TELKOM
NIKA
, Vol.13, No
.2, June 20
15
, pp. 432 ~ 4
4
1
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i2.1441
432
Re
cei
v
ed
Jan
uary 18, 201
5
;
Revi
sed Ma
rch 6, 2
015;
Acce
pted Ma
rch 2
5
, 2015
Stator Field-Orientation Speed Control for 3-Phase
Induction Motor Under Open-Phase Fault
Mohammad Janna
ti*
1
, Tole Sutikno
2
, Nik Rum
z
i Nik Idris
1
, Mohd Junaidi Ab
dul Aziz
1
1
U
T
M-PROT
O
N F
u
ture Drive
Lab
orator
y, F
a
cult
y
of Electr
ic
al Eng
i
ne
eri
ng,
Universiti T
e
knol
ogi Ma
la
ysi
a
,
813
10 Sku
dai,
Johor Ba
hru, Mala
ysi
a
2
Department o
f
Electrical Eng
i
ne
erin
g, F
a
cul
t
y
of
Industria
l T
e
chnolog
y, U
n
iversit
a
s Ahm
ad Da
hla
n
,
Jantura
n
, Umb
u
lh
arjo 5
5
1
64, Yog
y
ak
arta, Indon
esia
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: Jannatim
94
@
y
ah
oo.com
A
b
st
r
a
ct
T
he ind
u
stria
l
requ
ire
m
e
n
ts for the contro
l
of
an in
ducti
on
motor (IM) und
er fault c
ond
ition
s
contin
ue to
b
e
of attenti
o
n
,
as evi
denc
e
d
by th
e
ma
j
o
rity curre
nt pub
licati
ons.
T
he focus
is
on
deve
l
op
ments
of control
meth
ods w
h
ich
can
be us
ed for
fau
l
ty IM. A novel
vector contro
l t
e
chn
i
qu
e b
a
se
d
on stator field-
orie
nted co
ntro
l (SF
O
C) for a
3-ph
ase IM un
der op
en-
phas
e fault is prop
o
s
ed in this p
a
p
e
r.
MATLAB simu
l
a
tion res
u
lts are present
ed to illustrate
the
impr
ove
m
e
n
t in perfor
m
a
n
ce
of the propos
e
d
alg
o
rith
m. It has show
n that
for provid
in
g
an a
ppro
p
ri
ate
alg
o
rith
m to
control fa
ulty
mac
h
i
ne w
i
th
one
ope
ne
d phas
e,
the mo
dificati
o
n
in the co
nven
tiona
l control
l
er
is possib
l
e.
Ke
y
w
ords
: 3-
Phase Ind
u
ctio
n Motor, Open-
Phase F
ault, Simulati
on R
e
s
u
lts, SF
OC, Sp
eed C
ontrol
1. Introducti
on
In so
me
criti
c
al i
ndu
strial
appli
c
atio
ns su
ch
a
s
ai
rcraft an
d el
ect
r
ic vehicl
e
(EV). It is
necessa
ry to
contin
ue in
du
ction m
o
tor
(I
M) d
r
ive
op
eration un
de
r fault co
ndition
s [1]. Gen
e
ral
l
y,
faults
in IM drives
c
an
be
c
l
as
s
i
fied as
: fault in
the inverter [2], fault in the sens
ors
[1],[3] and
fault in the electri
c
al ma
chi
ne incl
uding
stator and roto
r faults [4]-[6].
Open
-ph
a
se f
ault in
stato
r
windi
ng
s of
3
-
pha
se
IM i
s
t
he m
o
st
co
m
m
on type
of f
aults i
n
electri
c
d
r
ive
s
. This
con
d
i
t
ion occu
rs b
e
ca
use
of the failure of o
ne stato
r
ph
ase
con
n
e
c
tion,
inverter faults mitigated by
us
ing fus
e
s
[7],[8].
