TELKOM
NIKA
, Vol. 13, No. 4, Dece
mb
er 201
5, pp. 1127
~1
132
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i4.1818
1127
Re
cei
v
ed Ap
ril 3, 2015; Re
vised July
2
2
, 2015; Accept
ed Augu
st 12
, 2015
Resear
ch on Silicon-based Planar Spiral Inductance
Coil Based on MEMS
Gang Li*
1
, Xiaofe
ng Zhao
2
, Dianzhong
Wen
*3
, Yang Yu
4
Ke
y
Lab
orator
y of Electronics
Engi
neer
in
g, Colle
ge of
H
e
il
o
ngji
a
n
g
Provi
n
ce, Heil
ong
jia
n
g
Univ
ersit
y
No.74 of
Xufu
Roa
d
, Nan
gan
g district, Haer
bin,
He
ilo
ngj
ia
ng Provi
n
ce, C
h
in
a, +
86-45
1-
866
09
073
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: liga
ng@
hlj
u
.edu.cn
1
, zha
o
x
i
aofen
g@h
l
j
u
.e
du.cn
1
,
w
e
n
d
ia
nzh
ong
@hlj
u.ed
u.cn
3
, 108
55
625
84@
qq.com
4
A
b
st
r
a
ct
This pap
er des
cribes a ki
nd
o
f
silicon-
base
d
pla
ne
sp
iral i
n
ductanc
e coi
l
, w
hose lay
out si
z
e
an
d
fabricati
on tec
hno
logy pr
oce
ss ar
e give
n. T
he prod
uctio
n
of induc
ta
nc
e coil a
dopts
the method
of an
intern
al dow
n-l
ead pr
oduc
ed
by oh
m contac
t electrode w
h
i
c
h is forme
d
b
y
heavily b
o
ro
n
-
diffused an
d the
Al ev
apor
ated
on th
e s
u
rface
of N-typ
e
hig
h
resistiv
it
y
sili
con w
a
fer. Pro
c
essin
g
the
sil
i
con
cup
o
n
T
h
e
back of th
e sil
i
c
on w
a
fer usi
n
g MEMS techn
o
lo
gy, on th
e basis of
thickn
ess
red
u
ctio
n
of the in
ducta
n
c
e
coil s
ubstrate,
the
poro
u
s ar
ray substr
ate
of ab
out 5
μ
m thickness
is o
b
tain
ed by
l
a
s
e
r
dri
lli
ng on
the
und
ersid
e
of the silico
n
cup,
w
h
ich
reduc
es
the vortex of
s
ubstrate, an
d greatly i
m
pr
ov
es the Q value
of
ind
u
ctanc
e coi
l
.
Analy
z
e
th
e
effects
of serie
s
resistanc
e of
the coi
l
an
d
meta
l lay
e
r thi
ckness o
n
the
Q
valu
e in the co
nditi
on of low
frequ
ency an
d hig
h
fr
eque
ncy
,
and Ansys softw
are is used to simu
late th
e
ind
u
ctanc
e coi
l
current dens
i
t
y
and
ma
gn
e
t
ic
in
ductio
n
i
n
tensity, to
d
e
t
ermi
ne
the
o
p
timu
m s
ubstr
ate
thickness
of in
ductanc
e coi
l
. The silic
on-b
a
sed
pla
ne
sp
irali
nd i
n
d
u
cta
n
ce coi
l
h
a
s the a
d
vant
ages
o
f
simple
ma
nufa
c
turing
proc
es
s an
d is c
o
mp
atibl
e
w
i
th
IC t
e
chn
o
lo
gy, co
mp
are
d
w
i
th ot
her
ma
nufactu
rin
g
meth
od, so it h
a
s a w
i
de ap
pli
c
ation pr
osp
e
ct.
Ke
y
w
ords
: MEMS; silicon-
based planar spi
r
al
inductanc
e
coil;
Ansys; Q value
Copy
right
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Silicon
-ba
s
ed
planar
spiral
inductan
c
e
coil,
as a kind
of important
passive co
m
pone
nts,
has
bee
n wi
dely applie
d
to electroni
c technol
ogy
[1]. Compa
r
ed with
othe
r materi
als, t
h
e
metallic indu
ctance
coil m
a
nufactu
red
o
n
sili
con
sub
s
trate requi
re
s
d
i
fficult
process[2-5], but that
is compatible with the i
n
tegrat
ed ci
rcuit technology,
so
silicon-
based planar spir
al inductance
coil is
still the first choi
ce f
o
r RFI
C
[6-8].
