TELKOM
NIKA
, Vol.13, No
.3, Septembe
r 2015, pp. 1
097
~11
0
4
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i3.1978
1097
Re
cei
v
ed
De
cem
ber 2
3
, 2014; Re
vi
sed
Jan
uar
y 29, 2
015; Accepte
d
March 12, 2
015
Computational Simulation of Comb-plate Expansion
Joints
Liang Tang*
1
, Xiao
y
a
n Zh
ang
2
, Jian Ta
ng
3
, Wu Jie
4
State Ke
y
L
a
b
o
rator
y
Bree
di
ng Base of
Mo
untai
n Brid
ge a
nd T
unnel En
gi
neer
ing,
Cho
ngq
in
g Jia
o
tong U
n
iv
ersity, Ch
ong
qi
ng 4
000
74, Ch
ina,
Ph.: +
86-236
2
652
31
6
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: cqutang
@1
6
3
.com
1
, cquzh
ang
@12
6
.com
2
, w
s
nara
b
@
g
mil.com
3
,
jiezi
19
891
00
3
@
12
6.com
4
A
b
st
r
a
ct
A finite ele
m
en
t mod
e
l of the
expa
nsio
n Joi
n
ts
’
co
mmo
n
da
ma
ges of a n
o
v
el co
mb-
p
late
by usin
g
the fin
i
te
ele
m
ent softw
are A
BAQUS is
pre
s
ented
in
this
pap
er. T
he
me
chan
ical
b
ehav
ior of
exp
ans
io
n
Jo
i
n
ts i
s
an
al
yz
ed to
ve
ri
fy
th
e w
eak parts o
f
it. T
he resear
ch resu
lts pr
ovi
de a ref
e
renc
e
for the desi
gn
of
the co
mb-p
late
expans
io
n Joi
n
ts.
Ke
y
w
ords
:
co
mb-
p
lat
e
expa
nsio
n joi
n
ts, stress distrib
u
tion
, numerica
l
si
mulati
on
Co
p
y
rig
h
t
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introducti
on
Bridge
expan
sion j
o
ints is a ga
p
which pres
et bet
wee
n
the
up
per
part
s
of
the mai
n
beam
of bri
dge to
adap
t the
material
swell-sh
rin
k
i
ng defo
r
mati
on of b
r
idg
e
stru
cture. T
he
telescopi
c
de
vice i
s
ma
de
of ru
bbe
r,
steel an
d oth
e
r
comp
one
nts, which i
s
setting at b
r
id
ge
expan
sion
joi
n
ts a
nd to
ma
ke th
e vehi
cle
move
smo
o
thly throu
gh th
e de
ck, to me
et the n
eed
s
of
the deformati
on on the
u
pper
structu
r
e of the
bri
d
ge an
d the
gene
ral term
for all sorts o
f
device
s
.
In gene
ral, b
r
idge
s' exp
a
n
s
ion j
o
ints ha
ve two fun
c
ti
ons. Fi
rstly, vertical
an
d h
o
rizontal
load
s given
by vehicle
a
nd othe
rs ca
n be p
r
o
perl
y
transfe
rred
to beam
s th
roug
h
supp
orting
element
s. Secon
d
ly, they can a
dapt to cha
nge
s i
n
the brid
ge
longitudin
a
l
and tran
sve
r
se
displ
a
cement
s, an
d they
a
l
so
sh
ould
be
able
to ad
ap
t to the
settle
m
ent of b
r
id
g
e
pie
r
a
nd th
e
cha
nge
s of ro
tation angle
caused by wa
rping at the en
d of the beam
[1].
Although th
e
expan
sion
facility is
accessori
e
s of b
r
idge, it i
s
vi
tal for du
ra
bi
lity and
driving safety. As traffic incre
a
ses
rapi
d
l
y, s
peed an
d
load of vehicle Increa
se i
n
ce
ssantly, the
damag
e of b
r
idge
expan
si
on joint is
prominent [2]. Once the ex
pan
sion joi
n
t is dam
age
d, the
effect or con
s
eque
nce is very se
riou
s.
The devel
op
ed co
untri
es
in Europ
e
an
d Ameri
c
a h
a
ve been in
ahea
d of the
bridg
e
expan
sion
joi
n
ts in
du
stry.
Afte
r many y
ears
of devel
opment, th
es
e count
ries h
a
s
develo
ped
their
own m
a
ture product. We are familiar wit
h
the br
idge
expansion joi
n
ts made by many com
p
anies
like MA
URE
R in G
e
rm
an,
D.S.BRO
W
N an
d Watso
n
Bowm
an in
the Unite
d
S
t
ates, Mag
e
b
a
in
Switz
e
rland, BRITFLEX in United Kingdom.
Figure 1. A single slit-mod
ulus exp
a
n
s
io
n joint
element
Figure 2. Expansi
on joint o
f
a comb-plat
e
’s
t
e
ct
oni
cs
Curre
n
tly, there are two ki
nds of comm
on ex
pan
sion
joints in the dome
s
tic hig
h
way o
r
City Bridge.
