m
e
p
l
a
y
(c
o
r
e
+
m
e
t
a
)
Co
r
e
Me
c
h
a
n
i
c
[
1
,
2
]
(
que
s
t
as
subse
t
of
it
e
m
/
N
P
C
P2
q
2
g
a
m
e
w
o
r
l
d
B
ga
m
e
p
l
a
y
(c
o
r
e
+
m
e
t
a
)
Co
r
e
Me
c
h
a
n
i
c
[
1
,2
,
3
,4
]
(
q
u
e
s
t
as
subse
t
of
it
e
m
/
N
P
C
P3
q
3
g
a
m
e
w
o
r
l
d
C
Le
a
r
n
i
n
g
St
a
t
e
Ca
n
be
Fi
x
e
d
Co
mp
o
n
e
n
t
Kn
o
w
l
e
d
g
e
Ob
j
e
ct
wa
s
p
r
es
en
ted
in
que
s
t
Ga
m
e
w
o
r
l
d
(c
o
n
t
e
x
t
of
que
s
t
,
ga
m
e
p
l
a
y
,
mec
h
a
n
i
c
,
i
tem/
NP
C
)
Ga
m
e
p
l
a
y
Ga
m
e
Me
c
h
a
n
i
c
I
t
e
m
/
N
P
C
P
1
Co
r
e
ga
m
e
p
l
a
y
[1
,
2
]
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
e
n
e
m
y
E1
,
A
lli
ed
A1
,
A2
,
A
q1
G
a
m
e
w
o
r
l
d
A
P
2
Co
r
e
ga
m
e
p
l
a
y
[1
,
2
]
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
e
n
e
m
y
E2
,
A
lli
ed
A1
q
2
G
a
m
e
wo
r
l
d
A
P3
C
o
r
e
me
ta
game
p
l
a
y
[1
,
2
]
+
Co
r
e
Me
c
h
a
n
i
c
[
1
,2
,3
,4
]
e
ne
my
E1
,
A
lli
ed
A1
,
A2
,
A
q3
G
a
m
e
w
o
r
l
d
A
Le
arn
i
n
g
St
a
t
e
Kn
o
w
l
e
d
g
e
Ob
j
e
c
t
wa
s
pr
e
s
e
n
t
e
d
in
(c
r
e
a
t
e
st
or
y)
Qu
e
s
t
fo
l
l
o
w
ga
m
e
pl
a
y
,
me
c
h
a
n
i
c
,
i
t
e
m
/
N
Ga
m
e
w
o
r
l
d
fo
ll
o
w
th
e
ga
me
p
l
a
y
,
Ga
m
e
p
l
a
y
Ga
m
e
M
e
ch
a
n
i
c
I
t
e
m
/
N
P
C
S
t
o
r
y
P1
G
a
m
e
w
o
r
l
d
X
C
o
r
eG
a
m
eP
la
y
C
o
r
e
Me
c
h
a
n
i
c
E
n
e
m
y
X,
Al
l
i
e
d
Y,
It
e
m
ZS
t
o
r
y
‐
Xq
1
P2
G
a
m
e
w
o
r
l
d
AP
e
r
i
p
h
e
r
a
l
Ga
m
e
P
l
a
y
AC
o
r
e
Me
c
h
a
n
i
c
AE
n
e
m
y
A,
A
l
lied
A,
It
e
m
AS
t
o
r
y
‐
Aq
2
Qu
e
s
t
Fo
l
l
ow
St
o
r
y
&
ga
m
e
p
l
ay
Kn
o
w
l
e
d
g
e
Ob
j
e
c
t
/
C
o
m
p
et
en
c
e
Le
a
r
n
i
n
g
St
a
t
e
In
sp
i
r
e
d
by
Ga
m
e
Wo
r
l
d
Ga
m
e
p
l
a
y
G
a
m
e
M
e
c
h
a
n
i
c
I
t
e
m
/
N
P
C
S
t
o
r
y
P1
G
a
m
e
wo
r
l
d
X
C
o
r
eG
a
m
eP
la
y
C
o
r
e
Me
c
h
a
n
i
c
[1
,
2
]
E
n
e
m
y
X,
Al
l
i
e
d
Y,
It
e
m
ZS
t
o
r
y
‐
Xq
1
P2
G
a
m
e
wo
r
l
d
X
C
o
r
eG
a
m
eP
la
y
C
o
r
e
Me
c
h
a
n
i
c
[
1
,2
,3
,4
]
E
n
e
m
y
X,
Al
l
i
e
d
Y,
It
e
m
ZS
t
o
r
y
‐
Xq
2
P3
G
a
m
e
wo
r
l
d
A
C
o
r
eG
a
m
eP
la
y
+m
e
t
a
C
o
r
e
Me
c
h
a
n
i
c
[
1
,2
,3
,4
]
E
n
e
m
y
X,
Al
l
i
e
d
Y,
It
e
m
ZS
t
o
r
y
‐
Xq
3
P4
G
a
m
e
wo
r
l
d
A
P
e
r
i
phe
r
a
l
Ga
m
e
P
l
a
y