The conventional controlle
r which
is
used
for 3-
pha
se IM
dri
v
es
can
not b
e
abl
e to
wo
rk d
u
rin
g
fa
ult co
ndition
s. If a
conve
n
tio
nal
controlle
r for
healthy IM i
s
applie
d to th
e faulty ma
chine, o
s
cillations in the
m
o
tor to
rqu
e
a
nd
spe
ed
ca
n be
observed [9]-[11]. For this rea
s
on,
a
n
approp
riate control al
gorit
hm is n
eede
d to cont
rol fault
y
machi
ne.
In all perviou
s wo
rks, u
s
in
g tran
sform
a
tion ma
tri
c
e
s
, a modified
co
ntrol sy
stem for faulty
machi
ne ha
s been p
r
ese
n
ted. The
s
e
transfo
rmatio
n matrices,
whi
c
h are used to modify the
FOC al
go
rithm lead
s to system co
mpl
e
xity. The main obje
c
tive
of this re
se
arch i
s
to expa
nd
stator field
-
o
r
i
ented control
(SFOC) tech
nique
fo
r 3-p
hase IM whi
c
h can
be al
so adopte
d
for
3
-
pha
se IM u
n
d
e
r o
pen
-ph
a
se fault. Differently from
the
previo
us
pap
ers presente
d
in [7]-[13], t
h
e
prop
osed con
t
rol drive syst
em in this research
do not
use
d
tran
sformation matri
c
es. This p
ape
r
is organi
zed
as follo
ws: In
part 2, d-q m
odel of f
aulty machi
ne i
s
shown. In part
3, the prop
o
s
ed
idea for SFO
C
of faulty IM is pre
s
e
n
ted. T
he MAT
L
AB simulati
on re
sults
are sho
w
n in p
a
rt 4
and pa
rt 5 co
nclu
de
s the p
aper.
2. Machine Model
Negl
ectin
g
the co
re saturation, the dynam
ic
behavi
o
r of the 3-p
hase IM und
er op
en-
phase fault can be desc
ribed by the following equati
ons [9],[14]:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Stator Field-Orientation S
peed
Control for 3-Phase I
nduction Mot
o
r ... (Moham
m
ad Jannati
)
433
s
qr
s
dr
s
qs
s
ds
r
r
r
r
q
d
r
r
r
r
r
q
r
d
q
qs
s
d
ds
s
s
qs
s
ds
i
i
i
i
dt
d
L
r
L
dt
d
M
M
L
dt
d
L
r
M
dt
d
M
dt
d
M
dt
d
L
r
dt
d
M
dt
d
L
r
v
v
0
0
0
0
0
0
(1)
s
qr
s
dr
s
qs
s
ds
r
q
r
d
q
qs
d
ds
s
qr
s
dr
s
qs
s
ds
i
i
i
i
L
M
L
M
M
L
M
L
0
0
0
0
0
0
0
0
(2)
s
qr
s
ds
d
s
dr
s
qs
q
e
i
i
M
i
i
M
Pole
2
(3)
r
r
l
e
F
dt
d
J
Pole
2
(4)
whe
r
e:
ms
q
ms
d
ms
ls
qs
ms
ls
ds
L
M
L
M
L
L
L
L
L
L
2
3
,
2
3
,
2
1
,
2
3
(5)
The sup
e
r
s
cri
p
t
“
s
” in
the v
a
riabl
es of (1)-(4
) in
dicate
s
that the moto
r vari
able
s
a
r
e in the
stationa
ry ref
e
ren
c
e
fram
e
.
Variabl
es
v
s
ds
, v
s
qs
, i
s
ds
, i
s
qs
, i
s
dr
, i
s
qr
,
λ
s
ds
,
λ
s
qs
,
λ
s
dr
and
λ
s
qr
are th
e
d-q
axes volta
g
e
s
, current
s, a
nd flux
e
s
of t
he
stator and
roto
r.
r
s
and
r
r
de
note th
e
stator and
rotor
resi
st
an
ce
s.