One i
s
mo
dul
ar
steel tele
scopi
c d
e
vi
ce
as
sho
w
n
in
Figure 1. Ano
t
her i
s
ste
e
l-t
y
pe
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 1097 – 11
04
1098
comb
-pl
a
te telescopi
c devi
c
e a
s
sh
own
in Figure 2.
The forme
r
is
mostly use
d
in large o
r
gra
nd
bridg
e
s which with l
a
rg
er
amount
of stretchin
g
[3
]. T
he latter is
usually used i
n
small
or
medi
um
bridg
e
s
whi
c
h
with medium
amount of stretchin
g
[4].
The d
e
si
gn
of a
comb
-pl
a
te expa
nsio
n joint
can
be
carried
o
u
t by a
sim
p
le
static
analysi
s
a
s
a
beam. The t
h
ickne
s
s of the plate is
de
termine
d
by the mome
nt. The an
ch
or b
o
lts
are d
e
si
gne
d
according to
the rea
c
tion
force. T
o
take into acc
ount any
dyna
mic am
plifica
t
ion,
the moment
and the rea
c
tion force are increa
sed by
a
dynamic a
m
plification
f
a
ctor (DAF
) whi
c
h
is typically 1.
y
c
f
t
I
M
i
2
1
(1)
s
y
A
A
nf
R
i
1
(2)
Whe
r
e
is
a
load fa
cto
r
,
is
a
stre
ngth redu
cti
on fa
ctor,
i
is the dyna
mi
c
amplificatio
n f
a
ctor,
c
M
is th
e
moment
of the comb
-plate
expan
sion j
o
i
n
t ait the e
n
d
of the b
r
idge
deck.
t
is the thickne
s
s of the plate,
I
is the se
con
d
m
o
ment of
inertia of the plate,
y
f
is the
yield stren
g
th
,
A
R
is the rea
c
tion of the ancho
r bolts, a
n
d n is the numbe
r of the ancho
r bolts
within the wi
d
t
h of the module und
er de
sign.
Typically, co
mb-pl
a
te exp
ansi
on joi
n
ts
are
de
sign
ed
by the
con
c
ept of workin
g stress
desi
gn. Let u
s
con
s
ide
r
a
typical de
si
gn exampl
e. The len
g
th l is 0.24m, the
thickness t i
s
45mm, the lo
ad facto
r
is
2.5, the impa
ct factor i i
s
1, and the st
rength redu
cti
on facto
r
is
0.5. Then, the safety fac
t
or
bec
o
mes
8
1
i
w
h
i
c
h
i
s
v
e
r
y
l
a
r
g
e
.
W
i
t
h
s
u
c
h
a
l
a
r
g
e
safety factor, it is hard to expect failure
of comb
-plate
expansio
n jo
ints in the service con
d
ition
.
Ho
wever, the
failure of co
mb-pl
a
te expansi
on joints
can often be
observed. Mo
st of the failure is
due to the fail
ure of th
e an
chor b
o
lts
rath
er than
of
the
plate itself. O
n
ce th
e an
ch
or bolt
s
fail, the
plate pop
s up
as sh
own in Figure 3.
Figure 3. Failure of the co
mb-pl
a
te exp
ansi
on jo
int in
Tang-Min Bri
d
ge, Chi
na in
which the rig
h
t
plate pop
ped
up be
cau
s
e o
f
the failure of the anch
or b
o
lts
Such a
n
une
xpected failu
re of the an
ch
or bol
t
s
lead
s to many unju
stified hypoth
e
se
s to
explain the mech
ani
sm. Some of them inclu
de t
hat the failure of the anch
o
r bolt
s woul
d hap
p
en
becau
se
of the di
re
ct im
pact
of runni
ng tire
to
th
e en
d of th
e plate
whe
n
the
plate t
ilts
exce
ssively a
s
sho
w
n in
F
i
gure
3 du
e to the th
e
r
mal
gradi
ent of t
h
e de
ck or lo
ng-te
rm
cre
e
p
deflectio
n. But acco
rdin
g to the authors’ calcul
ation, the movemen
t
of
the plate end due to the
rotation of th
e deck is at
most 5 mm fo
r a typica
l 50
m span
con
c
rete box girde
r
brid
ge, whi
c
h is
not eno
ugh t
o
ca
use the f
a
ilure
of the
anchor
bolts
by the wh
eel
load at the
end of the
pl
ate.
This mea
n
s t
hat the
r
e
mu
st be
anothe
r f
a
ilure
me
ch
a
n
ism,
rathe
r
t
h
an th
e lo
ad
ca
se
co
nsi
d
e
r
ed
in the typical desi
gn proce
dure.
Expansio
n jo
ints a
s
the
vulnera
b
le p
a
rts of
the
b
r
idge
stru
ctu
r
e, the pro
b
a
b
ility o
f
damag
e is v
e
ry high. Accordin
g to the
survey, a
variety of expansio
n joints i
n
high
ways a
nd
urba
n
roa
d
a
ll exist different de
gre
e
o
f
damag
e [5,
6]. Com
m
on
disea
s
e
s
of
the
comb
-pl
a
te
expan
sion joi
n
t can be cla
ssifie
d
into the followi
ng two catego
rie
s
: ulnar-pl
a
te fall off caused b
y
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Com
putation
a
l Sim
u
lation of Com
b
-plat
e
Expan
sio
n
Joint
s
(Lia
ng
Tang
)
1099
anchor
bolt d
a
mage
an
d
t
he con
c
rete damag
e wh
i
c
h un
der tooth
plate. And
a
m
ong th
ese,
th
e
most serio
u
s
and commo
n phen
omen
on
is that the co
ncrete dam
ag
e resulted in the de
stru
ctio
n.
