TELKOM
NIKA
, Vol.13, No
.3, Septembe
r 2015, pp. 7
67~775
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i3.2093
767
Re
cei
v
ed Ap
ril 23, 2015; Revi
sed
Jun
e
29, 2015; Accepted July 1
2
,
2015
Simulation Analysis of Interface Circuits for
Piezoelectric E
n
ergy Harvestin
g with Damped
Sinusoidal Signals and Random Signals
Shuai Pang, Wenbin Li*, Jiangming Kan
Schoo
l of T
e
chnol
og
y, Beij
in
g F
o
restr
y
Un
ive
r
sit
y
, Beij
in
g, 1000
83, Ch
ina
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: lee
w
b
@
b
j
fu.edu.cn
A
b
st
r
a
ct
Vario
u
s interfa
c
e circuits for collecti
ng the
ener
gy
of pie
z
oel
ectric cantil
ever be
a
m
s h
a
ve be
en
w
i
dely inv
e
stig
ated. Such cir
c
uits incl
ud
e the stan
dar
d i
n
terface, series
synch
roni
z
e
d switch
harvesting
interface circ
u
i
t, parall
e
l sy
nchro
n
i
z
e
d
s
w
itch har
vesti
ng interfac
e, synchro
ni
z
e
d
charg
e
extractio
n
interface, and
others.
Most
st
udi
es
focus
on
the p
e
rfor
ma
n
c
e of d
i
ffer
ent
interface
circu
i
ts w
i
th standar
d
sinus
oid
a
l
exci
tations. H
o
w
e
ver, in
rea
l
situ
a
t
ions w
her
e c
o
nstant h
a
r
m
o
n
i
c
vibrati
ons
ar
e n
o
t pres
ent, t
h
e
equ
ival
ent vo
ltage fro
m
pi
e
z
o
e
lectric c
antil
e
v
er be
a
m
s w
i
th
excitatio
n
s is
not nec
essar
ily
sinus
oid
a
l. In t
h
e
prese
n
t study,
a si
mulati
on
ana
lysis
of fou
r
differe
nt in
ter
f
ace circu
i
ts w
i
th sig
nal
sourc
e
s that
are
bo
th
da
mp
ed sin
u
s
o
id
al an
d ran
d
o
m w
a
s perfor
m
e
d
usi
ng Ma
tlab an
d PSpi
c
e. T
he result
s show
that the
interface c
i
rcui
ts have i
m
pr
ov
ed p
e
rfor
manc
e un
der
l
o
w
lo
ad resist
ance
valu
es w
i
th da
mp
ed si
nus
oid
a
l
sign
al. In addit
i
on, the par
all
e
l and seri
es synchro
ni
z
e
d sw
i
t
ch harvestin
g interface circ
ui
ts may perfor
m
w
e
ll in col
l
ectin
g
pie
z
o
e
l
e
ctric ener
gy w
i
th rando
m exc
i
tatio
n
s.
Ke
y
w
ords
:
pi
e
z
o
e
l
ectric en
ergy harvesti
n
g,
interfac
e
c
i
r
c
uit, da
mpe
d
sinus
oid
a
l s
i
g
n
a
l, ra
ndo
m si
g
nal,
SLPS
Copy
right
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Micro-e
n
e
r
gy
ha
rvestin
g
has be
en
wi
del
y stu
d
ied
be
cau
s
e
of
the
develo
p
m
ent of
wirel
e
ss se
nsor networks. Variou
s ene
rgy
ha
rvesti
ng
tech
niqu
es,
su
ch
as sola
r ene
rgy, the
r
mal
energy, and
vibration
ene
rgy h
a
ve b
e
e
n
inve
stigate
d
to eli
m
inat
e de
pen
den
ce on
batte
rie
s
o
r
wire
s [1
-5]. T
he ele
c
troma
gnetic,
elect
r
ostatic,
and
p
i
ezo
e
le
ctric transitio
n me
chani
sms are
the
main method
s for harve
sting vibration
energy. In
particula
r, piezo
e
le
ctric vi
bration e
nergy
harve
sting h
a
s re
ceived
signifi
cant attention
fo
r
its high
po
we
r
den
sity, simp
le st
ruct
ure,
and
ability to operate without produ
cing p
o
llu
tion [6].
A piezo
e
le
ctri
c en
ergy h
a
rv
esting
syste
m
main
ly co
n
s
ist
s
of a me
cha
n
ical stru
cture
and
interface circuits. With reg
a
rd to the mech
ani
ca
l st
r
u
ct
ur
es in
su
ch sy
st
ems,
cant
ilev
e
r be
ams
with patche
s
of piezo
e
le
ctri
c materi
al
s have
b
e
e
n
extensivel
y investigate
d
[7, 8]. The
perfo
rman
ce
of the energy
generated b
y
piezoel
ectr
i
c
eleme
n
ts with harmo
nic
excitation
s h
a
s
been
studie
d
widely. Re
cently, flow-in
duced pie
z
o
e
l
ectri
c
en
ergy
harve
sting h
a
s g
a
ined m
u
ch
attention. So
me of the t
r
e
nds in pi
ezoe
lectri
c e
nergy harve
sting
a
r
e m
u
lti-directional wi
deb
a
nd
techn
o
logy [9
] and flow-in
d
u
ce
d or imp
a
c
t-ind
u
ced
pi
ezo
e
le
ctric e
nergy ha
rve
s
ting [10]. In th
ese
system
s, the
electri
c
ity gene
rated
b
y
piezoel
ect
r
ic cantilever beam
s is
not sinu
soi
d
al.
