TELKOM
NIKA
, Vol.14, No
.2, June 20
16
, pp. 449~4
5
5
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i1.3676
449
Re
cei
v
ed
Jan
uary 2, 2016;
Re
vised Ap
ril
2, 2016; Accepted Feb 2
6
,
2016
Design of AC Charging Interface and Status Acquisition
Circuit for Electric Vehicles
Kun Xu*
1
, Li Li
2
1
Z
houkou N
o
r
m
al Univ
ersit
y
,
4660
01,
Z
hou
kou, Hen
an, P. R. China
2
Z
houkou Se
ni
or T
e
chnical S
c
hoo
l, 466
000,
Z
houkou, He
n
an, P. R. China
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: xk.xuku
n
@1
63.com, zkj
xks
k
@16
3
.com
A
b
st
r
a
ct
T
o
addr
ess the u
n
rel
i
a
b
le
charg
i
ng
of n
e
w
chargi
ng
i
n
terfaces ca
u
s
ed by c
o
mpr
ehe
ndi
n
g
devi
a
tion
o
n
Chin
a
’
s
alter
n
ating
curre
nt (AC)
ch
arg
i
ng interfac
e standar
d
for
electric
veh
i
cl
es,
imple
m
entati
o
n
meth
ods
of A
C
char
gin
g
i
n
terface circ
ui
t, control
pil
o
t (C
P) circuit, an
d
status acqu
isiti
o
n
circuit for
el
ectric veh
i
cl
es w
e
re pr
opos
ed
in
this study
. B
a
si
c princ
i
p
l
e
an
d
functions
of th
e CP
circu
i
t w
e
re
discuss
ed, and
influe
nces of resist
anc
e para
m
eters o
n
volt
age state at te
st point w
e
re analy
z
e
d
. F
r
ees
cal
e
MC9S1
2
XEQ5
12 w
a
s
use
d
a
s
the
mai
n
co
n
t
roller,
and
its i
n
tegrate
d
puls
e
-w
idth mo
du
l
a
tion
mo
dul
e a
nd
ana
log-to-
d
i
g
it
al co
nverter
modu
le w
e
re
us
ed to
si
mp
lify c
i
rcuit d
e
si
gns.
An ex
peri
m
ent
al test
on c
har
gin
g
interface co
nn
ection co
nfirma
tion, CP, outpu
t pow
er par
ameter passi
ng, a
nd real-ti
m
e ch
argi
ng con
necti
on
status acqu
isiti
on w
a
s con
duc
ted on r
eal v
e
h
i
cles. Res
u
lts d
e
monstrate
d
th
at the des
ig
ne
d circuits
exhi
b
i
t
hig
h
secur
i
ty and
meet the
basic
re
qu
ire
m
ents of GB/T
2023
4-2 w
i
th re
gard to AC c
h
argi
ng i
n
terfac
e
character
i
stics. All
test d
a
ta
are w
i
thi
n
th
e
allow
e
d
error r
ang
e. F
u
rther
mor
e
, re
al-ti
m
e
mo
nitori
ng
o
f
th
e
charg
i
ng pr
oc
ess and sec
u
r
i
ty isolati
on d
e
s
ign of si
g
n
a
l
s
can effectivel
y impr
ove the
system stabi
li
ty.
Henc
e, this techno
logy c
an be
used in AC ch
arge co
ntrol of
electric ve
hicl
e
s
.
Ke
y
w
ords
:
el
e
c
tric vehicl
es, AC charg
i
ng s
pot, conn
ection
confirmatio
n
, control p
ilot
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Given the
seriou
s situati
ons of e
n
e
r
gy cr
isi
s
an
d atmo
sp
heri
c
p
o
llution
p
r
oble
m
s,
positive
dev
elopme
n
t of
ele
c
tri
c
veh
i
cle i
ndu
stry
and
p
r
om
otion of
tran
sportation
e
n
e
rgy
stru
cture u
p
g
r
adin
g
confo
r
m to the
developme
n
t
of
su
staina
ble g
l
obal e
n
e
r
gy
[1-3]. Co
mpa
r
ed
with traditio
nal vehicl
es,
electri
c
vehicle
s
prese
n
t incomp
arable adva
n
tage
s in en
ergy
con
s
e
r
vation
and
emissio
n
red
u
ctio
n, a
s
well
a
s
in
re
duci
ng
depe
n
den
ce
on fo
ssil e
nergy [4-7].