As a
fund
am
ental p
a
rt
of
the b
r
idg
e
stru
ctu
r
e,
tel
e
scopi
c device has
be
co
me one of
probl
em
s in t
he b
r
idge
co
nstru
c
tion
an
d mainten
a
n
c
e. Since th
e telesco
p
ic
dev
ice exp
o
sure
to
the atmo
sph
e
re l
ong
-term
,
unde
r lo
ng
-term
rep
eat
ed
loadi
ng a
nd
the environm
ent is ba
d, it
is
more
difficult
to rep
a
ir
and
most e
a
sily d
e
stroye
d a
s
a
brid
ge el
eme
n
t. If bridge
e
x
pansi
on h
a
s a
slight d
e
fect
or d
e
ficie
n
cy
in de
sign
or the
con
s
tru
c
ti
on, whi
c
h
wo
uld cau
s
e
ea
rly dama
ge; t
he
destructio
n
o
f
the b
r
idge
expan
sion
joi
n
ts m
a
y
cau
s
e
a lot
of vehicl
e imp
a
ct
load. S
o
d
r
i
v
ing
con
d
ition
s
wo
rse
n
dramatically and red
u
c
e the life of the telesco
p
ic
device.
Dama
ge to t
he expa
nsi
o
n
joint ha
s
se
veral maj
o
r
reason
s which incl
ude
the
de
sign,
con
s
tru
c
tion,
maintena
nce, pro
d
u
c
t pe
rforma
nce,
an
d so
on. F
o
r the de
sig
n
, wantin
g to ta
ke
measures to
avoid the
con
genital d
e
fects
i
n
de
sign
stage,
we mu
st m
a
ke m
e
chani
cal
perfo
rman
ce of
expansi
on joint
clea
r.
2. Calculation Model
As me
ntione
d in the
p
r
evious sectio
n, the rea
c
tion it
self
cau
s
e
d
b
y
the tilt of the plat
e
end is n
o
t si
gnifica
nt eno
ugh to ca
use the fa
ilure
of the anch
o
r bolts. But
the uneven
ness
cau
s
e
d
by th
e tilt ma
ke
s
the plate
ea
sy to
vib
r
ate.
The
vehi
cle
load
cau
s
e
s
the m
a
ximu
m
rea
c
tion
of th
e an
ch
or
bolt
s
whe
n
it i
s
p
l
ace
d
at th
e
end
of the
co
mb-pl
a
te exp
ansi
on j
o
int.
The
plate wo
uld d
e
form a
s
in F
i
gure 4
be
ca
use the pl
ate
is sup
p
o
r
ted
at point A by the anch
o
r a
nd
point B by the de
ck.
Note
that point B sup
port
s
ag
ainst d
o
wnward di
spl
a
ce
ment, not up
ward
displ
a
cement
. The
r
efore,
the plate
mu
st po
p
up
a
s
sho
w
n
in
Fig.4 by th
e
co
nversio
n
of
deform
a
tion.
Figure 4. Two
possible d
e
formatio
n of a comb
-pl
a
te e
x
pansi
on joint
due to the load actin
g
at the
end of the pla
t
e and the sp
ring-b
a
ck be
h
a
vior after the
load pa
sses
over the joint
Figure 5. Anchor bolt
s
and
embed
ded
steel
skeleton
s
Figure 6. Location of anch
o
r bolts in the
con
c
r
e
t
e
Usi
ng the fini
te element softw
are ABAQUS, the finite elem
ent m
odel i
s
built up for the
expan
sion joi
n
t of a novel
comb
-pl
a
te. Expansio
n jo
i
n
t is usually required
to be
ar the repe
ated
load of the vehicl
e whe
e
l repe
ated an
d
impact load,
which m
a
ke
it in a
very
compl
e
x stre
ss
state.in o
r
de
r to esta
blish t
he mo
del
co
nveniently
on
the p
r
emi
s
e
of maintain t
he di
stortio
n
[7].
The m
odel i
s
simplifie
d a
s
followe
d. Th
e comb
-plate
and
co
ncret
e
pa
rt ad
opt
3D Soli
d, fixing
bolts
of co
mb
-plate
use b
e
a
m elem
ents and th
e em
b
edde
d ste
e
l
skeleto
n
in
co
ncrete u
s
e
b
a
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 1097 – 11
04
1100
element, all
o
f
them mu
st b
e
divided
a
s
possibl
e
a
s
small when
m
a
ke
unit divi
si
on. Due to
using
plasti
c dam
a
ge con
s
titutive rel
a
tions,
ei
ght-no
de el
e
m
ent is
sel
e
cted to
avoid
non-co
nverge
nce
in cal
c
ulatin
g
for the co
ncrete in an
cho
r
age a
r
ea. Mo
del incl
ude
s
370,00
0 nod
es an
d 330,
0
0
0
units, and the
Figure 5 i
s
a schemati
c
dia
g
ram of mod
e
l and me
sh.