Mean
while, t
he me
cha
n
ical structu
r
e
s
for colle
ct
in
g multi-di
re
ction en
ergy a
nd flow-ind
u
c
ed
piezoele
c
tri
c
energy ha
ve been
wi
dely invest
ig
ated. Experi
m
ents o
n
many me
ch
anical
stru
ctures
un
der diffe
rent
con
d
itions
have bee
n p
e
rform
ed to
evaluate the
perfo
rman
ce of
different
stru
cture
s
.
With
re
gard to i
n
terface
circuits,
the sta
ndard
inte
rfa
c
e ci
rcuit, serie
s
synchro
n
ized
switch harvesti
ng interface ci
rcuit (S-SSHI), parall
e
l syn
c
hroni
ze
d swi
t
ch
harve
sting int
e
rface ci
rcuit (P-SSH
I), an
d synchro
n
ized ch
arg
e
extr
actio
n
interfa
c
e ci
rc
uit (SC
E
)
have bee
n a
nalyze
d
in d
e
tail, and all involve st
and
ard
sinu
soid
a
l
equivalent source
s [11-1
3
].
Ho
wever, th
e pe
rform
a
n
c
e of
differe
nt interf
a
c
e
circuits with
a no
n-stan
dard
si
nu
soi
dal
equivalent
so
urce h
a
s be
e
n
minimally i
n
vesti
gate
d
. Many
expe
ri
ments have b
een perfo
rme
d
in
ideal la
bo
rat
o
ry envi
r
on
ments
wh
ere
pie
z
oele
c
tri
c
el
ement
s were subj
ect
ed
to harm
onic
excitation
s; thus, num
ero
u
s analy
s
e
s
involving
sinu
soid
al sign
als have been made. An excite
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 767 – 775
768
can
ge
nerate si
nu
soidal
excitation
s on
pie
z
oel
ectri
c
el
eme
n
ts. Howeve
r, in p
r
a
c
tical
experim
ents
without excit
e
rs, the a
c
ti
ng force
on
piezo
e
le
ctri
c eleme
n
ts
have not be
en
harm
oni
c; thus, the voltage
generated by
the elements has not be
en
sinu
soid
al.
Modelin
g for piezo
e
le
ctric energy harv
e
sting h
a
s b
een stu
d
ied
to conve
r
t complex
mech
ani
cal fields to pu
rely
electri
c
al fiel
ds. The e
quiv
a
lent ci
rcuit modelin
g use
d
in this pa
pe
r is
based on [14]
, which avoi
d
s
a co
mp
licated derivatio
n for theoretical
modeling. Al
so, a sim
u
lation
analysi
s
of four different
interface
ci
rcuit
s
with n
on-stand
ard sinu
soi
dal e
quivalent
s was
perfo
rmed
u
s
ing
Matlab
and PSpi
c
e.
For th
e eq
uivalent volta
ge sou
r
ce in
the mod
e
l, the
dampe
d si
n
u
soi
dal
sign
al so
urce
a
nd rando
m
sign
al source used
we
re ba
sed
on
the
experim
ental
voltage in
[15
]
and
[16]. To
present the
f
r
ame
w
o
r
k for the
simul
a
tio
n
an
alysi
s
,
we
introdu
ce
the
ba
sics
of en
ergy h
a
rve
s
ti
ng, in
cludi
n
g
the eq
uivalen
t
circuit m
o
d
e
l, four
pa
ssi
ve
interface ci
rcuits, and no
n
-
stan
da
rd si
n
u
soi
dal
si
gnal
s. We then
p
r
esent the si
mulation met
hod
to analyze th
e perfo
rman
ce of the four interface
ci
rcu
i
ts usin
g Matl
ab and PSpi
c
e, as well a
s
the
results of the
simulatio
n
. Finally, the pap
er
is
summa
ri
zed in t
he
co
nclu
sio
n
se
ct
i
on.
2. Energ
y
Har
v
esting Ba
s
i
cs
2.1. Equiv
a
le
nt Circui
t Mo
del for a Piezoelec
t
ric E
n
erg
y
Har
v
esting Sy
stem
The vibratio
n
energy harv
e
ster
ca
n be
modele
d
as a system
wi
th a single
d
egre
e
of
freedo
m, as
sho
w
n i
n
Fig
u
re 1 [1
1]. The sy
stem is comp
osed o
f
mass (
M
), total s
t
iffness
(
K
),
and dam
ping
element (
C
).
The equ
ation
of motion for t
he syste
m
is
given by (1).
p
M
u
C
u
K
u
F
v
(1)
Whe
r
e
F
is
the exc
i
tation f
o
rce,
u
is the
displ
a
cement
of t
he pie
z
oe
lectri
c stru
ctu
r
e,
is
the force fa
ctor
of the
piezoele
c
tri
c
eleme
n
t, a
nd
p
v
is th
e
gene
rated
voltage from
the
piezoele
c
tri
c
element.