Ac
o
r
e
Me
c
h
a
n
i
c
A
[1
,
2
]
E
n
e
m
y
A,
A
l
lied
A,
It
e
m
AS
t
o
r
y
‐
Aq
4
Kn
o
w
l
e
d
g
e
Obj
e
c
t
/
In
sp
i
r
e
d
by
Ga
m
e
Wo
r
l
d
Q
u
e
s
t
Fol
l
o
w
Stor
y
&
ga
m
e
p
l
a
y
L
e
a
r
ni
ng
St
a
t
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 142
2 – 1436
1429
Table 2. Lea
rning State a
nd Game Sta
t
e Analysis in
Developm
en
t Model of the Game
Con
c
ept
2.2.3. Problem Solv
ing Modelling of Con
t
rol Lear
ning Path on
Learning State Spac
e
The st
ru
cture
of the rep
r
e
s
entati
on of th
e learning
sta
t
e spa
c
e in
Figure 3, in
artificial
intelligen
ce termin
ology known as AND-OR G
r
ap
h.
Its constructi
on co
nsi
s
ts o
f
a node, dire
cte
d
arc (in / out),
and the relati
on betwe
en the arcs-i
n on
a node. Some arc in which adjoine
d by a
curve
d
li
ne
o
n
a
no
de
de
clared
the
rel
a
tionshi
p
A
N
D.
Some
a
r
c-in on a nod
e
that no cu
rved
lines
expre
s
s
the relatio
n
O
R
[15]. No
de
s that do
not h
a
ve the arc-in
, referred to a
s
a fa
ct, whi
c
h
doe
s not h
a
ve the arc-out
calle
d goal,
and
who h
a
ve both
called
sub
goal. At the practi
cal l
e
vel
comp
uting, A
N
D-O
R
G
r
ap
h rep
r
e
s
e
n
te
d in senten
ce cal
c
ul
us
propo
sition
s in
the form of
a
spe
c
ial
cla
u
se horn. Examples A
N
D-OR g
r
ap
h re
pre
s
entatio
n
in figure
3 in
to the cal
c
ul
us of
prop
ositio
ns
can b
e
se
en i
n
the Figure 6
At LS spa
c
e,
a nod
e represe
n
ts a
co
m
peten
ce
that
sho
u
ld b
e
m
a
stered by
player. Arc
stated pre
r
e
q
u
isite relatio
n
s
hip
s
. Node
with
a bo
w i
n
ne
ed of
co
mpeten
ce f
r
o
m
its p
a
ir
no
de.
Control strate
gy of the learning path
sta
r
ts fr
om the
node that do
es not have t
he pre
r
e
qui
si
te
(Fa
c
t), di
sco
v
er n
ode
s th
at all p
r
e
r
eq
uisite
s m
e
t (sub
Go
al), t
o
the
nod
e t
hat indi
cate
s a
compl
e
te lea
r
ning out
come
s studi
ed (g
o
a
l). The targ
e
t
from study is the overall goal no
de or
a
part of it.
There are two kind
s of ag
oritma to buil
d
in
feren
c
e e
ngine for AND-OR g
r
ap
h, ie forwa
r
d
chai
ning a
nd
backward ch
aining. The
al
gorithm in
a
c
cordan
ce
with the mana
g
e
ment strate
gy of
macro-mod
u
l
is a fo
rward
chai
ning.