We fetch unit
width
comb
-plate (with th
e width
of 1
m
) in tra
n
sve
r
se t
o
ma
ke
modelin
g
analysi
s
un
d
e
r con
s
ide
r
in
g the vertical
static lo
a
d
s
and ho
ri
zont
al calm fo
rce. Acco
rdin
g to
the
stre
ss situ
ation of the
co
mb-pl
a
te in a
c
tual o
peratio
n, we lo
ad th
em on
com
b
-plate in the
most
unfavora
b
le p
o
sition o
n
ce, whi
c
h is in th
e mid-spa
n
of the joints sh
own in Fig
u
re
8.
Figure 7. Ske
t
ch of grid mo
del
Figure 8. Dia
g
ram of loa
d
i
ng on a mod
e
l
3. Analy
s
is
Based o
n
co
mb-pl
a
te exp
ansi
on joint
s
for the ultima
te loading
co
ndition, analy
s
is a
nd
cal
c
ulatio
n of
the above
model
,
re
sult
s are given
as follo
ws. Tensil
e stress is po
sitive
and
pre
s
sure is n
egative in the
s
e re
sult
s.
3.1 The Stre
ss and Defo
r
m
ation of Co
mb-plate
Vertical
di
spl
a
cem
ent
nep
hogram
and
Mises st
re
ss n
eph
og
ra
m of
com
b
-plate a
r
e
sho
w
n i
n
Fig
u
re
9 an
d Fig
u
re
10. Th
e
maximum p
o
s
itive displa
cement (ve
r
tical up
) of the
comb-
plate appe
ars in the end of teet
h, and the amount of which i
s
only 1.62mm (straig
h
t up). Th
e
maximum ne
gative displa
cement (ve
r
tical do
wn) app
ear
s in th
e joi
n
ts of the
cro
ss,
whi
c
h i
s
o
n
ly
- 0.43mm. T
h
e maximum
Mises
stre
ss
of co
mb-plate
is 46.5M
pa i
n
the
mid-sp
an of
expan
si
on
joints
through Figure 10, it i
s
far les
s
than the yield s
t
ress
of
s
t
eel.
Figure 9. Vertical di
spla
ce
ment
Figure 10. Mise
s stress
3.2. Stress o
f
Embedded
Skeleton in
Fixing Bolts
and Con
c
re
te
Stress di
stri
b
u
tion of th
e a
n
ch
or bolts i
n
comb
-plate
sh
own in
Fi
gure
11.
As
sho
w
n
in
the Fig
u
re
1
2
, the m
a
xim
u
m
stre
ss
cl
ose
to th
e b
o
lts in
the
seco
nd
ro
w
of expan
sio
n
j
o
int
rea
c
he
s
112
Mpa, the
stre
ss of b
o
lts i
n
the first ro
w
smaller than
which
in th
e
se
con
d
row ab
o
u
t
one-fo
urth. T
h
is
sho
w
s that the bolts in
the se
co
nd row a
r
e in
a more
unfavorable loa
d
po
sitio
n
of the runnin
g
expansi
on joi
n
t, and more
easily be d
a
m
aged.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Com
putation
a
l Sim
u
lation of Com
b
-plat
e
Expan
sio
n
Joint
s
(Lia
ng
Tang
)
1101
Figure 11. Mise
s stress of anchori
ng zo
ne of
con
c
r
e
t
e
Figure 12. Maximum prin
cipal stre
ss in
anchorage
3.3 Stresse
s
of Conc
rete in Anchor
ag
e
Zone and
Equiv
a
lent Plastic De
for
m
ation
Con
c
rete’s di
stributio
n of
prin
cipal
stre
ss in
a
n
cho
r
a
ge
zon
e
a
s
shown in
Figu
re 1
2
. A
large
p
r
in
cipa
l stress
of
co
ncrete
app
ea
r to t
he l
o
cal
anchorage
zo
ne from th
e
chart. E
s
pe
cial
ly
the maximum
prin
cipal
stre
ss of
con
c
rete whi
c
h
ne
ar anchor
b
o
lts can rea
c
h
1.9
8
Mpa,
and su
ch
a large
stre
ss value
is di
stribute
d
in
the
whole
bu
ried
depth
of
the con
c
rete. Viewin
g t
he
equivalent plastic deformation
of
co
ncrete (PEEQ) as shown i
n
Figure
13, in order to
clarify the
destructio
n
of
con
c
rete furt
her. Aro
und t
he first
row of
bolts, co
ncre
te appea
rs e
quivalent pla
s
tic
deform
a
tion
within the
ran
ge of 1
2
cm2
and
depth
of
2cm; a
r
o
und
the first
ro
w o
f
bolts,
con
c
rete
appe
ars equi
valent plasti
c
deform
a
tion
within the
ran
ge of 24
cm2
and de
pth of 10cm. T
hus, t
he
con
c
rete in
anchorage
zone i
s
the weakest p
a
rt
of the com
b
-plate tele
sco
p
ic d
e
vice. T
he
con
c
rete ha
s damag
es in
some deg
re
e whe
n
it works on norm
a
l lo
ads.