M
d
, M
q
and
L
r
den
ote the
stator, the
roto
r
self a
nd m
u
tual ind
u
cta
n
ce
s.
r
s
and
r
r
are
stator a
nd rotor re
si
stan
ce.
r
is the motor spee
d.
τ
e
,
τ
l
, J
and
F
are
electroma
gne
tic torqu
e
, loa
d
torque, in
erti
a and visco
u
s
frictio
n
coe
fficient. Re-writing the mo
del (1
)-(4
) by
removing
so
me
asymmet
r
ies is useful for vector
cont
rol appli
c
ation
s
. A tran
sformation matri
x
for the sta
t
or
variable
s
is d
e
fined a
s
:
3
0
0
1
0
0
1
q
d
M
M
T
(6)
This
shoul
d b
e
applie
d as f
o
llows:
s
qs
s
qs
s
ds
s
ds
s
qs
s
ds
s
qs
s
ds
s
qs
s
qs
s
ds
s
ds
s
qs
s
ds
s
qs
s
ds
T
v
v
v
v
v
v
T
v
v
1
1
1
1
1
1
1
1
1
1
3
3
3
3
s
qs
s
qs
s
ds
s
ds
s
qs
s
ds
s
qs
s
ds
i
i
i
i
i
i
T
i
i
1
1
1
1
3
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 2, June 20
15 : 432 – 44
1
434
After the sim
p
lification, th
e ne
w math
e
m
atic
al m
ode
l of 3-p
h
a
s
e I
M
und
er
ope
n-ph
ase
fault is
:
s
qr
s
dr
s
qs
s
ds
s
s
qr
s
dr
s
qs
s
ds
r
r
s
qr
s
dr
s
qs
s
ds
s
qr
s
dr
s
qs
s
ds
r
r
s
s
s
qs
s
ds
i
i
i
i
r
dt
d
i
i
i
i
r
r
r
r
v
v
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(8)
s
qr
s
dr
s
qs
s
ds
s
s
qr
s
dr
s
qs
s
ds
r
r
s
qr
s
dr
s
qs
s
ds
s
qr
s
dr
s
qs
s
ds
r
r
s
s
s
qs
s
ds
i
i
i
i
r
dt
d
i
i
i
i
r
r
r
r
v
v
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(9)
s
qr
s
dr
s
qs
s
ds
ds
qs
s
qr
s
dr
s
qs
s
ds
r
d
r
d
d
ds
d
ds
s
qr
s
dr
s
qs
s
ds
i
i
i
i
L
L
i
i
i
i
L
M
L
M
M
L
M
L
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
(10
)
s
qr
s
ds
d
s
dr
s
qs
d
e
i
i
M
i
i
M
Pole
1
1
2
(11
)
r
r
l
e
F
dt
d
J
Pole
2
(12
)
The term
(3
L
qs
-L
ds
) in
equation
(11) i
s
alm
o
st zero
(3
L
qs
-L
ds
=3
L
ls
+1
.
5
L
ms
-
L
ls
-
1.5
L
ms
=
2
L
ls
≈
0
)
an
d
con
s
e
q
uently, equ
ation (11
)
will p
r
ov
ide
b
a
lan
c
ed stator
fluxes. With re
sp
ect
to (10
)
it
mu
st be
note
d
t
hat be
sid
e
s the influ
e
n
c
e
of stato
r
flux,
v
ds1
an
d
v
qs1
are
un
bala
n
c
ed
due to 2
r
s
. The influence of 2
r
s
cann
ot be ignored at medium o
r
lo
w spe
ed. Not
e
that, differently
from the faulty model given by (1
)-(5
), equation
s
(8
)-(12)
are useful
in derivi
ng the vector control
approa
che
s
, as sho
w
n in section 3.