With the rapi
d gro
w
th of electri
c
vehicl
e
s
, the
electri
c
vehicle indu
stry is be
com
i
ng the large
s
t
busi
n
e
ss m
o
del of en
erg
y
network. Hence, ch
argi
ng technol
og
y and con
s
truction
of rel
a
ted
facilities
of el
ectri
c
vehi
cles
have attracted considerable att
ention from
national governments,
automobil
e
manufa
c
turers, research i
n
stitutes,
and
powe
r
enterprises [8-10]. Consi
d
e
r
ing
the
vigorou
s
pro
m
otion
of th
e Chine
s
e
g
o
vernm
ent, e
l
ectri
c
ve
hicl
es
have
dev
elope
d fro
m
the
introdu
ction
stage into the comp
re
hen
si
ve accelera
tion stag
e. Electri
c
vehicle
holdin
g
s in China
are p
r
edi
cted
to exceed 5 million by 2020 [11]. The
electri
c
vehi
cl
e holding
s wil
l
reach 60 mil
lion
by 203
0, an
d
the total p
o
wer
co
nsumpti
on i
s
1
35
billi
on
kWh, which a
c
count
s fo
r n
early
1.3%
of
the estimated
national po
wer co
nsumpti
on in 203
0 [10].
2. State o
f
th
e Art
As an im
po
rtant co
mpon
e
n
t of the ele
c
tri
c
v
ehicl
e i
ndu
strial
chai
n, cha
r
gin
g
spot ha
s
become the rese
arch hot
spot in local a
nd intern
at
io
nal studi
es in
recent years. Howeve
r, few
valuable
su
ccesse
s hav
e
be
en achieved. Ch
e
v
rolet
an
d Tesla
con
s
tructed
chargi
ng
infrast
r
u
c
ture
s for their el
ectri
c
vehicl
e
s
. In
the Un
ited States, pilot states
adopte
d
“ho
m
e
cha
r
gin
g
”
and
“pu
b
lic charg
i
ng”
simulta
n
eou
sly. At
prese
n
t,
dire
ct curre
n
t
(DC) quick cha
r
gi
n
g
is
widely used
in Japa
n [13
]. Referen
c
e
[14] anal
yzed the equiv
a
lent model
of AC chargi
ng
interface ci
rcuit for elect
r
ic vehicle
s
and
accomp
li
she
d
variou
s fun
c
tional te
sts,
su
ch a
s
chargin
g
interface co
nne
ction con
f
irmation (CC) and
c
ont
rol pil
o
t (CP
)
. Refe
re
nce
[13] u
s
ed
the
program
m
abl
e logi
c
controlle
r
as
the control core and
solved billi
ng issues
for alternat
ing current
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 449 – 45
5
450
(AC)
cha
r
gin
g
of electri
c
vehicl
es. On the bas
i
s
of the embe
dde
d micro
c
o
n
tro
ller and real-t
ime
operating system
μ
C/OS II
, Referen
c
e
s
[16-17]
used
an a
c
tual
ap
plicatio
n a
s
b
a
ckgroun
d a
n
d
desi
gne
d an
AC ch
argi
ng
spot for el
ect
r
ic vehicl
es b
a
s
ed o
n
emb
e
dded te
chn
o
l
ogy. Substan
t
ia
l
resea
r
ch pro
v
ides go
od g
u
iding
signifi
can
c
e for th
e con
s
tru
c
tio
n
of electri
c
vehicle
cha
r
g
i
ng
equipm
ent a
nd corre
s
po
n
d
ing inf
r
a
s
tru
c
ture
s.
Ho
we
ver, different
executive
st
anda
rd
s d
u
ri
ng
R&D rest
rict
the develop
m
ent of el
ect
r
ic vehicl
e ind
u
stry to a la
rge extent. In accordan
ce
with
the basi
c
re
q
u
irem
ents of
GB/T2023
4-2
and the cha
r
ac
te
ri
stics of AC cha
r
ging
spot interfa
c
e,
CC, a
nd
CP, an AC
ch
argi
ng control sy
stem for el
e
c
t
r
ic v
e
hicle
s
w
a
s d
e
si
gne
d,
whi
c
h t
a
ke
s t
h
e
Free
scale
-
ba
sed
lo
w-power mi
cro
c
ontroller MC9S
1
2
XEQ512
a
s
the
co
re. T
h
is d
e
si
gn
ma
inly
inclu
d
e
s
cha
r
ging
cable
CC
ci
rcuit of the ch
a
r
gin
g
sp
ot an
d
CP ci
rcuit fo
r commu
nica
tion
betwe
en cha
r
ge spot and
v
ehicl
e-m
ount
ed cha
r
ge
r.
T
h
is de
sign wa
s
te
sted on
th
e
pu
re ele
c
tri
c
-
driven passenger
v
ehi
cles produced by
Chery Automobile
Co., Ltd.
(SQR7000BEVJ00),
which
reali
z
ed
real-t
ime mo
nitorin
g
of el
ectri
c
v
ehicl
e
cha
r
gi
ng, si
gnal
security isol
ation,
high
-efficie
n
c
y
energy co
nse
r
vation, and i
n
telligent op
e
r
ation. Thi
s
d
e
sig
n
present
s certain
refe
ren
c
e valu
es
for
R&D of ele
c
tri
c
vehicl
e
cha
r
gin
g
e
quipme
n
t, as well
as
corre
s
p
ondin
g
infra
s
tru
c
t
u
re
c
o
ns
tr
uc
tio
n
.