Fig
u
re
6
de
scrib
i
ng the
forwa
r
d
ch
aining
al
gorithm
ap
pli
ed
to the game "Save The KO
D Kingdo
m".
2.2.4. The Experiment: Build Protot
y
p
e SGfL ab
o
u
t Lear
ning SQL
Experiment
s con
d
u
c
ted by
buildi
ng
two prototy
pe
ga
me with
different ge
nre
s
, to
su
ppo
rt
learni
ng on t
he sam
e
topi
c, ie SQL. Adaptivit
y target compo
nen
t is a quest. Game versio
n 1
impleme
n
ts e
nume
r
ation 1
(se
e
t figure 5
)
whi
c
h de
sig
n
of the game
mecha
n
ic at
macro-strate
gy
make
LS u
n
ited with
GS.
The
se
con
d
versio
n
impl
e
m
ent en
ume
r
ation
numb
e
r
2,
which g
a
m
e
mech
ani
c ha
ve narrative functio
n
, so G
S
did not unite with LS.
Game vers
ion 1, where LS =
GS, is
“SAVE THE
KOD KINGDOM”. It was
adventure
game, em
bed
ded
story,
with only o
ne g
a
m
e me
cha
n
ic in
ma
cro lev
e
l, that is
play
er
cho
o
se a
r
e
a
whe
r
e the ne
xt quest is waiting to be done. Goal of
this SGfL is to colle
ct poin
t
s from solvin
g
probl
em
s in a
kingd
om. Ch
ara
c
ter of the
player he
re i
s
a pri
n
cess, Ruruna,
who
gets a
sudd
e
n
duty from his
father to rule
the king
dom. The sto
r
y of this gam
e co
u
l
d be se
en at figure 8.
Nu
Id
M
o
d
e
l
Ho
w
to
fi
n
d
ga
me
c
o
n
c
ep
t
l
ea
r
n
in
g
sta
t
e
in
mac
r
o
s
tr
a
t
e
g
y
g
am
e
st
a
t
e
in
ma
c
r
o
s
r
a
t
e
gy
P
o
s
s
i
b
ilit
y
ga
me
s
t
a
t
e
=
lea
r
n
i
n
g
st
a
t
e
11
.
a
q
u
e
s
t
ba
se
d
st
o
r
y
‐
gam
e
p
l
a
y
‐
qu
e
s
t
c
l
a
ss
of
qu
e
s
t
fc
h
o
o
s
e
(
m
e
c
ha
ni
c
,
qu
e
s
t
as
it
em
)
)
or
fc
h
o
o
s
e
(c
l
a
s
s
of
qu
e
s
t
)
p
o
ssi
bl
e
21
.
b
q
u
e
s
t
ba
se
d
ga
me
p
l
a
y
‐
st
o
r
y
‐
qu
e
s
t
c
l
a
ss
of
qu
e
s
t
fc
h
o
o
s
e
(
m
e
c
ha
ni
c
,
qu
e
s
t
as
it
em
)
)
or
fc
h
o
o
s
e
(c
l
a
s
s
of
qu
e
s
t
)
p
o
ssi
bl
e
32
.
b
s
t
o
r
y
ba
se
d
st
o
r
y
‐
gam
e
p
l
a
y
‐
qu
e
s
t
sto
r
y
id
(t
r
ee)
or
nod
e
in
br
a
n
c
h
of
tr
e
e
of
sto
r
y
fc
h
o
o
s
e(m
e
c
h
a
n
i
c
s
to
ch
o
o
s
e
br
a
n
c
h
of
st
or
y
t
r
ee)
or
f
C
h
ooc
e
(
sto
r
y
id
/
t
r
e
e
)
p
o
ssi
bl
e
,
fo
r
ch
o
i
ce
of
st
or
y
id
43
.
b
ga
me
p
l
a
y
ba
se
d
ga
me
p
l
a
y
‐
st
o
r
y
‐
qu
e
s
t
C
(
ga
me
pl
a
y
,
m
e
c
ha
ni
c
,
i
t
e
m
/
n
p
c
)
=
us
ua
l
l
y
tr
e
a
te
d
as
lev
e
l
of
game
t
h
e
le
v
e
ls
of
game
mo
r
e
s
u
it
a
b
le
to
in
t
e
g
r
a
t
e
GS
=
LS
,
as
ch
o
i
ce
or
de
c
i
de
d
by
syst
e
m
54
.