3. Stator-Flux Con
t
rol
Cal
c
ulation
of machin
e torque a
s
a fun
c
tion of
stato
r
cu
rrents a
n
d
stator fluxe
s
ca
n be
achi
eved by usin
g (10
)
an
d (11
)
, and it can b
e
writte
n as follo
ws:
ds
qs
s
qs
s
ds
s
ds
s
qs
e
L
L
Pole
i
i
Pole
3
2
2
1
1
1
1
(13
)
By neglectin
g
∆
τ
as mentio
ned b
e
fore th
e form of e
q
u
a
tion (1
3) b
e
c
ome
s
li
ke b
a
lan
c
ed
3-ph
ase IM torqu
e
eq
uati
on. It is co
ncluded in
th
e
faulty mode, the bala
n
ced
stator
cu
rre
nts
gene
rate
unb
alan
ced
stato
r
fluxe
s
. If (3
L
qs
-L
ds
)=0, th
en the
stator
fluxes b
e
com
e
bal
an
ced
a
n
d
oscillating term (
∆
τ
) in the
faulty machi
ne torq
ue wil
l
be re
move
d
.
Therefo
r
e, it is possible
to
apply the FO
C prin
cipl
es t
o
control the stator
flux of the 3-p
h
a
s
e IM unde
r ope
n-ph
ase fault.
In SFOC met
hod, the
stat
or flux ve
ctor is
a
lign
ed
wi
th d-axis
and
setting
the
st
ator flux
to be con
s
ta
nt equal to t
he rate
d flux;
λ
ds1
st
=|
λ
s1
| and
λ
qs1
st
=0 (i
n this p
ape
r
sup
e
rscript “
st
”
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Stator Field-Orientation S
peed
Control for 3-Phase I
nduction Mot
o
r ... (Moham
m
ad Jannati
)
435
indicates th
at the varia
b
le
s are i
n
the
sy
nch
r
on
ou
s re
feren
c
e fram
e). Based
on
this a
s
sumpti
on,
the SFOC eq
uation
s
for faulty 3-pha
se IM
can be
rep
r
esented a
s
(14)-(1
6) [15],[16].
st
qs
r
str
ds
r
st
ds
r
r
ds
s
i
dt
d
T
L
T
i
dt
d
T
dt
d
T
L
1
1
1
1
1
1
(14
)
st
qs
st
ds
ds
s
r
r
ds
r
st
str
i
i
L
dt
d
T
T
L
1
1
1
1
(15
)
st
qs
s
e
i
Pole
1
1
2
(16
)
in whi
c
h,
r
r
r
r
ds
d
r
L
T
L
L
M
,
1
2
(17
)
3.1. Direct Stator Field-Or
iented
Contr
o
l
Based
on th
e vector m
o
del given by
(14)-(
17
), Figure
1 ca
n
be propo
se
d
for dire
ct
stator field
-
o
r
iented
control
of both healt
h
y and f
aulty 3-ph
ase IM. In Figure
1, the red
arro
ws
sho
w
th
e pa
rts of the
co
n
v
entional ve
ctor contro
ller
that req
u
ire to be
modifie
d
for
co
ntrolli
ng
faulty machin
e as sho
w
n in
Table 1.
Figure 1. Block di
agram of
the propo
se
d
DSFOC fo
r vector
cont
rol
of healthy
and faulty 3-p
hase IM
In Figu
re
1, |
λ
s1
*
| and
τ
e
*
rep
r
e
s
ent
the de
sired
amplit
ude
of
the
stator f
l
ux an
d
electroma
gne
tic torque, re
spe
c
tively. The block
e
j
θ
st*
, trans
fer motor variables
from c
o
ordinate
referen
c
e fra
m
e alig
ned
along
with
th
e stato
r
fl
u
x
ve
c
t
o
r
to
th
e s
t
a
t
io
na
r
y
re
fe
r
e
nc
e fr
ame
.