At pre
s
ent, some in
du
ctan
ce
coil
produ
ction
pro
c
e
ss is
com
p
lex a
nd hig
h
co
st, whi
c
h i
s
not in conformity with the
large
scale i
n
tegrat
e
d
ci
rcuit devel
op
ment re
quire
ments
of the
high
integratio
n a
nd low
co
st [9-11]. How t
o
simplify
the
electromag
n
e
tic excitatio
n
of the re
so
nant
sen
s
o
r
p
r
odu
ction p
r
o
c
e
s
s, redu
ce the
co
st and
kee
p
high q
uality has
be
come
the key to t
h
e
developm
ent of the technol
ogy.
In this p
ape
r, by usi
ng th
e plan
ar
spi
r
al indu
cto
r
m
odel a
nd
ana
lyzing the
effects of
seri
es
re
sista
n
ce of the co
il and metal layer th
ickne
s
s on the Q value in the condition of lo
w
freque
ncy an
d
high
freq
u
ency,
a ne
w method of
m
anufa
c
turin
g
indu
ctan
ce coil
is pre
s
e
n
ted,
whi
c
h i
s
an
i
n
ternal
d
o
wn
-lead
p
r
od
uced by
ohm
contact ele
c
trode
fo
rme
d
by
heavily
b
o
r
on
-
diffused a
nd
the Al evaporated on the
back of
sili
co
n cup u
s
in
g MEMS techn
o
logy, and th
e
poro
u
s a
r
ray sub
s
trate i
s
o
b
tained by la
ser d
r
illin
g
on
the undersid
e
of the silico
n
cup to redu
ce
the indu
ctan
ce coil loss.
The study
sho
w
s
that the porou
s a
rray sub
s
trat
e of about 5
μ
m
thickness i
s
obtained by lase
r drilli
ng
on the underside of the
si
licon cup,
whic
h reduces the
vortex of sub
s
trate, an
d greatly impr
ove
s
the Q value
of inductan
c
e coil.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 112
7– 113
2
1128
(a)
(b)
Figure 1. The
model of silicon-b
a
sed
pla
nar spiral ind
u
ctan
ce
coil.
(a) Simpl
e
ph
oto of inducta
nce
coil (b
) Equivalent ci
rcuit of inducta
nce
coil
In Figure 1
-(a
), the inducta
nce co
il is
manufa
c
ture
d on <100
> orie
nta
t
ion of
mono
cry
s
talli
ne sili
con
chi
p
, which is N-type wi
th hi
gh re
si
stan
ce
and dou
ble-side
d poli
s
hi
ng.
On
the su
rfa
c
e
of silicon chip, we
m
a
n
u
facture
a
n
i
ndu
ctan
ce
co
il adoptin
g th
e metho
d
of
an
internal
do
wn-lea
d p
r
od
u
c
ed
by ohm
conta
c
t ele
c
trod
e
which
is form
ed b
y
heavily bo
ron
-
diffused
and t
he Al evapo
rated. Wh
en a
n
altern
ating
curre
n
t is a
p
p
lied to the in
d
u
ctan
ce
coil,
an
alternatin
g m
agneti
c
field will be ge
nerated.