Figure 13. Equivalent plas
tic
deformation
(PEEQ) of concrete in anc
h
orage z
o
ne
3.4. Conside
r
ing the Stre
ss Con
d
ition
of Expansio
n Joint Un
de
r Diffe
ren
t
Parameters
Modifying e
a
c
h
of the
ke
y geomet
ry
para
m
et
ers i
n
the m
odel,
su
ch
a
s
: ke
eping
the
same b
o
lt are
a
, chang
e the
number of a
n
ch
orin
g bolt
s
; keepi
ng th
e same spa
c
i
ng betwe
en two
r
o
ws o
f
bo
lts, c
h
an
g
e
th
e d
i
s
t
an
ce
from a
r
o
w
o
f
bo
lts
be
tw
ee
n e
x
p
a
n
s
i
on
jo
in
ts
;
c
h
an
g
e
th
e
comb
-pl
a
te thickne
ss. The
comp
arative analysi
s
of su
mmari
zed im
pact of struct
ural pa
ram
e
ters
on the si
ze of
the force b
e
h
a
vior and d
e
formatio
n beh
avior of the comb-plate tel
e
scopi
c devi
c
e.
Whe
n
retaini
ng total
are
a
un
cha
nged,
only
chan
ge
the n
u
mbe
r
of an
ch
or
b
o
lts, the
results of th
e com
parative analys
i
s
show that the
region
al sco
pe of the maximum prin
cipa
l
stre
ss in co
n
c
rete
remai
n
ed un
cha
nge
d, and pla
s
tic dama
ge o
c
curs ba
sical
l
y in the same
regio
nal sco
p
e
. But the maximum Mise
s stre
ss
sh
ou
ld have cha
n
ged greatly in the anch
o
ri
ng
bolts, a
s
sho
w
n i
n
T
able
1. Obviou
sly, with
the
nu
mber of
an
chor bolt
s
in
creasi
ng, stre
ss
of
each and the
spa
c
e de
cre
a
se, all of that shoul
d in
crea
se the difficulty of pouring co
ncrete
in
anchorage zo
ne.
Table 1. Influence of bolt’s numbe
r on the force
Number of
bolt
6
8
10
Mises stress of a
n
choring bolts
()
MPa
154
112
96.7
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 1097 – 11
04
1102
Keeping the
spa
c
e b
e
twe
en the two ro
ws of bolt, th
e spa
c
e b
e
tween an
ch
or b
o
lts and
the ed
ge
of e
x
pansi
on j
o
int
s
in
crea
se
fro
m
10
0mm to
250mm, th
e
Mise
s
stre
ss i
n
the
first
ro
w of
bolts re
du
ced
from 126Mp
a
to 89.6Mpa
, Mises stre
ss in the se
co
nd ro
w of bolts from 71.3
M
pa
to 87.5Mpa,
Mise
s st
ress
of the two ro
ws in
bolts
te
nd to be eq
u
a
l. So chan
gi
ng the di
stan
ce of
the expa
nsi
o
n joint
s
b
e
twe
en o
ne
ro
w of
bolts,
we
find
that the fa
rth
e
r from the
e
x
pansi
on joi
n
ts,
the more h
o
m
ogen
eou
s o
f
the stress di
stributio
n bet
wee
n
the two
rows of bolt is, as sho
w
ing
in
Table 2. But
the maximu
m prin
cip
a
l stress a
nd th
e pla
s
tic d
a
m
age
of the
con
c
rete
wh
at is
cha
nge
d little in the anch
o
rage zone.
Table 2. The i
n
fluen
ce of spaci
ng bolt
s
to the edge of
the expan
sio
n
joint on force
Spacing between
bolts and the ed
ge of The
expa
n
s
ion joint (mm)
100
150
200
250
Mises stress of t
he first ro
w
’
s bolts (MPa)
126
110.7
98.8
89.6
Mises stress of t
he second ro
w
’
s bolts (MPa)
71.3
78.2
83.4
87.5
While
keepi
n
g
the
othe
r p
a
ram
e
ters
co
nstant,
whe
n
the thickn
ess of the
comb
plate i
s
50mm, the
corre
s
p
ondin
g
st
re
ss is 128M
pa, a
nd
whe
n
th
e thickn
ess is
60mm,
the
corre
s
p
ondin
g
stre
ss 11
4Mpa, an
ch
or bolt
st
re
sse
s
re
du
ced
signifi
cantly; but when
th
e
thickne
ss ex
ceed
s 60mm reach 100m
m, the anch
o
r
b
o
lt stre
sse
s o
n
ly redu
ced from 114M
pa to
105MPa, the
trend i
s
clea
rl
y slowed.
so
cha
ngin
g
onl
y the thickne
s
s of the
com
b
-plate,
we fi
nd
that with in
crea
sing thi
ckness of the
comb
-p
l
a
te, the maximu
m prin
cip
a
l stre
ss ra
nge
of
con
c
rete an
chora
ge zone
decrea
s
ed, as sh
own in
Figure 14. At the same time as sh
own in
Table 3, the
Mise
s st
re
ss
in an
cho
r
bolt
s
al
so de
crea
se.