Furthe
rmo
r
e,
i
ds
s*
and
i
qs
s*
repre
s
e
n
t the referen
c
e d a
nd q current
s suppli
ed to the stato
r
cu
rrent
controlle
rs, which mu
st be
impose
d
on
the motor wi
nding
s. Block
CC+
VSI+
I
M
represents t
he
curre
n
t controller, the voltage source
in
verter, and th
e indu
ction m
o
tor.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 2, June 20
15 : 432 – 44
1
436
Table 1. Co
m
pari
s
on b
e
tween two ve
ctor co
ntrol te
chniqu
es
a
2
→
3 and 2
→
2 b
a
sed on [9] and [
16]
Health
y
IM
1
a
cs
bs
as
cs
bs
as
s
s
qs
s
ds
i
i
i
i
i
i
T
i
i
2
3
2
3
0
2
1
2
1
1
3
2
*
*
Fault
y
IM
3
a
bs
as
bs
as
s
s
qs
s
ds
i
i
i
i
T
i
i
1
1
1
1
2
2
*
*
More
over, the angle of the
refere
nce fra
m
e (
θ
st
*
) i
s
gi
ven by:
s
ds
s
qs
st
1
1
1
*
tan
(18
)
whe
r
e,
s
ds
s
s
ds
s
ds
i
r
v
1
(19
)
s
qs
s
s
qs
s
qs
i
r
v
1
(20
)
3.2. Indirect Stator Field
-
Oriented Co
ntrol
Based
on th
e vector
cont
rol mod
e
l for health
y 3-p
h
a
se IM (equ
ations
(14
)
-(1
7
)), the
stator d an
d q axis cu
rre
nts
and ele
c
tro
m
agneti
c
torq
ue of machi
n
e can be
written as follo
wi
ng
equatio
ns:
dt
d
T
dt
d
T
L
i
dt
d
T
L
T
i
r
r
ds
st
qs
r
str
ds
r
s
st
ds
1
1
1
*
1
*
*
1
*
1
(22
)
*
1
*
*
1
1
2
s
e
st
qs
Pole
i
(23
)
*
*
1
*
1
*
1
*
*
1
str
st
qs
st
ds
ds
s
r
r
ds
r
st
st
i
i
L
dt
d
T
T
L
(24
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Stator Field-Orientation S
peed
Control for 3-Phase I
nduction Mot
o
r ... (Moham
m
ad Jannati
)
437
Usi
ng
the
s
e
e
quation
s
,
Fig
u
re 2 can be prop
osed
fo
r
i
ndire
ct stator field-o
r
iented
control
of both health
y and faulty 3-pha
se IM.
Figure 2. Block di
agram of
the propo
se
d
ISFOC for vector
control of healthy
and faulty 3-p
hase IM
4. Simulatio
n
Resul
t
s
Two
control
strategi
es fo
r healthy and
faul
ty 3-pha
se IM was
studied by
sim
u
lation
s
(MATLAB software
)
. Sele
cted re
sults
are sh
own i
n
Fi
gure
3 an
d Fi
gure
4. In bot
h ca
se
s, the
3
-
pha
se IM
sta
r
ted in th
e h
e
a
lthy co
nditio
n
an
d
wi
thout
load,
and
th
en at t
=
0.5
s
a ste
p
lo
ad
e
qual
to 0.5N.m is applie
d. After that, at
t=1s,
a phase
cut-off fault is happen
ed in ph
ase “c”. After that
at t=3
s
the v
a
lue of l
oad
i
s
cha
nged
to
2N.m
. In Fi
gure
3, a
co
nventional
co
ntrol
system
for
healthy and faulty 3-pha
se IM has be
en simul
a
ted.
In Figure 4, the propo
se
d control system
based on
Fig
u
re 2 fo
r he
a
l
thy and faulty 3-pha
se IM
has b
een
si
mulated. Th
e
s
e results
we
re
obtaine
d with
a ma
chi
ne fe
d by PWM
-
V
S
I. In this pa
per, ve
ry fast
fault dete
c
tio
n
is
assu
med
as
con
s
id
ere
d
i
n
[17]. In th
e si
mulation
s, the refere
n
c
e fo
r th
e m
o
tor
sp
eed
a
nd
stator flu
x
is
con
s
id
ere
d
4
00rp
m
and 1
w
b re
sp
ectiv
e
ly. The simulated 3-pha
se IM para
m
eters a
r
e list
ed in
Table 2.