F
M
K
C
i(t)
v(t)
Figure 1. Equivalent model
of a piezoel
e
c
tri
c
ene
rgy h
a
rvestin
g
dev
ice
A
piezoele
c
tric cantileve
r beam ca
n
b
e
mod
e
led a
s
a sin
u
soid
al
cu
rrent (
︵
︶
p
i
t
) in
parall
e
l with a capa
cito
r (
p
C
) when a ha
rmonic motio
n
is functionin
g
on the bea
m, as sho
w
n
in
Figure 2. The magnitud
e
of
︵
︶
p
i
t
is
p
I
, which
varies
with the mech
ani
cal
excitation level of the
piezoele
c
tri
c
harve
ster b
u
t is assum
ed
to be rela
tivel
y
consta
nt re
gardl
ess of e
x
ternal loadi
n
g
.
Equivalent cu
rre
nt
︵
︶
p
i
t
is
given in (2) [14].
︵
︶
s
i
n
︵
︶
p
p
i
t
I
w
t
(2)
Whe
r
e
w
is the excitation
angula
r
fre
q
uen
cy
of the piezo
e
le
ctri
c energy harv
e
ster.
Magnitud
e
p
V
of open ci
rcuit voltage
v(t
)
is given in (3).
p
p
p
I
V
w
C
(
3
)
In this pape
r,
︵
︶
p
i
t
is not con
s
i
dere
d
as a sinusoidal current sou
r
ce b
u
t as a dam
ped
sinu
soi
dal
sig
nal sou
r
ce a
nd a
s
a
ra
nd
om si
gnal
so
urce
sep
a
rat
e
ly. Thus, o
p
en ci
rcuit voltage
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Sim
u
lation Analysi
s
of Interface
Circuit
s
for
Piezo
e
le
ctric Ene
r
g
y
Ha
rve
s
ting
… (S
huai Pang
)
769
v(t
)
, which is
gene
rated fro
m
the piezo
e
l
e
ctri
c ene
rgy
harve
ster, be
come
s a da
m
ped si
nu
soid
a
l
voltage and a
rando
m voltage.
i
p
(t
)
C
p
i(
t
)
v(
t
)
Figure 2. Equivalent circuit model of
a pi
ezo
e
le
ctric e
nergy ha
rve
s
ter
2.2. Four Self-Po
w
e
r
ed In
terface
Circu
i
ts
A standa
rd in
terface
circuit
[17] is comp
ose
d
of a rect
ifier and a filt
er ca
pa
citor, togethe
r
with
a
sup
p
lied system
(Rloa
d
), as
s
hown in
Fig
u
re
3. If ex
citation force
F
applied to the
piezoele
c
tri
c
element i
s
a
s
sumed
to b
e
pu
rely si
n
u
soi
dal, then
mechani
cal
displ
a
cement
u
woul
d b
e
sin
u
soi
dal. T
he
gene
rated
vo
ltage of
t
he
p
i
ezo
e
le
ctric e
l
ement
und
er an
op
en
ci
rcuit
con
d
ition wo
uld
the
n
be
sin
u
soidal
as well.
Ho
wever,
when
the pie
z
oel
ectri
c
eleme
n
t
is
con
n
e
c
ted to
an interfa
c
e
circuit, the waveform of th
e piezoele
c
tri
c
voltage
wo
uld be
cha
n
g
ed.
Once the a
b
s
olute valu
e
of
v(t
)
i
s
g
r
e
a
ter than th
e
rectified volt
age, the rect
ifier diod
es
a
r
e
con
d
u
c
ted
a
nd the
charges a
c
cumul
a
ted o
n
th
e
pie
z
oele
c
tri
c
el
ement
a
r
e tran
sferre
d to
cap
a
cito
r Cre
c
t and l
oad
resi
stan
ce
Rlo
ad. The o
u
tp
ut power fro
m
the stan
da
rd inte
rface ci
rcuit
can b
e
expre
s
sed a
s
(4
):
2
︵
s
t
a
n
d
a
r
d
︶
4
︵
︶
M
r
e
c
t
p
r
e
c
t
P
f
u
V
C
V
(4)
Whe
r
e
f
i
s
t
he resona
nce freq
uen
cy
of the sy
st
em an
d
M
u
is the maximal
displ
a
cemen
t
amplitude. Th
e maximal ha
rvested
po
we
r und
er a gi
v
en displa
cem
ent magnitu
d
e
is given by
(5)
with the opti
m
al re
sista
n
ce value given
by (6).
2
2
︵
s
t
a
n
d
a
r
d
︶
m
a
x
M
p
f
u
P
C
(5)
1
4
o
p
t
p
R
f
C
(6)
Cr
e
c
t
Rl
o
a
d
D1
D2
D3
D4
V(
t)
Figure 3. Block di
agram of
a standa
rd in
terface
circuit
Figures 4-6 sho
w
the bl
ock
dia
g
ra
m
s
of the S-S
S
HI, P-SSHI, and SCE i
n
terface
circuits, resp
ectively [11,
18]. An electroni
c br
e
a
ker circuit for switchi
ng on e
x
treme value
s
is
use
d
, which
con
s
i
s
ts
of a
n
envel
ope
detecto
r,
a
compa
r
ator,
a
nd a
digital
swit
ch [1
9]. The
elect
r
oni
c b
r
e
a
ke
r
cir
c
uit
f
o
r
swit
ching
o
n
max
i
ma
is
sho
w
n
in
Fig
u
re
7.