And with the
increa
se of
comb
-pl
a
te
’s
thickne
ss, th
e lowe
r flexibility and the degree
of
upwa
r
p at the end of tooth will re
d
u
ce
corre
s
p
ondin
g
ly, which
will
im
prove the
driving expe
ri
ence.
Table 3. The i
n
fluen
ce of comb-plate’
s
thickne
s
s on the stre
ss
Thickness of co
mb-plate (mm
)
50
60
70
80
90
100
Mises stress of a
n
chor bolts(MPa)
124
114
112
108
106
105
a) 50mm
b) 70mm
c) 10
0mm
Figure 14. Th
e distrib
u
tion
of con
c
rete’
s
maximu
m pri
n
cip
a
l stre
ss unde
r differe
nt thickn
ess o
f
comb
-pl
a
te in
the anch
o
ra
g
e
zon
e
Comb
-pl
a
te
expan
sion
sy
stem
discu
ssed in
thi
s
a
r
ticle i
s
on th
e ba
si
s
of common
dise
ases an
d
its
cau
s
e
s
.
Comp
ari
ng
with the
re
sult
from
Refe
re
nce
[7] an
d [
8
] whi
c
h
is the
latest rese
arch of exp
a
n
s
ion joint
s
, no
vis
ual d
a
ma
ge was
ob
se
rved on
the
steel pl
ate a
nd
wa
she
r
s a
s
Figure 15.
Howeve
r, the
con
c
rete
stru
cture
a
r
oun
d
the bolt
s
a
nd the
co
ncrete
approa
ch
sla
b
cra
c
ked un
der the
heav
y loading, e
s
peci
a
lly the p
o
sition
of se
cond row’
s b
o
l
t
s.
This i
s
al
so
the main d
a
m
age fo
rm o
f
bridge
exp
ansi
on a
c
cording o
u
r
sim
u
lation a
nd fi
eld
survey. Whe
n
the conn
e
c
ting
b
o
lts chang
ed
to
fl
exible
st
ru
cture,
the da
mage wa
s much
improved. Thi
s
is
consistent with the results obt
ained
in this paper.
It will be the key of our next
step research pro
g
ra
m to
chan
ge the
rigid
con
s
trai
nts which i
s
f
r
agile to a fle
x
ible con
s
trai
nts
whi
c
h is n
o
t easy dama
ged
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
Com
putation
a
l Sim
u
lation of Com
b
-plat
e
Expan
s
io
n Joint
s
(Lia
ng
Tang
)
1103
Figure. 15 Flexible bolt an
d flexible gap
bet
wee
n
ste
e
l plate and
chann
el asse
mbly [8]
4. Conclu
sion
After analyzin
g a ce
rtain type of com
b
-pl
a
te expan
sio
n
joint finite element mod
e
l
i
ng, it is
con
c
lu
ded a
s
follows:
(1) F
o
r th
e co
mb-pl
a
te exp
ansi
on joint
,
t
he ultimate
stress of a
n
cho
r
bolts
and
co
ncrete
in an
ch
ora
g
e
zone
ag
re
e well
with
the ph
eno
m
e
non
that a
n
ch
or
bolt
s
and co
ncret
e
in
anchorage
zo
ne are the m
o
st likely to d
a
mage in p
r
a
c
tice.
(2) Due to the force of co
ncrete aro
u
n
d
anch
o
r bolt
s
is com
p
lex
and more p
r
one to
plasti
c dama
ge, worke
r
s should try to
ensu
r
e the qu
a
lity of constru
c
tion.
(3) T
he num
b
e
r of ancho
r bolts in
cre
a
sed ca
n re
duce the s
t
ress
of bolts
and conc
rete. If
the an
ch
or
b
o
lts fa
rther a
w
ay from th
e joint
s
,
the
stress
distri
bution i
s
m
o
re u
n
iform.
The
incr
ea
se of
c
o
mb-
p
lat
e
’
s
t
h
ic
kne
s
s can
impr
ov
e
t
h
e
stre
ss di
strib
u
tion of
bolts and
con
c
rete in
anchorage
zo
ne, and re
du
ce the deform
a
tion of comb
-plate.
(4)
Du
e to t
he an
ch
or b
o
lts fully an
cho
r
ed i
n
th
e co
ncrete,
unabl
e to m
e
et the
displ
a
cement
under l
oad,
whi
c
h likely to cau
s
e b
o
lts loose
n
ing a
n
d
set asi
de for comb plat
e of
steel tel
e
sco
p
ic
device. T
he
com
b
pl
ate will
fall
of
f
as
a
re
sult
.