The res
t
of t
h
is
paper is
organized as fo
llows
. Chapter III disc
us
ses
the AC
c
h
arging
con
n
e
c
tion
st
atus
of ele
c
tri
c
vehi
cle
s
a
n
d
explai
n
s
th
e eq
uivalen
c
e pri
n
ci
ple
of
AC cha
r
ging
CP
interface of
cha
r
gin
g
p
a
ttern
3 a
nd
conne
ct
ion
m
ode B.
Cha
p
t
er IV dem
o
n
strate
s th
e
AC
cha
r
gin
g
inte
rface
ci
rcuit for ele
c
tri
c
vehi
cl
es a
nd
desi
g
n
s
ch
arging CC, CP, and statu
s
acq
u
isitio
n
ci
rcuit.
Ch
apter V intro
d
u
c
e
s
the flo
w
cha
r
t of the
syste
m
test
pro
g
ra
m. Ch
apter VI
illustrate
s the
desig
ned
circuits a
nd p
r
e
s
ent
s the te
st
results an
d
errors. Ch
apt
er VII elabora
t
es
the conclusions drawn from this study. Fina
lly, Chapt
er VIII presents the acknowledgment.
3. AC Chargi
ng Statu
s
Analy
s
is of Electric Vehicl
es
The CC circuit
of
AC ch
argin
g
ca
ble of
ele
c
tri
c
ve
hicle
an
d the
CP
circuit
betwee
n
cha
r
gin
g
sp
ot and
vehi
cle-mou
n
ted
ch
arg
e
r are preconditi
oned
of info
rmation
exchang
e
betwe
en the
cha
r
gin
g
spo
t
and the
ch
arge, a
s
well
as the
batte
ry mana
gem
ent system.
The
equivalent p
r
i
n
cipl
e of the typical CP int
e
rfac
e of ch
a
r
ging p
a
ttern
3 and conn
e
c
tion mo
de B is
sho
w
n in Fig
u
re 1 [18].
Figure 1. Equivalent prin
cip
l
e diagram of
cha
r
gin
g
sp
ot interface
cab
l
e con
n
e
c
tion
The CC of
ch
argin
g
plu
g
o
f
the conn
ecti
on
mod
e
B can be divid
e
d
into plug
CC of the
sup
p
ly termin
als a
nd plu
g
CC
of the vehicle.
Th
ese
plug
s can be
deter
mi
ned
by voltage st
atus
at test point 4
(Figu
r
e 1
)
. The voltage at
test point
1 o
n
the CP is th
e basi
s
fo
r po
wer
su
pply u
n
it
(ch
a
rging
spo
t
) to determi
n
e
the vehicl
e cha
r
gin
g
con
nectio
n
statu
s
. The voltag
e at test poin
t
1
is mainly det
ermin
ed by chargi
ng cable
conn
ecti
o
n
status, as well
as statu
s
of swit
che
s
S
2
with
R
1
,
R
2
, and
R
3
. Three state
s
we
re di
scussed a
c
cordin
g to cha
r
ging
pro
c
e
ss.
State 1: Cha
r
ging
ca
ble i
s
not
con
n
e
c
ted co
mpletel
y
, and S2 is
discon
ne
cted
. Unde
r
this
state, the
elect
r
ic ve
hicle is
not cha
r
ging n
o
rm
ally. The voltage
at test poi
nt 1
(
U
1
) is nomi
n
al
voltage +1
2 V.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
De
sign of AC Charging Int
e
rface
and St
atus Acquisiti
on Circuit for
Electri
c
Vehicles (Ku
n
Xu)
451
State 2: Ch
a
r
ging
cable
p
l
ug i
s
conn
e
c
t
ed
com
p
let
e
ly, and S2
i
s
di
scon
nect
ed (th
e
vehicle i
s
not prep
ared well
for cha
r
gin
g
). The v
ehicle
can
not be ch
arge
d. As sh
own in Fi
gure
2,
U
1
is dete
r
mi
ned by Equati
on (1
).
(1)
W
h
er
e
R
1
an
d
R
3
are
no
minal valu
es
in the
nation
a
l sta
nda
rd
s
of 100
0 a
n
d
2740
,
r
e
spec
tively.
U
is the nomi
nal voltage +12 V, which i
s
cal
c
ul
ated a
s
V.
State 3: Cha
r
ge cable pl
ug
is conn
ected
co
mpl
e
tely, and the vehi
cle is p
r
ep
are
d
well for
cha
r
gin
g
. S2
is
clo
s
ed, a
n
d
the ve
hicle
ca
n b
e
cha
r
ged. At this
moment,
U
1
can
be
cal
c
ul
ated
from Equatio
n (2) a
nd (3
).