A
mi
ni
ma
swit
ch
co
nt
rol
topology is
condu
cted in
a simila
r mo
de, with op
p
o
site pol
aritie
s of diod
es
a
nd tran
si
stors, as
sho
w
n in Fig
u
re 7. Fu
rther information o
n
the
workin
g
princi
ple can
be found in [11-1
2
], [18-1
9
].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 767 – 775
770
Q1
Q2
Q3
Q4
D1
D3
D5
D6
D4
D2
R1
R2
R
l
oad
Cr
e
c
t
L
r
D7
D8
C1
C2
V(
t
)
Figure 4. Block di
agram of
a S-SSHI interface ci
rcuit
R
l
oad
Q1
Q3
Q2
Q4
Cr
e
c
t
D1
D2
D3
D4
D5
D6
D7
D8
D9
D1
0
R1
R2
R3
R4
R5
R6
C1
C2
L
V(
t
)
Figure 5. Block di
agram of
a P-SSHI interface ci
rcuit
L1
L2
R1
R2
R3
C1
D1
D2
D3
D4
R
l
oad
Cr
e
c
t
D8
D5
Q1
D6
Q2
D7
V(
t
)
Figure 6. Block di
agram of
a SCE interface
circuit
E
n
v
e
l
ope
C
o
m
p
ar
at
o
r
S
w
i
t
ch
Figure 7. An electroni
c bre
a
ke
r for maxi
mum displa
cement
2.3. Non-sta
ndard Sinus
oidal Signals
Given the developme
n
t of flow or impact
-
ind
u
ce
d piezo
e
le
ctric ene
rgy ha
rvesting,
gene
rated
vol
t
age
v(t
)
fro
m
the
piezoele
c
tri
c
e
nergy h
a
rveste
rs i
s
n
o
t sin
u
soidal.
Figu
re
8
and
9
sho
w
exampl
es that have no stand
ard sinu
soi
dal excitation
s. Fi
gure 8 sh
ows the
stru
cture of a
gallopin
g
pie
z
oel
ectri
c
be
am for ha
rve
s
ting wi
nd e
nergy. Figu
re
9 sho
w
s th
e stru
cture o
f
a
rotational
pi
ezo
e
le
ctric
wind
ene
rgy
harve
ste
r
t
hat u
s
e
s
im
pact-i
ndu
ce
d
re
son
a
n
c
e.
The
wav
e
for
m
of
v(t
)
is no
n-st
anda
rd
sin
u
soidal i
n
some
co
ndition
s.
Figure 1
0
sh
ows a
n
exa
m
ple
waveform of
the
damp
e
d
si
nu
soid
al
sig
nal
of
v(
t
)
[20,
2
1
]. Figure
1
1
shows an example
waveform of the ra
ndom
si
gnal of
v(
t)
[1
6]. The voltage wavefo
rm
of
v(t
)
as
sh
ow
n
in
F
i
gu
r
e
1
1
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Sim
u
lation Analysi
s
of Interface
Circuit
s
for
Piezo
e
le
ctric Ene
r
g
y
Ha
rve
s
ting
… (S
huai Pang
)
771
is rand
om bu
t
positive be
cause
of
th
e rotational
pie
z
oele
c
tric wi
nd
ene
rgy h
a
rv
esting
prototype
prop
osed in [16], which uses impa
ct-i
nd
uce
d
re
son
a
n
c
e. In the pre
s
ent sim
u
lati
on analy
s
is, the
rand
om sig
n
a
l is assum
ed to have both po
sitive and negati
v
e values. Additionally, the
effectivene
ss of the four aforeme
n
tio
ned interf
a
c
e
circuits in
su
ch situ
atio
ns ne
ed
s to be
determi
ned.
Simulation an
alysis i
s
a fa
st and conveni
ent way to te
st the pe
rformance of the
four
interface ci
rcuits with n
o
n
-
sinu
soi
dal si
g
nals.
With ref
e
ren
c
e to th
e
equivalent
ci
rcuit m
odel f
o
r
piezoele
c
tri
c
energy harve
sters sho
w
n i
n
Figure 2 for the simulatio
n
analysi
s
,
︵
︶
p
i
t
ca
n be set as
a da
mped
si
nusoidal
si
gn
al in PSpi
c
e
and
as a
ra
n
dom
sign
al in
Matlab. Ad
di
tional d
e
tails
on
the simulatio
n
are p
r
ovide
d
in the simul
a
tion method
se
ction.