Figure 1-(b)
sho
w
s the eq
uivalent circu
i
t of
plane sp
iral indu
ctan
ce coil, in whi
c
h self-
indu
ctan
ce v
a
lue i
s
L
s
,
re
sist
a
n
c
e
v
a
lu
e is
R
s
, and
C
s
is
cap
a
cit
ance bet
wee
n
indu
ctan
ce
coil
wire,
C
ox
is cap
a
cita
nce betwe
en
in
d
u
ctan
ce coil
and su
bstrate,
C
si
an
d
R
si
a
r
e le
a
k
ag
e
cap
a
cita
nce and lea
k
a
ge resi
stan
ce re
spectively, Q value expressi
on is:
2
2
1
1
p
s
s
sp
s
s
s
ps
s
s
R
wL
R
QC
C
w
L
L
R
Rw
L
R
R
(1)
Whe
r
e
R
p
and
C
p
are give
n in equatio
n (2) a
nd (3
):
2
22
2
1
si
ox
s
i
p
ox
si
ox
RC
C
R
wC
R
C
(2)
22
2
22
1
1
o
x
si
si
si
po
x
o
x
si
si
wC
C
C
R
CC
wC
C
R
(3)
Re
son
ant fre
quen
cy of the inducta
nce coil is given by
2
11
2
s
s
sp
s
R
f
L
LC
C
(4)
It can be se
en from the
analytical ex
pre
ssi
on
s is
that the major facto
r
s
ca
usin
g the
decrease
of Q values
are ohmic loss
of coil,
energy loss i
n
the silic
on substrate and loss
resulted from
the peak el
ectri
c
field p
o
we
r ca
used
by parasiti
c
cap
a
cita
nce increa
se with
the
freque
ncy.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
sea
r
ch on
Silicon
-ba
s
ed
Planar Spiral
Inductan
c
e
Coil Based o
n
MEMS
(Di
a
nzh
ong Wen
)
1129
2.The Simulation and
Ca
lculation Methods
We u
s
e ANS
YS software t
o
make the si
mulation of the electromag
netic
field ge
nerate
d
by the ind
u
ct
ance
coil. Fig
u
re
2 a
nd Fi
gure
3
di
spla
y the cu
rrent
den
sity vecto
r
an
d ma
gnet
ic
indu
ction int
ensity vecto
r
of static
an
alysis
wh
en
DC
cu
rrent i
s
10
mA. Accordi
ng to t
he
magneti
c
fiel
d supe
rpo
s
iti
on p
r
in
ciple,
the tota
l ma
gnetic indu
cti
on inte
nsity i
s
the
mag
n
e
t
ic
indu
ction inte
nsity of x,
y,
z three di
re
cti
ons
ove
r
lay, the maximum
magneti
c
ind
u
ction inte
nsi
t
y
distrib
u
tion i
n
the inner
coil. Wh
en a
l
ternati
ng
current of dyna
mic analy
s
is is 10+1
0
i mA,
freque
ncy of
100
Hz, the al
ternating m
a
g
netic ind
u
ctio
n intensity si
mulated ima
g
e
s of indu
cta
n
ce
coil in the air i
s
sh
own in Figure 4. Fig
u
re 5 is t
he stre
ss di
strib
u
tion
of inductan
c
e coil sub
s
tra
t
e.
Figure 2. The
picture of
current den
sity vector
Figure 3. The
picture of ma
gnetic in
du
ction
intensity vect
or
Figure 4. The
picture of ma
gnetic in
du
ction
intensity
Figure 5. The
stre
ss di
st
rib
u
tion of indu
ctance
c
o
il su
bs
tr
a
t
e
The in
du
ctan
ce th
eoretical
value i
s
cal
c
ul
ated
by the
Gre
enh
ou
se
method.
Th
e ba
si
c
idea is to divi
de the re
ctan
gular
coil into
a seri
es
of
wire segme
n
ts,
calculate sel
f
-indu
ctan
ce
of
each wire re
spectively and
the mutual inducta
nc
e bet
wee
n
the two
wire
s, and finally sum up
all
the self-in
d
u
c
tance a
nd m
u
tual indu
cta
n
ce of t
he wi
re se
ction. B
e
ca
use of a large a
m
ount
o
f
comp
utation, we wrote
MA
TLAB
pr
ogra
m
ba
sed
on t
he si
ze
of th
e indu
ctan
ce
coil to
cal
c
ul
ate
the theoretical value of in
ducta
nc
e coil
according to
its size
by u
s
ing the
Gre
enho
use
form
ula
and get the in
ducta
nce coil
measured val
ue.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 112
7– 113
2
1130
3. Design an
d Manufactu
r
e of Induc
ta
nce Coil
We ado
pt MEMS surfa
c
e
processin
g
tech
nolo
g
y to design the i
ndu
ctan
ce co
il in this
pape
r. The n
u
mbe
r
of turn
s of the coil
is 34, wi
dth o
f
the coil con
ducto
r
is 1
0
µm,
and the
coil
con
d
u
c
tor
sp
acin
g i
s
1
0
µm. The fa
b
r
icatio
n te
ch
nology
pro
c
e
s
s of the
in
ducta
nce
coil
is
illustrate
d in Figure 6. Figure 7 is in
du
ctance
coil sa
mple photo.
Figure 6. The
fabricatio
n techn
o
l
ogy pro
c
e
ss of ind
u
ct
ance coil
(a) Silicon wafer cleaning; (b) Surface oxi
dation; (c) Boron diffu
sion; (d) Lithography
con
d
u
c
tor hol
e; (e)
Vapo
r a
l
uminized film
; (f) Etching a
l
um
inized film
to form inductance
coil
Figure 7. The
photo of indu
ctan
ce coil sa
mple
4. Experimental Re
sults
and Disc
uss
i
on
We g
e
t
the inducta
nce coil
measure
d
values a
nd Q v
a
lue
s
in test
con
d
ition of d
i
fferent
freque
nci
e
s by
using pre
c
isi
on
L
CR meter
(T
H28
19A).