(
2
)
(
3
)
Whe
r
e the n
o
minal value
of
R
2
is 130
0
. Therefo
r
e
,
V whe
n
U=+12V. In
Equation
s
(2
) and (3), the i
n
ternal
re
sist
ance of
D1 o
n
CP and effect of tube voltage dro
p
on
U
1
are ne
gle
c
ted
.
Test poi
nt 2
and te
st poin
t
3 are lo
cat
ed on vehi
cl
es. Whethe
r
the vehicle
p
l
ug and
so
cket are co
nne
cted
su
cces
sfully is
asse
ssed by m
easurin
g t
he resi
stan
ce
of RC at
test
p
o
i
nt
3. Acco
rdin
g
to national
stand
ard, RC
is
680
Ω
/0.
5
W or
220
Ω
/0.5 W. Th
e co
rre
sp
ond
ing
cha
r
gin
g
ca
bl
e cap
a
citie
s
a
r
e 16 A and 3
2
a.
4.
Hard
w
a
re Circuit Anal
y
s
is
Design
4.1. CC Circ
uit of Po
w
e
r
Supply
Interface
The p
o
wer
supply plu
g
CC
circuit i
s
shown in
Figu
re 2.
Wh
en t
he p
o
we
r
su
pply plug
and
so
cket are co
nne
cted
su
ccessfully, the CC an
d e
quipme
n
t form a sho
r
t circuit. Mea
n
wh
ile,
+5 V, R4, R5, D1, R6, a
nd the equip
m
ent form a
loop. The p
hotoele
c
tri
c
couple
r
PC81
7 is
operated
at lo
w M
C
U_CC l
e
vel. Briefly, the te
st poi
nt
4 in
Figu
re
2 i
s
at
low level.
Othe
rwi
s
e, t
he
MCU_CC l
e
vel is hig
h
. Th
erefo
r
e, the
p
r
oces
so
r ca
n determi
ne wh
ether
the po
wer supply
pl
ug
and socket are con
n
e
c
ted
su
ccessfully
only by testing the MCU_CC level.
Figure 2. Power
sup
p
ly plug CC circuit
diagram
4.2. CP Interface Circ
uit
The CP ci
rcuit should b
e
able to ou
tput
stable +12 V and a
m
bipolar p
u
l
se-width
modulatio
n (PWM)
sig
nal
. Unde
r the
PWM state,
CP ci
rcuit re
quire
s the
p
eak
and vall
ey
voltages of +12
V
and
−
12
V. Th
e interfa
c
e
circuit i
s
sh
own i
n
Fig
u
r
e 3.
With
the
MC9S1
2
XEQ
512 inte
grate
d
PWM
pin,
the sig
nal i
s
isolate
d
by t
he hig
h
-sp
e
e
d
photo
e
le
ctric
cou
p
ler 6
N
1
3
5
and is a
m
p
lified by the push/p
u
ll po
wer amplifie
r compo
s
ed of
Q1 and Q
2
, and
finally output from the CP end. R1 sele
cts t
he nomi
n
al value of 1000
. The CP circuit output
s
+12 a
nd
−
12
V alternativel
y under the
control of logi
c level state of PWM wave.
Whe
n
the duty
ratio of
PWM is 50%, t
he tub
e
volt
age
dro
p
of
Q1 a
nd
Q2 i
s
n
egle
c
ted.
The
rel
a
tion
ship
betwe
en outp
u
t voltage an
d level of PWM wave is
sh
own in Fig
u
re
4.
3
1
13
R
UU
R
R
1
8.
7
9
U
1
1
R
UU
R
R
23
23
RR
R
RR
1
5.
62
U
VC
C
+5
V
MC
U
_
C
C
CC
D1
C1
1
5pF
R5
10
K
R6
3.
3
K
R4
1K
U1
PC
8
1
7
R7
10
K
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 449 – 45
5
452
Figure 3. CP circuit
Figure 4.
Rel
a
tionship bet
wee
n
the out
put
voltage of CP port and the l
e
vel of PWM wave
4.3. CP Parameter Acqui
sition Circuit
This
circuit is mainly used
for coll
ectin
g
CP
state, voltage of PWM wave, and
du
ty ratio.
Status and
su
pply power of
cha
r
gin
g
sp
o
t
and ch
ar
gi
n
g
equip
m
ent
are al
so o
b
tai
ned. The
circuit
mainly incl
ud
es a volta
g
e
clamp
ci
rcu
i
t compo
s
e
d
of L44, vol
t
age follo
wer comp
osed
of
integrate
d
o
p
e
ration
al a
m
plifier L
M
29
0
4
, and
line
a
r isol
ating
am
plifying ci
rcui
t com
p
o
s
ed
o
f
linear a
m
plifying photo
e
le
ctric
coupl
er A7
840. The
circuit princi
ple is sho
w
n in Fig
u
re 5.