Figure 8. Experime
n
tal set
up of harve
sting
wind e
nergy usin
g a gallo
ping pie
z
oel
e
c
tri
c
beam [20]
Figure 9. Rot
a
tional pie
z
o
e
lectri
c wi
nd
energy
harve
ster u
s
i
ng impa
ct-in
d
u
ce
d re
son
a
n
c
e
[16]
Figure 10. Measure
d
impu
lse re
sp
on
se
of the
beam with o
p
en-circuite
d e
l
ectro
d
e
s
[20]
Figure 11. Voltage wavefo
rm of the harvester
before re
ctification
[16]
3. Simulation Method
T
h
e
s
i
mu
la
tion
w
a
s
pe
r
f
orme
d
b
y
us
ing O
r
CAD 1
6
.3/PSpice a
nd
Matlab 20
12a
/Simulink
softwa
r
e. PS
pice i
s
g
ood
for ci
rcuit si
mulati
on a
n
d
optimization
desi
gn, an
d
Matlab p
e
rf
orm
s
effectively in
system si
mul
a
tion and opti
m
izati
on. The
SLPS module in PSpice e
n
su
re
s that the
Simulink–Mat
l
ab sy
stem si
mulator
ca
n b
e
com
b
ine
d
with the PSpi
c
e
circuit si
m
u
lator. Th
e value
of
Cp
in the simulation ana
lysis is 10
0
nF
.
︵
︶
p
i
t
is discu
s
sed in anothe
r section. The
comp
one
nt
model
s or va
lues fo
r the S-SSHI, P-SSHI, and SCE in
terface
ci
rcuit
s
are list
ed in Table
1
,
2
,
and 3,
re
spe
c
tively. The
method i
s
int
r
odu
ced to
get
her
with the
dampe
d
sinu
soid
al si
gnal
s and
rand
om si
gna
ls se
parately.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 767 – 775
772
Table 1. Co
m
pone
nt model
s or value
s
fo
r the S-SSHI interface ci
rcu
i
t
Component
Model / Value
R1,R2
100
K
C1,C2
2
nF
Diodes (D1 to D
8
)
1N4004
PNP transistors (
Q
1 and
Q4
)
TIP32C
NPN transistors (
Q
2 and
Q3
)
TIP31C
Crect
10
uF
L 47
mH
r
178
Table 2. Co
m
pone
nt model
s or value
s
fo
r the P-SSHI interface ci
rcu
i
t
Component
Model/
Value
R1,R6
100
K
R2,R3,R4,
R
5
10
K
C1,C2
4
nF
Diodes (D1 to D
1
0)
1N4004
PNP transistors (
Q
1 and
Q3
)
TIP32C
NPN transistors (
Q
2 and
Q4
)
TIP31C
Crect
10
uF
L 47
mH
Table 3. Co
m
pone
nt model
s or value
s
fo
r the SCE interface ci
rcuit
Component
Model / Value
R1
100
k
R2
51
k
R3
10
k
C1 820
pF
Crect
10
uF
L1,L2
100
mF
Diodes (D1 to D
7
1N4004
D8 UF4004
3.1. Damped
Sinusoidal Signal
PSpice mainl
y
has six parameters for
determi
ning t
he pro
p
e
r
ty of the curren
t source
(ISIN), inc
l
uding IOFF,
IAMPL, FREQ, P
H
ASE, TD
,
and
DF. The
six parameters are defined in
Table 4. If
v(t
)
is a
s
sume
d
to be sin
u
soi
dal, whi
c
h m
ean
s that
︵
︶
p
i
t
in
Figure 2 is
assume
d to be
sinu
soi
dal, then the value
s
of IAMPL
and FRE
Q
a
r
e set an
d that of the other pa
ram
e
ter
become
s
the
default value of zero. If
DF is ab
ove
zero,
v(
t)
b
e
com
e
s a d
a
m
ped si
nu
soi
dal
voltage wave
form a
s
sh
o
w
n in Fig
u
re
10. DF is
set as 1 in t
he sim
u
latio
n
analysi
s
.
The
amplitude of
︵
︶
p
i
t
is set a
s
22
0
uA and the freque
ncy of
︵
︶
p
i
t
is set a
s
2
Hz. Th
e sim
u
lation
results of the output po
wer
with da
mped si
nu
so
idal sign
al u
nder
cert
ain
values and
the
maximum out
put power wit
h
stand
ard
si
nusoidal
sign
al are sho
w
n
in the results
se
ction.
Table 4. Defi
nition of the ISIN param
eters
Parameter Definition
IOF
F
DC offset current
IAMPL
Amplitude of the
current
FREQ
Freque
nc
y
of th
e
current
PHASE Initial
phase
TD
Del
a
y
ti
me
DF
Damping
factor
3.2. Random
Signal
Ran
dom sig
nals can be
prod
uced
b
y
Matlab–S
imulink. Ea
ch
piezo
e
le
ctri
c interface
circuit
can
b
e
in the
SLP
S
modul
e. SL re
presents Simulin
k, an
d PS re
pre
s
ents PSpi
c
e.
The
SLPS
take
s a
d
vantage
s of the
two
software.
Sim
u
link has
fast
sim
u
l
a
tion spe
ed a
nd
PSpi
c
e ha
s
high
simul
a
tion p
r
e
c
isi
on.
The
Simulin
k m
odel
of t
he e
quivalent
pie
z
oel
ectri
c
interfa
c
e
ci
rcuit
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Sim
u
lation Analysi
s
of Interface
Circuit
s
for
Piezo
e
le
ctric Ene
r
g
y
Ha
rve
s
ting
… (S
huai Pang
)
773
based
on th
e
SLPS is sho
w
n i
n
Fig
u
re
12. A unifo
rm
ran
dom
num
ber
re
pla
c
e
s
t
he
︵
︶
p
i
t
as i
nput
para
m
eter of
the SLPS, and the sco
pe can sho
w
ce
rt
ain output pa
ramete
rs of the SLPS. In
the
analysi
s
, the
scope
indi
cat
e
s th
e o
u
tput
po
wer of the
load
re
si
sta
n
ce. T
he
min
i
mum i
s
set
as
−
0.00
022
an
d the maximu
m is
set a
s
0.