The re
sults of
com
pari
s
on betwee
n
indu
ctan
ce
coil theo
retical value a
nd t
he me
asur
e
d
values are
shown in T
abl
e 1. As
ca
n
be
see
n
from th
e Table, the measured value rea
c
h
ed
more tha
n
22
μ
H, but the
error is
relati
vely
large
com
p
a
r
ed with the t
heoretical val
ue. It is
main
ly due to ign
o
ran
c
e
of the internal d
o
wn-
lead, structu
r
e si
ze of cont
act ele
c
trode, pro
c
e
ss conditio
n
s
and preci
s
io
n of measuring
instru
ment in
the theoreti
c
a
l
calculation.
(
a
)
(
b
)
(
c
)
(d
)
(
f
)
(
e
)
SiO
Si
N
+
Al
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
sea
r
ch on
Silicon
-ba
s
ed
Planar Spiral
Inductan
c
e
Coil Based o
n
MEMS
(Di
a
nzh
ong Wen
)
1131
Table 1. The
comp
ari
s
o
n
b
e
twee
n the in
ducta
nce the
o
retical value
and the mea
s
ured value
s
of
the coil
Freque
nc
y
(K
Hz)
1
10
100
150
200
Measured Value(
μ
H)
25.6646
25.0882
23.4840
23.1228
22.8745
Theoretical Value(
μ
H)
47.26
Error
45.70%
46.92%
50.31%
51.08%
51.60%
Figure 8 refle
c
ts Q value
s
of the inducta
nce
coil chan
ge with freq
u
enci
e
s. As is
sho
w
n
in the figure, Q value
s
in le
ss th
an 90 K
H
z
ran
ge
in
crease with the
increa
se
of freque
ncy, but
at
more
than
90
KHz, Q val
u
es
de
cre
a
se
with the
in
c
r
eas
e
of frequenc
y
. This
indic
a
tes
that, in
the
high freq
uen
cy, the energy loss in the si
licon sub
s
trat
e increa
se
s with the frequ
ency in
cre
a
sed,
resulting in th
e decrea
s
e of
Q values.
0
2
04
0
6
08
0
1
0
0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
Q
V
a
l
u
e
F
r
equenc
y
(K
Hz
)
Q V
a
l
u
e
Figure 8. The
Q value cu
rve of different frequ
en
cie
s
5. Conclusio
n
The indu
cta
n
ce
coil de
sign
ed in this pa
per a
c
ts a
s
the
driving ele
m
ent of
electroma
gne
tic excitatio
n
resona
nt sen
s
or,
and
the
magnitud
e
of
magn
etic fiel
d gen
erated
by
coil i
s
the
deci
s
ive factor of
drive
capability. We adopted
N-
type high
resi
stivity silicon
wafer
whose
resi
stivity is 100
Ω
·cm to
prod
uce an i
ndu
ctan
ce
coil of 34 turn
s, and
obtain
a
large
r
in
du
cta
n
ce
value. By
the ma
gneti
c
indu
ctan
ce
e
nergy fo
rmul
a
W=
LI
2
/2
,
la
rge i
ndu
ctan
ce
values
can g
enerate high
magneti
c
field, ca
u
s
ing th
e silicon mem
b
ran
e
vibratio
n.
At the
s
a
me time, to
reduc
e
the thickness
of p
o
ro
us
array
sili
con m
e
mb
ran
e
at th
e
bottom of ind
u
ctan
ce
coil t
o
5um, which
can m
a
ke
the eddy curre
n
t of sub
s
trat
e gre
a
tly red
u
ce,
playing a
n
i
m
porta
nt rol
e
in inhi
bition
of
eddy
cu
rrent effe
ct u
nder hig
h
fre
quen
cy. Th
ro
ugh
experim
ental
demon
strati
on, the indu
ctance
coil
we
desig
n an
d manufa
c
ture in this pa
per is
able to meet
requi
rem
ent
s of sili
con
micro
pum
p, and ha
s broad ap
plic
ation prospe
cts in
micr
oele
c
t
r
o
n
i
cs a
nd mic
r
o
sy
st
em.
