TELKOM
NIKA
, Vol.13, No
.3, Septembe
r 2015, pp. 7
83~793
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i3.1480
783
Re
cei
v
ed Ma
rch 9, 2
015;
Re
vised
Ma
y 26, 2015; Accepted June 1
0
, 2015
A Novel Technique for Fault-Tolerant Control of Single-
Phase Induction Motor
Muhammad Janna
ti
1
, Tole Sutikno
2
, Nik Ruz
m
i Nik Idris
3
, Mohd Junaidi Abd
u
l Aziz
4
1,3,
4
U
T
M-PROT
O
N F
u
ture Drive Lab
orator
y, F
a
cult
y of
Electri
c
al Eng
i
ne
eri
n
g, Univers
i
ti T
e
knol
ogi
Mala
ysi
a
, 813
1
0
Skuda
i, Joho
r Bahru, Mala
ysia
2
Departme
n
t of Electrical En
gi
neer
ing, Un
iver
sitas Ahmad D
ahl
an, Yog
y
a
k
arta, Indon
esia
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: jann
atim94
@
y
a
h
o
o
.com
1
, tole@e
e.ua
d.ac.i
d
2
A
b
st
r
a
ct
T
h
is researc
h
discuss
es abo
ut vector control of
sing
le-p
h
a
se Inducti
on
Motor (IM) w
i
th
tw
o mai
n
and
auxi
l
i
a
ry
w
i
ndin
g
s u
nde
r stator w
i
ndin
g
op
en-
phas
e
fault bas
ed
on Ind
i
rect R
o
tor F
l
ux-Orient
ed
Contro
l (IRFOC). Unlik
e co
n
v
entio
nal
contr
o
ller
w
h
ich c
a
n on
ly b
e
us
e
d
for sin
g
l
e
-ph
a
se IM w
i
th tw
o
w
i
ndin
g
s, the
prop
osed t
e
ch
niq
ue i
n
this
p
aper c
an a
l
so
be us
ed for si
ngl
e-ph
ase IM
und
er op
en-
p
hase
fault. T
he pro
pose
d
fault-tol
e
rant driv
e sy
stem i
n
this p
aper is
bas
ed
on usi
ng tra
n
s
formati
on
ma
trix.
Simulati
ons r
e
sults confir
m t
he va
lid
ity of the the
o
retic
a
l
ana
lysis,
sh
ow
n that the
perf
o
rmanc
e of th
e
prop
osed sc
he
me is h
i
g
h
ly sa
tisfactory for controlli
ng b
o
th h
ealthy a
nd fau
l
ty.
Ke
y
w
ords
:
fault-toler
ant c
ontrol, sin
g
l
e
-
phas
e in
ductio
n
motor, ope
n-ph
ase fau
l
t, indir
e
ct rotor
flux-
orie
nted co
ntro
l, transformatio
n
matrix
Copy
right
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Single-pha
se
Indu
ction M
o
tor
(IM) i
s
one th
e mo
st comm
only I
M
s
whi
c
h i
s
use
d
in
wa
shin
g ma
chin
es,
drill
s, com
p
re
sso
r
s,
refri
gerators,
pum
ps,
drye
rs an
d many
oth
e
r
appli
c
ation
s
.
A sin
g
le-pha
se IM i
s
prin
ci
pally
an
unba
lanced IM sin
c
e it is con
s
tructed with two
uneq
ual main
and auxiliary
windin
g
s [1].
AC drive
s
o
f
single
-
ph
ase IM demo
n
s
trate
better perfo
rman
ce, lowe
r p
r
o
t
ection,
improve
d
reli
ability and are co
st-b
enefit
in comp
ari
s
o
n
with their
DC co
unte
r
pa
rts [2, 3]. In th
e
literature, nu
mero
us
studi
es h
a
ve be
en c
ond
ucte
d on Va
riabl
e Fre
que
ncy
Cont
rol (VF
C
)
techni
que
s
o
f
singl
e-pha
se IM d
r
ive
s
su
ch
as
scal
ar and
vecto
r
control
te
chniqu
es. The
s
e
control te
chn
i
que
s a
s
sure
ene
rgy
savi
ng, imp
r
oved
efficien
cy, d
e
crea
se i
n
t
o
rqu
e
re
spo
n
s
e
pulsation and
etc [4-8]. Re
cent re
se
arch trend on I
M
is toward vector control
of single-ph
ase
IMs o
r
u
nbal
anced t
w
o-ph
ase
IMs [9
-2
2]. Gene
rally, in all
pro
p
o
s
ed ve
ctor
co
ntrol m
e
thod
s for
singl
e-p
h
a
s
e IMs,
the
sta
r
t
-
up and run
n
i
ng
capa
ci
tors are
disreg
arded a
nd
sing
le-ph
a
se IM i
s
con
s
id
ere
d
a
s
an
asymm
e
tric 2
-
ph
ase IM. Use
of
hystere
s
i
s
curre
n
t controlle
r for Fiel
d-O
r
ie
n
t
ed
Control (FO
C
) of unbala
n
ced 2-p
h
a
s
e IM has be
en
sugge
sted in [
9
]. In [10], FOC techniq
u
e
for
a
si
ngle
-
ph
ase
IM with cu
rrent dou
ble seque
nce
cont
rolle
r fo
r d
e
creasi
ng th
e to
rque
pul
satio
n
has
bee
n p
r
opo
sed.