0002
2. The
si
mulation
re
su
lts of the o
u
tp
ut power
und
er
different load
resi
stan
ce val
ues a
r
e sho
w
n in the results se
ction.
Figure 12. Simulink m
odel
of piezoel
ect
r
ic inte
rface circuit ba
se
d o
n
the SLPS
4. Results
The outp
u
t p
o
we
r with
sta
ndard si
nu
soi
dal si
gnal
ca
n be g
r
eatly i
n
fluen
ced
by the load
resi
st
an
ce
v
a
lue
s
ex
cept
in t
h
e
S
C
E
int
e
rf
a
c
e
ci
r
c
uit
.
Th
e o
p
t
i
mal r
e
si
st
an
ce v
a
l
u
e
s
wi
t
h
stand
ard
sin
u
s
oid
a
l sig
nal
s, as well
as t
he output
p
o
w
er
und
er o
p
t
imal re
sistan
ce value
s
with
stand
ard
si
n
u
soi
dal sign
a
l
s
a
nd damp
ed sinu
soi
dal
sig
nal
s, are
sh
own in
T
able
5. The
SCE
interface ci
rcuit has no
opt
imal re
sista
n
c
e value a
nd
is set a
s
10
0 k
. With damp
ed sin
u
soidal
sign
als, th
e
output p
o
wer ca
n b
e
in
creased
by
re
duci
ng th
e lo
ad
resi
stan
ce value
from
the
optimal valu
e
(Ta
b
le 5
)
. Gi
ven the
re
sist
ance va
lue
s
with stand
ard
sin
u
soidal si
gnal
s sho
w
n in
Table 5, the
perfo
rman
ce
of output po
wer with
d
a
mp
ed sin
u
soidal
signal
s i
s
no
t optimal. Thus,
the re
sista
n
ce value with
dampe
d sin
u
soi
dal
si
gna
ls sh
ould b
e
low. The ou
tput powe
r
with
dampe
d
sinu
soid
al
signal
s doe
s
not hav
e a
co
nsta
nt
value. The
m
a
ximum o
u
tp
ut po
wer valu
es
of certai
n re
sistan
ce value
s
are re
porte
d in T
able
5. As an exam
p
l
e, the PSpice re
sults fo
r the
output po
wer
of the S-SSHI interface
circuit with
da
m
ped si
nu
soid
al sign
als a
r
e
sho
w
n in Fig
u
re
13.
Table 5. Perf
orma
nce of output power
with st
an
dard
sinu
soid
al an
d dampe
d sin
u
soi
dal si
gnal
s
Interface circuits
Output p
o
w
er
w
i
t
h
different signals (mW)
Standard sinusoidal signal
Damped sinusoidal signal
SEH
6.09 (900 k
)
0.25 (100 k
), 0.1
0
(900 k
)
S-SSHI
23.82 (40
0
k
)
3.00 (100 k
), 1.4
3
(400 k
)
P-SSHI
34.81 (30
00 k
)
0.24(100
k
), 0.00
3(3000 k
)
SCE
16.84 (10
0
k
)
9.11(50
k
), 5.36 (
100 k
)
Ti
m
e
(s)
W
(R
l
o
ad)
(mW
)
0.
5
1.
0
1.
5
S
‐
S
S
H
I
,
400
k
ohm
0
1
2
3
4
5
6
7
8
9
10
0
2.
0
4.
0
S
‐
S
S
H
I
,
100
k
oh
m
Figure 13. PSpice results for output po
wer of S-
SSHI interface ci
rcu
i
t with dampe
d sinu
soi
dal
sign
al
U
n
i
f
or
m
R
andom
N
u
m
ber
S
c
ope
In
O
u
t
SLPS
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 767 – 775
774
For rando
m signal
s, the Simulink
re
sult
s for out
p
u
t powe
r
of different interfa
c
e
circuits
are
presente
d
in
Figu
re
1
4
. As
sh
own, the
perfo
rma
n
ce
of th
e S
E
H a
nd S
C
E
interfa
c
e
ci
rcuits
are
un
satisfa
c
tory. Comp
a
r
ed
with th
e
other i
n
terfa
c
e ci
rcuits, the
coll
ecte
d po
wer of the
SEH
interface ci
rcuit is much lo
wer
and the
colle
cted
p
o
w
er
of the SCE interfa
c
e
circuit ha
s hi
gher
volatility. Thus, when
random excitations are ex
erted
on piezoel
ectri
c
structures, whi
c
h
i
s
a
result of the
increa
sing
a
ttention on fl
ow-
and
i
m
p
a
ct-in
d
u
c
ed piezoele
c
tri
c
vibration
e
n
e
r
gy
harve
sting, t
he P-SS
HI a
nd S-SS
HI i
n
terface
circuits
may be a
go
od ch
oice
for ha
rvest
i
ng
piezoele
c
tri
c
energy. Mean
while, the SE
H interfa
c
e
ci
rcuit h
a
s
bee
n mostly u
s
e
d
in such
stu
d
ies
to investigate
the performa
n
ce of certain
mecha
n
ical structu
r
e
s
.