a
qu
e
s
t
ba
se
d
+s
t
o
r
y
ga
me
p
l
a
y
‐
qu
e
s
t
cr
e
a
t
e
sto
r
y
c
l
a
s
s
of
qu
e
s
t
fc
h
o
o
s
e(m
e
c
h
a
n
i
c
s
,
qu
e
s
t
as
it
em
)
)
fo
r
cr
e
a
t
e
sto
r
y
i
m
po
ssi
b
l
e
,
be
c
a
us
e
me
c
h
a
n
i
c
mus
t
ha
v
e
f
unc
t
i
o
n
a
l
st
o
r
y
64
.
b
ga
me
p
l
a
y
ba
se
d+
st
or
y
ga
me
p
l
a
y
‐
qu
e
s
t
cr
e
a
t
e
sto
r
y
C
(
ga
me
pl
a
y
,
m
e
c
ha
ni
c
,
i
t
e
m
/
n
p
c
)
=
us
ua
l
l
y
tr
e
a
te
d
as
lev
e
l
of
game
fc
h
o
o
s
e(m
e
c
h
a
n
i
c
s
,
le
v
e
l)
)
fo
r
cr
e
a
t
e
st
o
r
y
i
m
po
ssi
b
l
e
,
be
c
a
us
e
me
c
h
a
n
i
c
mus
t
ha
v
e
f
unc
t
i
o
n
a
l
st
o
r
y
75
.
a
ga
me
w
o
r
l
d
ba
se
d
n
o
n
h
i
ra
rc
h
i
game
w
o
r
l
d
=
us
ua
l
l
y
tr
e
a
te
d
as
lev
e
l
of
ga
me
the
le
v
e
ls
of
game
mo
r
e
s
u
it
a
b
le
to
in
t
e
g
r
a
t
e
GS
=
LS
,
as
ch
o
i
ce
or
de
c
i
de
d
by
syst
e
m
85
.
b
ga
me
w
o
r
l
d
ba
se
d
h
i
rarc
h
i
c
a
l
le
a
r
n
i
n
g
st
a
t
e
C
(
ga
me
w
o
r
l
d
,
ga
me
pl
a
y
,
m
e
c
ha
ni
c
,
i
t
e
m
/
npc
)
=
u
s
u
a
lly
tr
e
a
te
d
as
le
v
e
l
th
e
le
v
e
ls
of
game
mo
r
e
s
u
it
a
b
le
to
in
t
e
g
r
a
t
e
GS
=
LS
,
as
ch
o
i
ce
or
de
c
i
de
d
by
syst
e
m
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Com
puting G
a
m
e
and Lea
rning State in
Seriou
s Gam
e
for Lea
rnin
g
(Ririn Dwi
A
gustin)
1430
Figure 6. Pro
positio
n Cal
c
ulus fro
m
Fig
u
re 3 an
d Forward Ch
ainin
g
Algorithm
It could
be
se
en in
Figu
re
7, there
were
two
“!”si
g
n
s
.
They were
provided fo
r th
e playe
r
to choo
se th
em. Engine o
f
game that unit lear
nin
g
st
ate and gam
e state cont
rols computati
o
n
behin
d
these
sign ch
oice
s that appea
red on the
game interfa
c
e. Captu
r
e
of computati
on
pro
c
e
ss
co
ul
d be seen i
n
Figure 8. Th
ere, P1
is
already don
e. P2 and Q
1
a
ppea
red
on t
h
e
interface a
s
t
he
choi
ce
s of
que
st which
the play
e
r
wo
uld do
next.
The oth
e
r l
e
a
r
ning
state
s
a
r
e
not yet to be
open
ed.
Game ve
rsi
o
n 2 is ALTE
RCITY. Its g
enre
is
ca
ree
r
sim
u
lation;
with ga
me m
e
ch
ani
c are
action
s that
relevant with
carri
er m
ana
g
e
ment a
nd
d
a
ily life. Que
s
t wa
s put
as
an item,
whi
c
h is
done by play
er in playe
r
’s job and trai
n
i
ng whil
e
pla
y
er wa
s buil
d
ing his
ca
rrie
r
. The goal i
s
to
colle
ct we
alth
, to get the highe
st positio
n in the
mo
st pre
s
tigiou
s
company in a t
o
wn
calle
d Alter
city, and
to g
e
t a
pro
s
p
e
cti
v
e co
uple
s
.