Usi
n
g cu
rrent d
o
uble
seq
uen
ce co
ntroll
er i
s
a
compl
e
x controlle
r du
e to
usin
g many
PI controll
ers. To solve p
r
oblem
s in
[9,
10], in [11, 12], deco
uplin
g vector
co
ntrol of
singl
e-p
h
a
s
e
IM has b
een
pre
s
ente
d
. In [11, 12], by introdu
cin
g
two new
de
cou
p
ling si
gnal
s
in
addition
to th
e de
co
uplin
g
sig
nal
s li
ke
one
s u
s
e
d
in
3-pha
se
IM, a
novel te
ch
nique
for vector
control of si
n
g
le-p
ha
se IM
base
d
on F
O
C h
a
s b
e
e
n
pro
p
o
s
ed.
Ho
wever, d
e
c
ou
pling ve
ctor
control te
chn
i
que d
epe
nd
s on
variatio
n of si
ngle
-
p
hase IM pa
rameters. In
[13-22],
som
e
method
s for
high p
e
rfo
r
m
ance FO
C of
singl
e-
pha
se
IM or
unbal
anced 2
-
p
h
a
s
e IM
have b
een
pre
s
ente
d
wh
ich
ca
n b
e
li
sted a
s
foll
ows;
In [1
3
-
16], sp
eed se
nsorle
ss
Indi
re
ct F
O
C
(IFO
C) of
2-
pha
se IM
u
s
ing Extende
d
Kalman
Filt
er
(EKF),
i
n
[17], Model
Referen
c
e
Adaptive Syst
em
(MRAS)
ob
se
rv
er fo
r roto
r
spe
ed e
s
tima
tion, in [
18], sensorle
ss FO
C of si
ngle
-
p
hase IM with
on
line stato
r
re
sista
n
ce e
s
timation, in [1
9, 20],
two t
e
ch
niqu
es fo
r spee
d sen
s
orl
e
ss IF
OC of
unbal
an
ced
2-ph
ase IM
based
on m
o
tor m
odel, i
n
[21], FO
C
of 2-pha
se
IM u
s
ing
Ge
n
e
tic
Algorithm (G
A) for sp
eed
PI controlle
r tuning
and
in [22], Virtual High F
r
eq
uen
cy Injecti
on
Method
(VHFIM) to dete
r
mine th
e sp
eed a
nd p
o
sition in IFO
C
of 2-p
h
a
s
e
IM have be
e
n
pre
s
ente
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 783 – 793
784
Reliability of
an elect
r
ical dr
ive has been alway
s
a most
important concern in many
indu
strial an
d
critical ap
plications. In these appl
i
c
atio
n
s
, an app
rop
r
iate control st
rategy must b
e
cap
able of m
anagi
ng the
drive sy
stem
durin
g the
fa
ult conditio
n
s. In spite of good pe
rforma
nce
of conventio
n
a
l vector con
t
rol method
s
for singl
e-
ph
ase IM drive
s
, its cap
abili
ty in controlli
ng
faulty single
-
pha
se IM
s i
s
un
satisfa
c
to
ry. To ov
er
co
me
th
is
pr
ob
le
m, a
n
o
v
e
l
ve
c
t
or
c
o
ntr
o
l
method fo
r
si
ngle-pha
se
IM is
pro
p
o
s
e
d
in thi
s
pa
pe
r. The
ne
w ve
ctor
co
ntrol te
chni
que
whi
c
h is
based o
n
FO
C, is
suita
b
le
for b
o
th he
al
thy single
-
p
h
a
se IM
drive
s
and
sin
g
le-p
hase IMs wh
en
wor
k
s with j
u
st main
wind
ing. MATLAB simulati
o
n
result
s sho
w
that the perf
o
rma
n
ce of the
prop
osed sch
e
me is hig
h
ly satisfa
c
to
ry fo
r co
ntrolli
ng
healthy and f
aulty single
-
p
hase IM.