Referen
ces
[1]
W
en Di
anzh
o
n
g
. Sensitiv
it
y
A
nal
ysis
of
Junc
tion F
i
e
l
d Effe
ct-Pressure H
a
lltron.
R
e
view
of
Scientifi
c
Instrum
e
nt
. 19
95; 66 (1): 25
1
-
255.
[2]
Z
hao
Xi
aofe
ng,
W
en D
i
anz
ho
ng, Z
hua
ng
Cu
icui, et a
l
. F
abr
icatio
n a
nd C
h
aracte
ristics
of the Mag
neti
c
F
i
eld
Se
nsors Based on
N
a
n
o
-Pol
ysi
lic
on
T
h
in-F
ilm
T
r
ansi
s
tors.
Journa
l of Semico
nduc
tors
. 2013
;
34(3):0
36
001(
1-6).
[3]
Z
hao
Xi
aofen
g, W
en Dia
n
z
hon
g, Li Ga
ng. F
abr
icati
o
n an
d char
ac
terist
ics of the nc-Si/c-Si
hetero
j
uncti
on
MOSF
ET
s pre
ssure sens
or.
Sensors
. 20
12;
12(5): 636
9-6
379.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 112
7– 113
2
1132
[4]
Yoon
JB, Ch
oi YS, K
i
m B
,
et.al. CMOS Comp
atib
le
Surface-Micr
o
m
achi
ned
Sus
pen
de
d-Spir
a
l
Inductors for Multi-GHz Silic
o
n
RFICs.
IEEE
Electron Devic
e
Letters
. 200
2
;
23(10): 59
1-5
93.
[5]
Gradol
ph, F
r
ie
dber
ger, Mul
l
er
, et.al. Enviro
n
m
ents
on
pi
ez
oresistiv
e
pres
sure se
nsorIm
pact of h
i
gh-
g
and h
i
g
h
vibrati
on perform
anc
e.
Sensors a
n
d
Actuators. A,
Physica
l
. 200
9; 150(1): 69-
77.
[6]
Jian
g Qi-fen
g
Li Z
h
eng-F
a
ng
. Mode
lin
g
an
d An
al
ysis
of
Spiral
Ind
u
ctor
s for Si-B
ase
d
RF
IC’s.
Act
a
Electron
ic Sini
ca
. 2002; 3
0
(8)
:
1119-1
1
2
1
.
[7]
Mengr
an Li
u, Guoju
n
Z
hang,
Z
e
ming Jian,
et.al. Desi
g
n
of Arra
y
MEMS Vector Vibrati
o
n Sensor in the
Locati
on of Pi
peli
ne Inter
nal
Inspector.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electric
al Eng
i
n
eeri
n
g
.
201
4; 12(9): 66
51- 66
57.
[8]
Z
hang
Z
h
i-
yo
n
g
, Ha
i C
hao-
H
e
. Hi
gh Q-F
a
c
t
or On-chi
p Sp
iral In
ductors
for Bu
lk Si
lico
n
CMOS RF
IC’S.
Microel
ec
tronics
. 200
3; 33(1): 15-
18.
[9]
W
augh
W
H
, Gallac
her
BJ, B
u
rdess
JS. A
High-S
ens
itivit
y
Res
ona
nt S
ensor
Re
aliz
e
d
T
h
rough
the
Exp
l
o
i
tation
of Nonl
in
ear D
y
n
a
mic Beh
a
vior.
Mess Sci Technol
. 201
1; 22(
10): 105-
20
2.
[10]
Achmad W
i
do
do, Lati
e
f Roz
aqi,
Ismo
yo
H
a
r
y
anto,
et.al. Devel
opm
ent
of W
i
reless S
m
art Sensor f
o
r
Structure an
d Machi
ne Mo
nit
o
rin
g
.
T
E
LKOMNIKA T
e
leco
mmu
n
icati
on
Co
mp
uting E
l
e
c
tronics an
d
Contro
l.
201
3; 11(2): 41
7-4
2
4
.
[11]
Peng
Gua
nbi
n, Li
u Ji
ng
qua
n,
W
and
Lo
ngfei,
et.al. C
i
rcuit
Desig
n
of a
n
I
m
pla
n
tabl
e ME
MS Pressur
e
Sensor S
y
stem
.
Nanotech
n
o
l
o
g
y and Prec
isi
on Eng
i
n
eeri
n
g
. 2013; 11(
1): 90–9
5.
Evaluation Warning : The document was created with Spire.PDF for Python.