Chara
c
te
r of
pl
ayer i
s
an i
n
formati
c
s tech
nology
gra
d
u
a
te
named
Mad
a
who
sta
r
ts h
i
s career i
n
Altercity.
The
r
e a
r
e t
w
o
ki
nds
of lea
r
ni
ng state,
wo
rking
state a
nd trai
ning
state. T
r
aini
ng state repre
s
e
n
ted “kno
w”
an
d
“u
nderstan
d” competen
ce
le
vel.
Wo
rkin
g state
represent
“a
pply” co
mpet
ence.
Infered: contentedall proposition symbol with related data
TabClausa : contentedd norm relational form if IF-THEN clauses
TabCount : contented clausa id and number of premises
Agenda : stack for computation in Forward chaining
Result : contented proposition symbol was known as true
TabTracking : contented proposition have been processed and
become true
Begin
Input (Tabclauses)
Input (tabInfered)
Create(TabCount)
Push( all Fakta, Agenda)
GameOver=False
While agenda.notempty()= false and gameover==false do
P = Agenda.pop()
If
Infered[P].value = false Then { the proposition symbol still false}
{display property atribut of P
}
{ask for user, input assesment result of P}
IF
assresult>= P.treshold Then
Push(TabTracking,P);
Infered[P].value = True ;
ClausesMatch= Select * From Tabclauses Where Left=P.symbol,
For i=1 to end ClausesMatch Do
Decrement (TabCount[clausesMatch.Norule]. Count)
If
TabCount[clausesMatch.Norule].Currentcount == 0 then
If
TabCount[clausesMatch.Norule].Symbol is goal Then
{ask for user, input assesment result for the
Goal symbol
}
IF assResult>= Goal.treshold THEN
{
save the symbol to Result
}
If Symbol tersebut GoldenGoal then
Gameover=true { winner, finish game withexcellcene}
endIF
ENDIF
E
lse
Push (TabCount[clausesMatch.Norule].Symbol)
Urutkan agenda berdasarkan nilai heuristic
Endif
TabCount[clausesMatch.Norule].statusExecute=True
Endif
endFor
{update the count matrix}
Endif
{
display
“ try another option”}
Endif
{
proposition symbol have been processed-Skip}
Endwhile
1.
If P1 then P2
2.
If P2 then S1
3.
If P2 thenS2
4. If
S2thenP3
5.
If P3 thenT2
6. If
Q1then
Q2
7. If
Q1then
R1
8.
If Q2 AN
D R1 th
en R2
9.
If Q2 the
n
Q3
10.
If S1 thenQ3
11.
If R2 thenR
3
12. If
Q3then
T3
13.
If R3AND
Q3 th
enT1
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 142
2 – 1436
1431
Figure 7. Illustration of Ga
me Interface versio
n 1- pl
a
y
er cho
o
se si
gn!
Figure 8. Cap
t
ure of Engin
e
Impl
ementa
t
ion for Cont
rol Learning S
t
ate
Figure 9 sho
w
s th
e interfa
c
e of Altercity. From
top-lef
t
to bottom-ri
ght: MADA b
oardi
ng to
altercity, a
ccompani
ed
by allied
Pak E
z
a,
whi
c
h
gi
ves
clu
e
s ab
o
u
t wh
at to d
o
in Altercity. The
next is gl
obal
game
w
o
r
ld
o
f
Altercity, first re
si
dential
for MA
DA, job
anno
un
cem
e
nts, Mad
a
g
o
e
s
to Altermart,
and Ma
da m
e
t with HRD
of ALTERMA
R
T to ap
ply for job
s
.Th
e
contents
of jo
bs
dra
w
n from th
e results of th
e executio
n o
f
the FSA toward the And
-
Or Graph of L
S
Figure 9. Ga
me Interface at ALTERCIT
Y
Evaluation Warning : The document was created with Spire.PDF for Python.