Table 2. Simulated 3-pha
se IM paramet
ers
Parameters
Values
Voltag
e
125V
Po
w
e
r
475W
f
50HZ
Pole
4
r
s
20.6
Ω
R
r
19.15
Ω
L
l
s
=L
lr
0.081
4H
L
ms
0.851
H
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 2, June 20
15 : 432 – 44
1
438
As sho
w
n in
Figure 3 an
d Figure 4, i
n
t
he healthy situation, bo
th conventio
nal and
prop
osed
co
ntrolle
r
sho
w
goo
d tra
c
kin
g
pe
rform
a
n
c
e an
d fa
st re
spo
n
se. Sim
u
lation
re
sult
s of
Figure 3 sho
w
that the real IM speed
can
not fo
llow the referen
c
e spee
d pro
p
e
rly in the faulty
mode
(see Fi
gure
3 (e
)). I
n
this
ca
se a
nd afte
r o
p
e
n
-ph
a
se fault
,
the electro
m
agneti
c
torque
waveforms have many oscillations. As
shown in
Fi
gure 3
(d), usi
ng conv
entional controll
er the
oscillations of
electromagnetic torque in
the faulty condition is about 1N.m.
(a)
(b)
(c
)
(d)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Stator Field-Orientation S
peed
Control for 3-Phase I
nduction Mot
o
r ... (Moham
m
ad Jannati
)
439
(e)
Figure 3. Simulation re
sult
s of the conv
entional
ISFO
C for vecto
r
control of healt
h
y and faulty 3-
pha
se IM, (a) Rotor a
-
axis
curre
n
t (b) St
ator a-ax
is c
u
rre
nt, (c) Stat
or b-
ax
is c
u
r
r
ent, (d) To
rqu
e
,
(e) Spe
e
d
Simulation
re
sults of Fi
gure 4
dem
on
strate t
hat usin
g
p
r
opo
se
d d
r
ive system,
t
he real
IM spe
ed
can
track the
ref
e
ren
c
e
speed
even u
nde
r
f
ault and
und
e
r
loa
d
. In Fig
u
re
4, the
sta
t
or
and roto
r cu
rre
nts wavef
o
rm sh
ow
th
at
the
m
a
ch
i
ne cu
rre
nts are
ne
arly si
nusoidal
in b
o
th
healthy and
faulty conditi
ons. Fu
rthe
rmore, u
s
i
ng prop
osed co
ntrolle
r,
the
electroma
gne
tic
torque wavef
o
rm
s
co
ntain low
o
scill
at
ions even in th
e faulty mode.
(a)
(b)
(c
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 2, June 20
15 : 432 – 44
1
440
(d)
(e)
Figure 4. Simulation re
sult
s of the pro
p
o
s
ed IS
FO
C for vector
cont
rol of healthy and faulty 3-
pha
se IM, (a) Rotor a
-
axis
curre
n
t (b) St
ator a-ax
is c
u
rre
nt, (c) Stat
or b-
ax
is c
u
r
r
ent, (d) To
rqu
e
,
(e) Spe
e
d
In this case as shown in Figure 4 (d), us
ing proposed cont
roll
er
the oscillations of
electroma
gne
tic torq
ue in
the he
althy co
ndition i
s
a
b
o
u
t 0.02N.m
a
nd in th
e fault
y
conditio
n
a
nd
is abo
ut 0.3N.m. It is sho
w
n that the pro
posed
ISFOC controller for vector contro
l of healthy and
faulty machin
e has a g
ood
spe
ed control
and su
ffici
en
t vector co
ntrol cha
r
a
c
teri
stics.