Figure 5. CP para
m
eter a
c
quisitio
n
circu
i
t
As
sho
w
n
in
Figure 5, A
7
8
40 inte
grate
d
with i
nput
a
m
plifying ci
rcuit and
ph
oto
c
ou
pling
circuit exhi
bi
ts hig
h
inp
u
t imped
an
ce, goo
d lin
earity, and
approximatel
y 1000 volt
age
amplificatio
n factor.
Thi
s
cou
p
ler ca
n reali
z
e
di
sto
r
tion-le
ss tran
smissio
n
of
mV voltage
and
curre
n
t signal
, thereby usi
ng the differe
ntial si
gnal o
u
tput mode. In addition, R9 and R1
0 form
the linear vol
t
age attenuat
ion circuit tha
t
can attenua
te the colle
cted sig
nal voltage bel
ow 3
2
0
mV. Con
s
e
q
uently, input i
m
peda
nce m
a
tchin
g
of
A7
840 i
s
achiev
ed, an
d the
requireme
nts
of
VIN+ po
rt on
input voltage
are met. Th
e differ
ential
output voltag
e sign
als
are
transmitted into
pins
of ana
log-to
-digital
conve
r
ter
(ADC
)
(ADC1 and A
D
C2) of the
main control
l
er
MC9S1
2
XEQ
512. The ADC mo
dule
integrat
ed
in MC9S12
XEQ512 co
ndu
cts re
al-t
ime
acq
u
isitio
n a
nd an
alysi
s
o
f
the input si
gnal to
d
e
termine differen
t
statuse
s
d
u
r
ing A
C
charging
pro
c
e
ss of el
ectri
c
vehicl
e
s
.
5. Sy
stem Pr
ogram Flo
w
The system
prog
ram
mai
n
ly
incl
ude
s system
in
itiali
zation,
syste
m
self-in
s
pe
ction, use
r
informatio
n id
entification,
system CC, a
nd real
-t
ime
monitori
ng of
ch
argi
ng
pro
c
e
s
s (Fi
gure
6).
In user info
rmation identif
ication, ra
dio
frequen
cy id
entification te
chn
o
logy wa
s used for u
s
er
+1
2
V
-1
2
V
VC
C
PW
M
CP
R2
10
K
C2
10
3
Q2
Q1
1
2
3
4
5
6
7
8
NC
VF
+
VF
-
NC
VC
C
VB
VO
GND
U2
6N
1
3
5
R3
47
0
R1
1K
+1
5
V
VC
C
+5
V
+1
2
V
CP
AD
C
1
AD
C
2
D2
L4
4
C3
10
4
R9
10
K
C4
10
3
C5
10
4
C6
10
4
C7
10
3
C8
10
3
1
2
3
4
5
6
7
8
OUT
1
OU
T
2
VC
C
+
VC
C
-
U3
L
M
29
04
1
2
3
4
5
6
7
8
VD
D1
VOU
T
+
VD
D2
GN
D1
VI
N+
VI
N-
VOU
T
-
GN
D2
U4
A7
8
4
0
R8
10
K
R1
2
10
K
R1
3
10
K
R1
1
10
K
R1
0
27
0
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
De
sign of AC Charging Int
e
rface
and St
atus Acquisiti
on Circuit for
Electri
c
Vehicles (Ku
n
Xu)
453
informatio
n readin
g
, confi
r
mation, and
settlement.
Th
e real
-time m
onitorin
g
of chargi
ng p
r
o
c
ess
is mai
n
ly ap
plied fo
r rea
l
-time a
c
qui
sition
and
proce
s
sing of CP
si
gnal, as well as
for
determi
ning
the con
n
e
c
tion statu
s
of charging
cable an
d st
atus of the powere
d
dev
ice.
More
over, other ci
rcuit module
s
of the device ar
e
monitored to pro
c
e
ss em
e
r
gen
cy situati
ons
timely and to ensure
safety of charging e
quipme
n
t and
powe
r
ed d
e
vice
s.
Figure 6. System prog
ram
flow
6. Test Resu
lt Analy
s
is
All functional
module
s
in th
e system
we
re
tested u
nde
r load
ed
con
d
i
tions. Millivol
tmeter
and
storage
oscillo
scope
we
re
used
for p
a
ra
me
ter ob
se
rvation an
d
reco
rding
of te
sting
modules. T
h
e pure elect
r
ic-d
riven passenger
v
ehi
cle (SQR7000BEVJ00)
m
ade by Chery
Automobile Co.,
Ltd. was used as
the char
gi
ng
loading. T
he DP
O7254C oscilloscope
(Te
k
tro
n
ix) was used
fo
r waveform ob
se
rvation.