I
n
r
e
c
ent
y
e
a
r
s,
a
st
e
e
l
co
mb-
sha
ped
bri
d
g
e
expa
nsi
on
a multi-bit pe
rforma
nce
to
cha
nge
a l
a
rge am
ount
of stretchin
g
, h
a
s
been widely use
d
in
la
rge
-
sp
an su
spe
n
sio
n
bri
dge
s,
cable
-
staye
d
brid
ge
s, etc. The d
o
me
sti
c
bridg
e
engi
n
eerin
g have
done a lot of useful expl
o
r
ation. The b
a
si
c app
roa
c
h is that prov
ided
mobile rel
a
tive rotation co
nne
ction me
chani
sm in
the front end or the root of a steel comb pla
t
e
to achieve
vertical
lateral an
d to
rsi
onal
di
spla
cement
sp
ace an
d oth
e
r multi-di
re
cti
o
nal
displ
a
cement
. The u
s
u
a
l p
r
acti
ce i
s
sett
ing
confin
ed
rotating
sh
aft and
the
rotat
i
on of
sp
heri
cal
beari
ng at th
e root’
s
do
wn
side of the a
c
tive bl
ock
ste
e
l com
b
plate
,
and then, th
roug
h groupi
ng
unit points bl
ock com
b
pl
ate and confined rotatin
g
shaft (o
r the rotation of sp
heri
c
al be
ari
n
g
)
effective to make
steel mo
vable co
mb p
l
ate coul
d
ad
apt to the lon
g
-span
brid
g
e
vertical, lat
e
ral,
torsio
nal spa
c
e defo
r
matio
n
, thus achie
v
e secu
rity and durable of
bridg
e
telescopic d
e
vice.
(5) Acco
rdin
g
to the
actu
al
usin
g
situatio
n an
d research of thi
s
ki
nd of
expan
sion
device,
it is not difficult to find that there a
r
e
some
steel
comb-sh
ape
d bridg
e
expa
n
s
ion
s
with m
u
lti-
dire
ction di
sp
lacem
ent pe
rforma
nce and
a large
am
o
u
nt of stret
c
hi
ng on the m
a
rket at p
r
e
s
e
n
t,
they are i
n
a
clea
r force
st
ate on th
e m
a
in be
am
s of
steel gi
rd
er
b
r
idge,
of whi
c
h effect i
s
go
od.
But, they still
have so
me d
e
ficien
cie
s
in
con
c
rete gi
rd
er st
ru
cture.
Firstly, due to
the active st
eel
comb
plate adopt
a shaft, the
form
cell
plate contact with the
shaf
t
is a line, when active steel
comb pl
ate setting supp
orted rotary-sh
a
ft displace
m
ent device at
its root, the adaptability to
adapt late
ral
displ
a
cement
is poo
r. At the sam
e
time, once th
e bri
d
ge’
s
vertical displa
ce
men
t
is
large,
the
en
d of
com
b
pl
a
t
e ea
sy to tilt, wh
at w
ill affec
t
traffic safety
becau
s
e th
e roots do
n’t
set
anchor b
o
lts.
Secon
d
ly, A row of safety
bolts is
se
t at
the root of active steel co
mb plate, wh
en
active ste
e
l comb plate
ad
opt the sphe
rical
seat
di
spl
a
cem
ent devi
c
e in th
e fro
n
t. But the co
mb
plate
can
not
reali
z
e th
e
cell plate
verti
c
al
displa
ce
ment, be
cau
s
e all i
n
su
ra
nce bolt
s
a
n
ch
or in
the con
c
rete
and togeth
e
r
with an
cho
r
b
o
lts in t
he fro
n
t end of the movable
com
b
plate steel t
o
be a fixed structu
r
e. Tha
t
don’t make
the this
kin
d
s of ste
e
l comb plate’
s
stre
ss situati
o
n
sub
s
tantially
different fro
m
tradition
al co
mb plate,
the
roots of an
ch
or b
o
lts to b
e
extremely ea
sy
to ca
use the
damag
e of
concrete
and
i
t
s o
w
n p
u
ll
o
u
t und
er fo
rce, so
as to
shorten
the
se
rvice
life of the tel
e
scopi
c d
e
vice, also
affect
the d
r
iv
ing
safety. Thirdly
Since
the di
spla
cem
ent t
ank
con
c
rete
o
perations und
er small sp
ace and
oth
e
r
fa
ctors affecting the
quality
of the
wel
d
ing a
n
d
con
c
rete po
u
r
ing, resultin
g slu
m
p
cabi
net and
othe
r di
sea
s
e
s
. If these
defici
e
nci
e
s
have
not
been a
ddressed and resolved, but also
seriou
sly affe
ct the life and traffic safety and mo
re ste
e
l
comb
-type telescopi
c device to displa
ce
ment. Co
n
c
re
te operatio
n space unde
r the shift box ha
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 1097 – 11
04
1104
influen
ced th
e quality of th
e wel
d
ing
an
d co
ncrete
p
ourin
g, which
lead
ca
binet
slump
an
d so
me
other
dama
g
e
s. If these d
e
ficien
cie
s
h
a
v
e not be
en
addresse
d a
n
d
re
solve
d
, it will affect t
r
af
fic
safety and st
eel com
b
-typ
e telescopi
c d
e
vice’
s
wo
rki
ng life seri
ou
sly.