2. d-q Model
of Single-Ph
ase IM
w
i
th
T
w
o
Main an
d Auxiliar
y
Windings
The si
ngle
-
ph
ase IM d
-
q e
quation
s
with
two different
main an
d aux
iliary windi
ng
s in the
stationa
ry ref
e
ren
c
e
frame
can
be
sho
w
n as foll
owi
n
g
equatio
ns [9]
(in thi
s
pa
per sup
e
rscript
“
s
’’
indicates that
the variable
s
are in the sta
t
ionary refe
re
nce fra
m
e):
Stator and rot
o
r volta
ge eq
uation
s
:
(1)
Stator and rot
o
r flux eq
uati
ons:
(2)
Electrom
agn
etic torqu
e
eq
uation
s
:
r
r
l
e
s
qr
s
ds
ds
s
dr
s
qs
qs
e
F
dt
d
J
Pole
i
i
M
i
i
M
Pole
2
2
(3)
Whe
r
e,
v
s
ds
, v
s
qs
, i
s
ds
, i
s
qs
, i
s
dr
, i
s
qr
,
λ
s
ds
,
λ
s
qs
,
λ
s
dr
and
λ
s
qr
are the d
-
q axes volta
g
e
s, current
s, and
fluxes
of
the stator and rot
o
r.
R
ds
, R
qs
a
nd
R
r
de
note
the stato
r
an
d roto
r resi
st
ances.
L
ds
, L
qs
, L
r
,
M
ds
and
M
qs
denote the st
ator, and the
rotor se
lf an
d mutual ind
u
ctan
ce
s.
r
is the machine
spe
ed.
τ
e
,
τ
l
,
J
and
F
a
r
e elect
r
oma
g
netic torque,
load torq
ue,
inertia an
d visco
us fri
c
ti
on
c
oeffic
i
ent.
3. d-q Model
of Single-Ph
ase IM
w
i
th
One Windin
g
(Faulty
Sin
g
le-Phas
e
IM)
Modelin
g
of engin
eeri
ng system
s ha
s
bee
n subj
ect of attention
of ma
ny re
searche
r
s
within the la
st decad
es
(e.
g
. [23, 24]). In this pap
er,
the singl
e-p
h
a
se IM mod
e
l
with only main
windi
ng
ba
se
d on
d
-
q
mod
e
l is p
r
e
s
ente
d
(it i
s
a
s
sum
ed that
a
pha
se
cut
-
off faul
t is
occu
rred i
n
the auxiliary
windi
ng of
si
ngle-phase IM). Stator
a-axis
(main wi
nding
)
and d-q
axes can be
sho
w
n a
s
Fig
u
re 1 (i
n this
Figure, “
f
as
’’ can be flux, voltage or curre
n
t).
s
qr
s
dr
s
qs
s
ds
r
r
r
r
qs
ds
r
r
r
r
r
qs
r
ds
qs
qs
qs
ds
ds
ds
s
qs
s
ds
i
i
i
i
dt
d
L
R
L
dt
d
M
M
L
dt
d
L
R
M
dt
d
M
dt
d
M
dt
d
L
R
dt
d
M
dt
d
L
R
v
v
0
0
0
0
0
0
s
qr
s
dr
s
qs
s
ds
r
qs
r
ds
qs
qs
ds
ds
s
qr
s
dr
s
qs
s
ds
i
i
i
i
L
M
L
M
M
L
M
L
0
0
0
0
0
0
0
0
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
A Novel T
e
ch
nique for F
aul
t-Tolerant Co
ntrol of Single
-
Pha
s
e IM (M
. Jannati)
785
Figure 1. Stator a-axis an
d d-q axe
s
In this
Figure
θ
o
is the
angl
e bet
wee
n
stator a
-
axi
s
a
n
d
stato
r
q
-
axi
s
. Ba
sed
on
Figure 1,
d-q vari
able
s
for stator
can
be sh
own as:
o
as
s
o
as
s
f
q
f
d
cos
,
sin
(
4
)
Since the
d a
nd q axe
s
a
r
e ortho
gon
al, therefo
r
e the
i
r inne
r p
r
od
u
c
t sh
ould b
e
equal to
z
e
ro. So,
(
5
)
If we c
o
ns
ider
θ
o
=0, the trans
formation
matrix for
stat
or varia
b
le
s is obtain
ed a
s
:
(
6
)
Therefore, th