Th
e simulatio
n
b
a
ndwi
d
th
a
nd sampli
ng rate
of
this o
s
cillo
scope
are 2.5
GHz a
n
d
40
GS/s, respe
c
tively. Additionally, co
mmu
nicatio
n
d
a
ta
were
tested, and fu
nction
s were
analyzed u
s
in
g the comp
uter se
rial d
ebu
gging tool.
6.1. State Te
st and
AD
Application Analy
s
is
The test results are liste
d in Table
1. The effectiv
e values
of
U
1
in Figu
re
2 unde
r
different
states
rep
r
e
s
ent
a nomi
nal val
ue of
±0.8
V.
The a
c
tual
test value
s
un
der th
ree
stat
es
are
within
the
effective ran
ge a
nd a
r
e
lo
wer than
the
nominal
volta
ge, pri
m
arily
becau
se th
e
+12
V voltages wil
l
generate a certain tube vo
ltage dro
p
on
Q1.
ADC1
and A
D
C2 are diffe
rential
sign
al
(incl
udin
g
differential
+ a
n
d
differential
−
) output
end
s of CP p
a
ram
e
ter a
c
q
u
isition
circui
t
and a
r
e in
pu
t ends
of DC.
Therefore,
∆
U
=
(differential
+)
−
(different
ial
−
). Th
e eq
uipment
state
can b
e
evalu
a
t
ed as l
ong
as la
rge volta
ge differe
nce
s
among th
ree
∆
U
values
are en
oug
h. In this syste
m
, the ADC module u
s
e
s
8 bits. In the
corre
s
p
ondin
g
sam
p
ling
voltage ran
g
e
(0–
5
V), voltage re
sol
u
tion is 5/255
≈
0.019
6 V. AD
sampli
ng te
st
re
sults are
shown in
Tabl
e 2.
When
th
e an
alog volt
age
differen
c
e is
high
er th
an
0.02 V, different conve
r
sio
n
re
sults
w
ill
be obtaine
d. As sho
w
n in
Table 1,
∆
U d
i
ffe
r
e
nc
es
o
f
three
state
s
are
all hig
h
e
r
than 0.8
V. As a
re
sult, the p
r
ob
ability of state
misj
udgme
n
t can
be
redu
ce
d sig
n
i
f
icantly according to coll
ect
ed sig
nal by desi
gne
d circuits.
Table 1. CP state voltage test re
sult
s
CP
state
Signal nominal value/V
Signal range
(UMi
n, UMa
x
)/V
Measured U1
/V
ADC1/V
ADC2/V
∆
U /V
State 1
12
(11.2, 12.8
)
11.56
3.76
1.33
2.43
State 2
9
(8.2, 9.8
)
8.60
3.39
1.79
1.60
State 3
6
(5.2, 6.8
)
5.55
3.08
2.29
0.79
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 449 – 45
5
454
Table 2. AD sampling te
st result
s
Analog voltage
U /V
-
1.58 1.59
1.60
1.61 1.62 1.63
-
2.43
AD r
e
sults
Hexad
e
cimal
-
0x53
0x53
0x54
0x54
0x55
0x55
-
0x7B
State
State
2
State
1
6.2. CC and
PWM Sta
t
e
Wav
e
form Test
Images of chargi
ng cabl
e con
n
e
c
tion
and CP
wa
veform are
shown in Figu
re 7-10.
Wavefo
rm i
s
found
at te
st point 4
wh
en the
po
we
r
supply
plug
is
co
nne
cte
d
a
c
curately,
as
sho
w
n i
n
Fig
u
re 7. T
he p
o
we
r supply
plug i
s
a
s
su
med to be
co
nne
cted
com
p
letely as l
o
n
g
as
MCU_CC det
ermin
e
s that the voltage is
c
onve
r
ted fro
m
high level to low level.
At this mom
e
nt, the vehicl
e plug
is
not
con
n
e
c
ted,
and the
CP
circuit i
s
un
d
e
r P
W
M
state. The o
b
se
rved
wav
e
form i
s
sho
w
n in Fi
gure
8. The initia
l duty ratio i
s
15%, an
d
the
corre
s
p
ondin
g
waveform v
o
ltage p
e
a
k
-t
o-pe
ak (PK-P
K
) is
22.9 V.
The p
o
sitive
pea
k voltage
is
11.45 V,
whi
c
h corre
s
po
nd
s to State
1 i
n
Tabl
e 1
an
d is in
acco
rd
ance
with the
mea
s
u
r
ed
d
a
ta
in Table 1.
Figure 7. CC
sign
al test wa
veform
Figure 8. PWM waveform
of State 1
The P
W
M
waveform
at te
st poi
nt 1 f
r
o
m
State 1 to
State 2 i
s
sh
own
in Fi
gu
re 9. T
h
e
PK-PK is 17.6 V, and the positive pe
ak voltage is 8.