Figure 14. Simulink
re
sults for output po
wer of di
ffere
nt interface
ci
rcuit
s
with ra
ndom si
gnal
s
5. Conclusio
n
The pe
rform
ance of different interfa
c
e
circ
uits
with
dampe
d sin
u
soi
dal si
gna
ls an
d
rand
om si
gna
ls wa
s inve
stigated thro
ug
h simulati
on. Simulation res
u
lts
s
h
ow that the interfac
e
circuits p
e
rfo
r
m effectively under lo
w load re
si
st
an
ce values with
damped si
n
u
soi
dal sig
n
a
l
s,
and th
at the
S-SSHI a
n
d
P-SSHI in
terface
ci
rc
ui
ts may h
a
ve imp
r
oved
perfo
rman
ce
in
harve
sting pi
ezo
e
le
ctric e
nergy when
con
s
tant
ha
rmonic ex
citations a
r
e not
present. In the
future, additio
nal experim
e
n
ts sh
ould be
cond
ucte
d to further stu
d
y the perform
a
n
ce of vario
u
s
interface ci
rcuits in coll
ecti
ng
pie
z
oele
c
t
r
ic vibration e
nergy.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Sim
u
lation Analysi
s
of Interface
Circuit
s
for
Piezo
e
le
ctric Ene
r
g
y
Ha
rve
s
ting
… (S
huai Pang
)
775
Ackn
o
w
l
e
dg
ements
This
wo
rk
wa
s supp
orted
by the Natio
n
a
l Na
tu
ral S
c
ience Fou
n
d
a
tion of Chin
a (G
rant
No. 311
706
6
9
).
Referen
ces
[1]
Cha
ban
e F
,
M
oummi
N, Be
nr
amach
e
S. E
x
perime
n
tal
an
a
l
y
s
is o
n
th
erm
a
l p
e
rforma
nce
of a
sol
a
r a
i
r
collect
or
w
i
th
l
ong
itudi
na
l fin
s
in
a reg
i
o
n
of Biskra, Al
ge
ria.
Jour
nal
of
Pow
e
r T
e
chn
o
logi
es
. 2
013;
93(1): 52-
58.
[2]
Jusoh
A, Sutik
no T
,
Guan T
K
, Mekhil
ef S. A
Revi
e
w
on F
a
voura
b
le
Ma
xi
mum Po
w
e
r P
o
int T
r
ackin
g
S
y
stems in S
o
l
a
r Energ
y
Ap
pl
icatio
n.
TEL
K
OMNIKA
T
e
leco
mmu
n
icati
on,
Co
mp
uting, El
ectronics a
n
d
Contro
l
. 201
4; 12(1): 6-2
2
.
[3]
Xu
L, Li B. D
e
sig
n
of
w
i
r
e
le
ss farmlan
d
te
mperatur
e mo
nitori
ng s
y
ste
m
base
d
on Z
i
gb
ee.
Forest
Engi
neer
in
g
. 2013; 29(
3): 79-
82.
[4]
Z
hang Z
,
Li
W
B
, Kang JM. Behavi
o
r of a
thermoel
ectric
po
w
e
r g
e
n
e
ra
tion dev
ice b
a
s
ed on s
o
lar
irradi
atio
n a
n
d
the
earth
’s su
rf
ace-air t
e
mp
erature
differ
e
nce.
En
ergy
C
onvers
i
on
a
nd
ma
na
ge
me
nt
.
201
5; 97: 178-
187.
[5]
S
y
afi
i
, Nor KM. Unbal
ance
d
Active Distributi
on Ana
l
ysis
w
i
t
h
Re
n
e
w
a
ble D
i
strib
u
ted Ener
g
y
Resources.
TEL
K
OMNIKA
T
e
leco
mmu
n
ic
ati
on, C
o
mputi
n
g
,
Electron
ics
a
nd
Contro
l
. 2
0
15; 1
3
(1):
21-
31.
[6]
Liu XJ,
Ch
en RW
.
Current
si
tuation and de
velo
pin
g
trend
of piezo
e
l
e
ctric
vibr
atio
n en
er
g
y
harvesters.
Journ
a
l of Vibr
ation a
nd Sh
oc
k
. 2012; 8: 169
-176.
[7]
Shan
XB, Yu
a
n
JB, Xi
e T
,
C
hen W
S
. Mode
ling
an
d simul
a
tion of po
w
e
r g
ener
ation
w
i
th
piez
oel
ectric
unim
o
rph ca
ntil
ever.
Journ
a
l o
f
Z
hejian
g
Univ
ersity (Engi
nee
ring Sci
ence)
.
201
0; 44(3): 52
8-53
2.
[8]
Park JC, Park JY. As
ymm
e
tric PZ
T
bimorph
canti
l
ev
e
r
for
mu
lti-dim
ensi
ona
l ambi
ent
vi
bratio
n
harvesti
ng.
Cer
a
mics Internati
ona
l
. 201
3; 39: S653-S6
57.