5. Conclusi
on
This
re
sea
r
ch
has di
scu
ssed two
vecto
r
cont
rol
strat
egie
s
ba
se
d
on SFO
C
for
3-ph
ase
IM drive sy
stems
unde
r o
pen-pha
se fa
ult (Di
r
e
c
t
SFOC a
nd Indi
rect SFO
C
). It wa
s sho
w
n u
s
i
n
g
a few m
odifications i
n
the
conve
n
tional
controlle
r for
healthy ma
ch
ine vecto
r
co
ntrol of 3
-
p
h
a
s
e
IM with one o
pene
d pha
se
is po
ssi
ble. Simulation results we
re
con
s
ide
r
ed
acce
ptable an
d ha
v
e
confirmed
th
e cl
aimed
fe
ature
s
. In p
e
rspe
ctiv
e, the meth
od
pre
s
ente
d
h
e
re
ca
n al
so
be
extended to control si
ngle
-
pha
se IM driv
es
with two m
a
in and a
u
xiliary windi
ng
s.
Referen
ces
[1]
Meh B, D Dial
l
o
, M Z
e
raouli
a
. Advanced fa
ult-tole
r
ant con
t
rol of inducti
o
n
-motor driv
es
for EV/HEV
traction a
p
p
lic
ations: F
r
om
conve
n
tio
nal t
o
mod
e
rn
an
d inte
lli
ge
nt control tec
h
n
i
q
ues.
IEEE
T
r
ansactio
n
s o
n
Vehic
u
lar T
e
chno
logy
. 2
007
; 56(2): 519-5
2
8
.
[2]
F
Meingu
et, P
Sand
ulesc
u
, X
Kestel
yn, E Se
mail.
A method
for fault detection a
nd iso
l
ati
o
n base
d
o
n
the process
i
n
g
of multipl
e
dia
gnostic i
n
d
i
ces:
appl
icati
o
n to inverter faults in AC d
r
ives.
IEEE
T
r
ansactio
n
s o
n
Vehic
u
lar T
e
chno
logy
. 2
013
; 62(3): 995-1
0
09.
[3]
A Rais
emch
e, M Bouk
hn
ifer, C L
a
rouc
i, D.
Dia
llo. T
w
o
A
c
tive F
ault T
o
l
e
rant C
ontro
l
Schemes
of
Inductio
n
Moto
r Drive in EV or
HEV.
IEEE Tr
ansactions on
Vehic
u
lar Technology
. 20
14; 63(1): 19-
29.
[4]
GM Joksimovi
c, J Penman.
T
he detectio
n
of inte
r-turn
short circuits
in the stator
w
i
nd
ings o
f
oper
ating m
o
to
rs.
IEEE
Transactions on Industrial Electronic
s
. 2000; 47(
5): 107
8-10
84.
[5]
A Sa
ye
d-Ahm
ed, NA
Deme
rdash. F
a
ult-to
lera
nt op
eratio
n of d
e
lta-c
o
n
nected
scal
a
r-
and v
e
ctor-
control
l
ed AC
motor drives.
IEEE Transactions on Power
Electronics
. 20
12; 27(6): 3
041
-304
9.
[6]
J F
a
iz, V Ghorban
ian, B E
b
rahimi. EMD-B
a
sed A
nal
ys
is
of Industria
l In
ductio
n
Motors
w
i
t
h
Broke
n
Rotor Bar for Identificati
on o
f
Operat
ing P
o
int at Differe
nt Suppl
y Mo
des.
IEEE Tra
n
sactions on
Industria
l Informatics
. 2
014; 1
0
(2): 957-
96
6.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Stator Field-Orientation S
peed
Control for 3-Phase I
nduction Mot
o
r ... (Moham
m
ad Jannati
)
441
[7]
Z
Yifan,
T
A
Li
po.
An appr
oa
ch to mod
e
l
i
n
g
and fie
l
d-or
i
ent
ed co
ntrol
of a three pha
se ind
u
ctio
n
mac
h
i
ne w
i
th structural i
m
b
a
l
ance
. In Proc. APEC, San Jo
se,
T
X
. 1996: 3
80-3
86.
[8]
Y Z
hao, T
A
Lipo. Mode
lin
g a
n
d
contro
l of a
mult
i-ph
ase
ind
u
ction m
a
chi
n
e
w
i
t
h
structural
unb
ala
n
ce
.