8 V, which m
a
tche
s State 2 in Table 1. The
vehicle is
wel
l
prepa
red for charging, an
d S2 is
close
d
. The PWM waveform at test point 1 from
State 2 to St
ate 3 i
s
sh
own in Fi
gu
re 1
0
. The
po
sitive pe
ak voltag
e is 5.8 V,
which
corre
s
po
nds
to State 3 in
Table 1. Vehi
cle charging i
s
initiated.
Figure 9. PWM waveform
of State 2
Figure 10. PWM waveform of State 3
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
De
sign of AC Charging Int
e
rface
and St
atus Acquisiti
on Circuit for
Electri
c
Vehicles (Ku
n
Xu)
455
Duri
ng the
chargi
ng p
r
o
c
ess, the mai
n
cont
rolle
r condu
cts
real
-time detectio
n
of CC
sign
al an
d
CP sign
al
state
s
in
the follo
wing
order: di
scover abn
ormal
ph
enom
e
na,
sepa
rate AC
trigge
r timely, and
stop
ch
argin
g
. The
test result
s in
dicate
d that t
he de
sig
ned
circuit me
ets
the
basi
c
requi
re
ments of GB/
T
2023
4-2
an
d the AC ch
argin
g
sp
ot inte
rface characteri
stics of
the
CP. Test data
of circuit output are a
ll wit
h
in the allo
we
d error rang
e.
7. Conclusio
n
In this stu
d
y, an AC
cha
r
gi
ng interfa
c
e
circ
uit a
nd
con
t
rol syste
m
is desi
gned
usi
ng Free
scale M
C
9S1
2
XEQ512
as micro
c
ontroll
er fo
r an
el
e
c
tri
c
vehi
cle.
The o
peratin
g pri
n
ci
ple a
n
d
basi
c
fu
nctio
n
s
of the
CP
circuit
are
an
alyzed.
Thi
s
desi
gn reali
z
es po
we
r sup
p
ly
plug
CC and
CP du
ring A
C
cha
r
ging
o
f
electri
c
vehi
cle
s
an
d a
ccomplishe
s re
al-time a
c
q
u
i
s
ition of
ch
arging
state pa
ram
e
ters. In thi
s
ci
rcuit de
sign,
the digi
tal and an
al
og pa
rts a
r
e
isolated
by a
photoel
ectri
c
coupl
er. As a result, m
u
tual in
terfe
r
ence de
cre
a
s
ed, w
herea
s syste
m
sta
b
ility
increa
sed
effectively. Ove
r
all, this de
si
gn gu
ar
antee
s
safe a
nd
re
liable o
p
e
r
ati
on of e
quip
m
ent
durin
g ch
arging pro
c
e
s
s.
Ackn
o
w
l
e
dg
ements
This wo
rk was sup
porte
d
by
School b
a
se
d
pr
oje
c
t of Zhou
kou
Normal
University in
2015 (P
roje
ct
Numbe
r
: ZKNUB2
151
01).
Referen
ces
[1]
Yang H
a
i
y
i
ng,
Z
hao An
guo, Z
hou H
u
a
lia
ng,
Xi
a Yu
, Di
ng Z
h
ig
ang. D
e
sig
n
of AC portab
l
e
w
a
ll-
bo
x for
electric ve
hicl
e
.
Pow
e
r Supply
T
e
chnol
ogy a
nd Its Applicati
o
n
, 201
4; 40(2)
: 65-67.
[2]
Li S, Mi CC. W
i
reless p
o
w
e
r transfer for electric vehic
l
e a
pplic
atio
ns.
IEEE Journal of Em
er
ging an
d
Selected Topic
s
in Power Electronics
, 201
5; 3(1): 4-17.
[3]
Bessa RJ, Matos MA. Economic an
d tech
nical ma
na
ge
ment of an ag
greg
ation a
g
e
n
t for electric
vehicl
es: a liter
ature surve
y
.
E
u
rop
ean T
r
a
n
s
a
ctions o
n
Elec
trical Pow
e
r
, 2012; 22(
3): 334
-350.
[4]
HE Zhi-gang,
ZHAO Ming-x
i
ng,
X
U
Xin
g
,
XU Jia
n
-fen
g. Stud
y
on EV
i
n
te
rior n
o
is
e b
a
se
d o
n
transf
e
r
path an
al
ys
is.
Scienc
e T
e
chn
o
lo
gy an
d Engi
neer
ing
, 2
014;
14(2
1
): 156-
16
1.
[5]
HU Z
e
chu
n
, SONG Yongh
ua
, XU Z
h
i
w
e
i
,
LUO Z
huo
w
e
i,
Z
H
AN Kaiq
ia
o, JIA Long.
Im
pacts and
utili
z
a
tion
of electric vehicles
integr
ation into power systems
. Proceed
in
gs
of the CSE
E
. 201
2; 32(
4):
1-10.