[9]
Che
n
RW
, Re
n L, Xia HK,
W
ang H. Res
e
arch adv
anc
e i
n
multi-d
i
rectio
nal
w
i
de-
ba
nd
piez
oel
ectric
vibrati
on en
erg
y
h
a
rvesters.
C
h
in
ese Jo
urna
l of Scientific Ins
t
rume
nt
. 201
4; 35(1
2
): 264
1-2
652.
[10]
He
XF
, Gao J. W
i
nd e
nerg
y
harvesti
ng b
a
s
ed o
n
flo
w
-
i
n
d
u
ced-v
i
brati
on
and
impact.
Mi
croel
ectroni
c
Engi
neer
in
g
. 2013; 11
1: 82-8
6
.
[11]
Z
hu L, C
h
e
n
R
,
Liu
X. T
heor
et
ical
an
al
yses
of the
el
ectro
n
ic br
eak
er s
w
itchin
g meth
od
for no
nli
n
e
a
r
ener
g
y
h
a
rvest
i
ng
interfac
es.
Journ
a
l of Inte
l
lige
n
t Materi
al
Systems
and
Structures
. 20
12; 23:
441-
451.
[12]
Lia
ng J, Lia
o
W
H
. Improved desi
gn a
nd a
n
a
l
y
sis of
self-p
o
w
er
ed s
y
nc
hr
oniz
ed s
w
itc
h
i
n
terface circu
i
t
for piez
oel
ectri
c
ener
g
y
h
a
rvesting s
y
stems
.
IEEE Transactions on Industrial Electronics
. 2012;
59
:
195
0-19
60.
[13]
Hsieh
PH, C
h
en C
H
, Ch
en
HC. Improvi
n
g
the sca
v
e
n
g
e
d
p
o
w
e
r
of n
o
n
lin
ear
pi
ezo
e
l
e
ctric en
erg
y
harvesti
ng i
n
te
rface at off-resona
nc
e b
y
in
troduci
ng s
w
itc
h
in
g de
la
y.
IEEE Transactions on Power
Electron
ics
. 20
15; 30(6): 3
142
-315
5.
[14]
Ottman GK, Hofmann HF, Bhatt AC, Lesieut
re GA. A
daptive piez
oelectric ener
gy
harvest
ing circuit for
w
i
reless remot
e
po
w
e
r supply.
IEEE
Transac
tions on Power
Electronics
. 2
002; 17(
5): 669
-676.
[15]
Sun J
C
, Ch
en
HJ. Structura
l
des
ign
a
nd
e
x
p
e
ri
me
ntal
stud
y
on
w
i
n
d
-dr
i
ven
pi
ezo
e
lect
ric ge
ner
ator.
Pie
z
oelectrics &
Acoustooptic
s
. 2012; 34(
6): 860-
867.
[16]
Yang
Y, Sh
en
QL, Jin
JM,
W
ang YP, Qi
a
n
W
J
, Yua
n
DW
. Rotatio
n
a
l
pi
ezo
e
lectric
w
i
nd
e
ner
g
y
harvesti
ng usi
n
g impact-i
nduc
ed reso
na
nce.
Appl
ied P
h
ysic
s
Letters
. 2014
; 105: 053-
901.
[17]
Ugal
de-
Cab
a
ll
ero CA, Anzur
e
z-Marin J. Lo
w
T
e
mp
eratur
e T
hermal Micro Energ
y
Har
v
ester.
DYNA
.
201
2; 87(6): 64
0-64
6.
[18]
Schoeftner J,
Buchb
e
rg
er G. A
contributi
o
n
on the optim
al
desig
n of a vi
bratin
g canti
l
ev
er in a p
o
w
e
r
harvesti
ng a
p
p
licatio
n–Optim
i
z
ation of pi
ezo
e
lectric l
a
yer d
i
stri
buti
ons in
combi
natio
n
w
i
th advanc
e
d
harvesti
ng circ
uits.
Engin
eeri
ng Structures
. 201
3; 53: 92-1
01.
[19]
Lall
a
rt M,
Lef
euvre
É, R
i
ch
ard
C, Gu
yo
mar D. S
e
lf-p
o
w
er
ed c
i
rcuit
for br
oa
dba
n
d
, multim
oda
l
piez
oel
ectric vi
bratio
n control.
Sensors an
d
Actuators A: Physical
. 2
0
0
8
; 143: 37
7-3
82.
[20]
Sirohi J, Ma
ha
dik R. Harv
esti
ng
w
i
nd
ener
g
y
usin
g a g
a
ll
op
i
ng p
i
ezo
e
l
e
ctric beam.
Jo
urn
a
l of Vi
bratio
n
and Aco
u
stics
. 201
2; 134: 1-8.
[21]
K
w
o
n
DS, Ko
HJ, Kim MO,
Oh Y, Sim J,
Lee
K, Cho K
H
, Kim J. Piezoel
ectric ener
g
y
harveste
r
converti
ng stra
in en
erg
y
i
n
to
kinetic e
ner
g
y
for extrem
el
y l
o
w
frequ
enc
y
oper
ation.
Ap
p
lied P
h
ysic
s
Letters
. 201
4; 104: 11
3-9
04.
Evaluation Warning : The document was created with Spire.PDF for Python.