Therefore, i
n
the ste
e
l co
mb plate tel
e
scopi
c devi
c
e to multi-direction
a
l di
spl
a
cem
ent
seam
devel
o
p
its imp
r
ove
m
ents
are
in
the rig
h
t dire
ction, in th
e a
pplication of
con
c
rete b
r
id
ges,
sho
u
ld be furt
her ne
ed to improve the d
e
sig
n
di
splacement device
accordi
ng to the accepte
d
.
Ackn
o
w
l
e
dg
ements
The a
u
tho
r
s
woul
d like to
ackno
w
le
dge
the
supp
orte
d of the
Nati
onal
Natu
ral
Scien
c
e
Found
ation o
f
China
(Gra
nt No. 113
0
2271
), t
he Application De
velopment K
e
y Program
of
Cho
ngqin
g
(Grant
No. cstc2
013yykfB
0123
) an
d
Chong
qing Jia
o
tong University
Bridge a
n
d
Tunnel M
ount
ain State Key Laboratory Breedi
ng Ba
se
Open Fu
nd
Proje
c
t.
Referen
ces
[1]
KA Ravsh
an
ov
ich, H Y
a
mag
u
c
hi, Y Matsum
oto, N
T
o
mida,
S Un
o. Mech
anism
of n
o
ise
gen
erati
o
n
from a mo
dul
a
r
e
x
pa
nsi
on
joi
n
t un
der v
ehic
l
e pass
a
g
e
.
En
gin
eeri
ng Stru
ctures.
20
07;
29(9): 2
2
0
6
-
221
8.
[2]
B Z
uad
a C
oel
h
o
, AHJM Verv
u
u
rt, W
H
A Peel
en, JS L
e
e
nde
rtz. D
y
n
a
mics
of mod
u
lar
e
x
p
ansi
on
joi
n
ts:
T
he Martinus Nijh
off Bridge.
Engi
neer
in
g Structures.
201
3,
48(3): 144-
15
4.
[3]
Rames
h
B Malla, Bria
n J S
w
anso
n
, Montgo
mer
y
T
Sha
w
.
Labor
ator
y
ev
alu
a
tion of a s
ilico
ne foa
m
seal
ant b
o
n
d
e
d
to var
i
ous
he
ader m
a
teri
als
used
in
bri
dge
expa
nsio
n j
o
i
n
ts.
Constructio
n
and
Bui
l
d
i
n
g
Materials
. 2
0
1
1
; 25(11): 4
132
-414
3.
[4]
YZ
Z
hu, HF
W
ang, Z
F
San
g
.
T
he effect of envir
o
n
menta
l
medi
um
on
fati
gue life
for u-s
hap
ed bel
lo
w
s
expa
nsio
n jo
int
s
.
Internation
a
l
Journa
l of F
a
tigue
. 20
06; 28(
1): 28-32.
[5]
Jhab
indr
a P Ghimire, Yas
una
o Matsum
oto,
Hiroki Y
a
mag
u
chi, Itsumi Kura
hash
i
. Numerica
l
i
n
ve
stig
a
t
i
o
n
of n
o
i
se
g
e
n
e
r
ati
o
n
a
n
d
ra
d
i
a
t
i
o
n
fro
m
a
n
ex
i
s
tin
g
mod
u
l
ar e
x
pa
n
s
i
o
n
joi
n
t b
e
t
w
een
prestresse
d co
ncrete bri
d
g
e
s.
Journa
l of Sou
nd an
d Vibr
atio
n
. 2009; 3
28(2
7
): 129-1
47.
[6]
Lia
n
ton
g
Mo,
Don
g
li
n Sh
u,
Xu
n L
i
, M H
uurma
n, Sha
o
pen
g W
u
. E
x
perime
n
tal
inv
e
stigati
on
of
bitumi
nous
p
l
u
g
e
x
pa
nsio
n j
o
int m
a
teria
l
s
contai
ni
n
g
hig
h
co
ntent of crumb
r
ubb
er po
w
d
er an
d
gran
ules.
Materials & Design
.
201
2; 37(5): 13
7-14
3.
[7]
Goangs
eu
p Z
i
, Xin
g
ji Z
hu.
As
y
mmetric vi
bratio
n of fing
er-t
y
p
e bri
dge
expans
io
n joi
n
t for desig
n
consi
derati
on.
Engi
neer
in
g Structures.
201
4;
70(3): 53-6
2
.
[8]
D Jo
nes, R
W
u
. Acceler
a
ted T
r
affic Lo
ad T
e
sting
of
Expa
nsio
n J
o
ints for
the
Self-Anch
o
re
d
Suspe
n
sio
n
S
e
ction
of the
Ne
w
Sa
n F
r
anc
is
co-Oak
la
nd B
a
y Br
id
ge E
a
st
Span. P
a
rtner
e
d
Pav
e
ment
Rese
arch C
ent
er (PPRC)
Co
ntract
Strategic
Plan
Elem
ent
3.16: Ba
y Br
id
ge E
x
p
ans
ion
Joint T
e
sting
Stu
d
y
.
20
11
.
Evaluation Warning : The document was created with Spire.PDF for Python.