[6]
Pham C
o
n
g
T
hanh, A
n
W
en S
hen, P
h
a
n
Quo
c
Dzun
g,
NB
A
nh. Se
lf-T
uning
F
u
zz
y PI-T
y
p
e
Contr
o
ll
er
in Z
-
Source In
verter for H
y
bri
d
Electric Veh
i
cles.
Internati
o
nal Jo
urna
l of Pow
e
r Electron
ics and Dr
ive
System
s
. 20
12
; 2(4): 353-36
3
.
[7]
F
R
Islam, HR
Pota. Impact o
f
D
y
namic
PH
EV lo
ad
on P
h
otovolta
ic S
y
st
em.
Internati
o
n
a
l Jo
urn
a
l
of
Electrical and Co
mp
uter
Engi
neer
ing
. 2
012;
2(5): 644-
65
4.
[8]
Khod
a
y
ar ME,
W
u
L, Shah
ide
hpo
ur M. Hour
l
y
co
or
di
nati
on
of electric ve
hi
cle op
erati
on a
nd vol
a
til
e
w
i
nd
po
w
e
r ge
nerati
on in SC
UC.
IEEE Transactions on Sm
art Grid
. 20
1
2
; 3(3): 127
1-1
279.
[9]
Roteri
ng
N, Ilic
M. Optimal c
h
arge
contro
l of
plu
g
-i
n h
y
b
r
id
electric v
e
h
i
cle
s
in
der
egu
late
d el
ectricit
y
markers.
IEEE Transactions on Power System
s
. 20
11; 26(
3
)
: 1021-1
0
2
9
.
[10]
Z
H
ANG Yan-
yu, Z
E
NG Peng
, Z
A
NG Chuan
-zhi. Coor
din
a
ted optim
al ch
a
r
gin
g
alg
o
rithm
for electric
vehicl
es in sm
art grid.
Scienc
e T
e
chno
lo
gy and En
gi
neer
in
g
. 2015; 1
5
(26)
: 60-65.
[11]
T
an Xiao
bo, Z
hao H
a
i, Pen
g
Hai
x
ia, L
i
Da
zhou.
Quasi-r
e
al-time co
ordi
n
a
ted char
gi
ng/
disch
argi
ng
polic
y for e
l
ectr
ic vehicl
es.
T
r
ansactio
n
s of Chin
a Eleetr
o
tec
hnic
a
l Soci
ety
. 201
5; 30(1
3
): 69-76.
[12]
Rob
e
rt (Bob) Bruni
nga.
Ove
r
looki
ng L
1
Ch
argi
ng At-W
ork in the Rush f
o
r Publ
ic Char
gin
g
Spe
e
d
.
Electric Veh
i
cl
e Confer
enc
e (IEVC). 2012: 1
-
5.
[13]
SANG Lin,
XU
Hon
g
-h
ai, GU
AN
Xia
ng. E
x
perime
n
t d
e
sig
n
on
contro
l p
ilot circ
uit of A
C
char
gin
g
coup
ler for ele
c
tric vehicl
e.
Electrical Me
asur
ement & Instrume
ntatio
n
. 201
3; 50(2): 11
2-1
15.
[14]
YUAN Ji
n
y
un,
W
A
NG Xi
ang
d
ong,
W
A
NG D
ong
qin
g
, W
A
N
G
Haimi
ng. R
e
search
on A
C
charg
e
sp
ot
control s
y
stem
for electric ve
hicle
base
d
on
PLC.
Journa
l of Qingda
o Un
iversity (E&T
)
. 201
5;
30(2)
:
38-4
1
.
[15]
DU Jia
ng, W
A
NG Gang,
W
A
NG Jinqi
n. App
licatio
n of ARM
embed
de
d in
d
u
strial co
ntrol
modu
le in A
C
charg
e
spot for
electric veh
i
cl
e.
Low
Voltage
Electrical Ap
p
a
ratus
. 201
3; 1
6
: 48-52.
[16]
F
A
N Xia
o
-
y
an,
DING Li-
bo,
MA He-
x
i
a
n
g
,
Z
H
ANG
W
en-h
u
i. Des
i
g
n
of A
C
char
gi
ng s
p
ot for e
l
ectric
vehicl
es bas
ed
on embe
dd
ed
s
y
stem.
Mod
e
r
n
Electron
ics T
e
chn
i
qu
e
. 201
2; 36(16): 1
78-
180.
[17]
Z
H
ANG Jian-
w
e
i, YANG F
ang, QIN
Jian, XIAO Jian-ho
ng.
Design of co
n
t
rol pilot s
y
ste
m
for electric
vehicl
e AC cha
r
gin
g
.
Electrica
l
Measur
e
m
ent
and Instru
me
n
t
ation
. 20
14; 5
1
(5): 78-8
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.