IEEE Transactions on Energy
Conv
ersion
. 19
96; 11(3): 5
70-
577.
[9]
M Jann
ati, A
Mona
di, NR
N I
d
ris, MJA Aziz.
S
pee
d S
ensor
less Vector
Co
ntrol of
Unb
a
l
a
nced T
h
ree-
Phase In
ducti
o
n
Motor
w
i
t
h
A
daptiv
e Sli
d
in
g
Mode C
ontro
l.
Internatio
na
l J
ourn
a
l of Pow
e
r Electronics
and Dr
ive Systems (IJPEDS)
.
2014; 4(3): 4
0
6
-41
8
.
[10]
M Jan
nati, SA
Anb
a
ran, MI
Alsof
y
an
i, NR
N Idris, MJA
Aziz.
Mod
e
li
ng
an
d RF
OC
of faulty thr
e
e
-
phas
e IM
usin
g Exten
d
e
d
K
a
l
m
a
n
F
ilter
for rotor
sp
eed
esti
mati
on.
In
8th I
n
ternati
o
nal
Po
w
e
r
Engi
neer
in
g an
d Optimizatio
n
C
onfer
ence (P
EOCO). 2014: 270-
275.
[11]
M Jann
ati, A M
ona
di, GW
Yen
,
SH Asgar
i, N
RN Idris, MJA
Aziz.
A sim
p
le
vector contr
o
l t
e
chnique for
3-ph
ase i
n
d
u
ction
motor un
d
e
r op
en-p
has
e
fault bas
ed
o
n
GA for tunin
g
of spe
ed PI
control
l
er
. In
201
4 IEEE Co
nferenc
e on En
erg
y
Co
nv
ersi
o
n
(CENCON). 201
4: 213-
218.
[12]
M Jannati, NR
N Idris, MJA Aziz, A Monadi,
AAM F
audzi. A Novel Sch
e
m
e for Reducti
on of T
o
rqu
e
and
Spe
ed
Ri
ppl
e i
n
R
o
tor
F
i
eld
Oriente
d
Co
ntro
l of Sing
le
P
hase
Inductio
n
Mot
o
r
Base
d on
Rotational T
r
ansformations.
Rese
arch Jo
ur
nal
of App
lie
d
Scienc
es, En
gin
eeri
ng
and
T
e
chno
logy
.
201
4; 7(16): 34
05-3
409.
[13]
M Jannati, SH
Asgari, NR
N Id
ris, MJA Aziz. S
pee
d Sens
orl
e
ss Direct R
o
tor F
i
eld-Ori
ent
ed Co
ntrol of
Sing
le-Ph
a
se
Inductio
n
Mot
o
r Usi
ng E
x
t
end
ed K
a
lm
a
n
F
ilter.
Inter
natio
nal
Jo
urn
a
l of P
o
w
e
r
Electron
ics an
d Drive Syste
m
s (IJPEDS)
. 2014; 4(4): 43
0-4
38.
[14]
PC Krause. An
al
ysis of Elec
tri
c
Machin
er
y
.
M
c
Gra
w
-
Hil
l. 19
86.
[15]
M Boussak, K Jarra
y
.
A hi
gh-p
e
rformanc
e sensor
less i
ndir
e
ct stator
flux
or
ie
ntation
control o
f
ind
u
ction mot
o
r drive.
IEEE Transacti
ons o
n
Industria
l Elect
r
onics
. 20
06; 5
3
(1): 41-4
9
.
[16]
P Vas. Sensorl
e
ss vector and
direct torq
u
e
control. Oxfor
d
Univers
i
t
y
Pr
es
s. 1998.
[17]
A Gaeta, G Scelb
a
, A Consol
i
.
Modelin
g an
d
control of three-ph
ase PM
S
M
s under op
en
-phas
e fault.
IEEE Transactions on Industr
y Applic
ations
.
201
3; 49(1): 74
-83.
Evaluation Warning : The document was created with Spire.PDF for Python.