e d-q mo
del
of si
ngle
-
ph
ase
IM un
de
r op
en
-pha
se
fault is
obta
i
ned
a
s
follows
:
Stator and rot
o
r volta
ge eq
uation
s
:
s
qr
s
dr
s
qs
r
r
r
r
qs
r
r
r
r
qs
r
qs
qs
qs
s
qs
i
i
i
dt
d
L
R
L
dt
d
M
L
dt
d
L
R
M
dt
d
M
dt
d
L
R
v
0
0
0
0
0
0
0
0
0
0
0
0
(
7
)
Stator and rot
o
r flux eq
uati
ons:
s
qr
s
dr
s
qs
r
qs
r
qs
qs
s
qr
s
dr
s
qs
i
i
i
L
M
L
M
L
0
0
0
0
0
0
0
0
0
0
0
0
0
(
8
)
Electrom
agn
etic torqu
e
eq
uation
s
:
r
r
l
e
s
dr
s
qs
qs
e
F
dt
d
J
Pole
i
i
M
Pole
)
(
2
2
(
9
)
2
or
0
0
cos
sin
o
o
o
a
a
s
s
s
f
f
T
q
d
1
0
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 783 – 793
786
As can b
e
se
en from Equa
tion (7)-(9), the st
ru
ctu
r
e
of the single
-pha
se IM un
der op
en
-
pha
se fault i
s
si
milar to
the structu
r
e
of
the si
ngl
e-ph
ase IM
with two
mai
n
and
auxili
ary
windi
ng
s. Th
e only diffe
re
nce
between
these two
ty
pes of motors
is
the motor parameters
.
In
the single
-
ph
ase IM unde
r open
-ph
a
se
fault it is obtained:
L
ds
=M
ds
=R
ds
=0 b
u
t in the health
y
singl
e-p
h
a
s
e IM
: L
ds
≠
L
qs
, M
ds
≠
M
qs
and
R
ds
≠
R
qs
.
In the next section, a vector co
ntrol sy
stem ba
sed
on Roto
r FO
C (RFO
C) fo
r healthy
singl
e-p
h
a
s
e
IM is pre
s
ent
ed.
It is obvious by substi
tuting
L
ds
=M
ds
=R
ds
=
0
,
t
h
is cont
r
o
l sy
st
e
m
can b
e
used for faulty singl
e-ph
ase IM.
4. Proposed
Metho
d
for V
ector
Con
t
ro
l of Single-Phase IM Ba
s
e
d on RF
OC
In this sectio
n, usin
g tran
sformation m
a
trix,
a
method
for vecto
r
co
ntrol of
single
-
pha
s
e
IM is
present
ed. Th
e
rea
s
on of
u
s
ing
this t
r
an
sform
a
tion m
a
trix i
s
cha
ngin
g
t
h
e u
n
bal
an
ced
equatio
ns of
the si
ngle
-
ph
ase
IM
(du
e
to the
L
ds
≠
L
qs
, M
ds
≠
M
qs
an
d
R
ds
≠
R
qs
) t
o
the
bal
an
ced
equatio
ns.
4.1.
Transfor
m
ation Matrix for Sta
t
or
Curre
nt Vari
ables
The idea of
usin
g this tra
n
sformation
matrix
is obt
ained fro
m
e
q
uivalent ci
rcuit of the
singl
e-p
h
a
s
e
IM. Figure 2 shows the eq
u
i
valent circuit of single
-
ph
a
s
e IM.
Figure 2. Equivalent circuit of single
-ph
a
s
e IM
All the para
m
eters in Fi
g
u
re
2, have
been
define
d
in Appe
ndix. It can b
e
sh
own th
at
using following definitions,
a
m
m
a
V
jZ
V
Z
V
I
I
j
I
4
3
1
1
(
1
0
)
Figure 2 ca
n be simplifie
d as Figu
re 3 (see Appen
dix).
Figure 3. Simplified equival
ent circuit of singl
e-p
h
a
s
e
IM
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
A Novel T
e
ch
nique for F
aul
t-Tolerant Co
ntrol of Single
-
Pha
s
e IM (M
. Jannati)
787
In Figure 3,
))
1
(
2
(
2
)
2
))(
1
(
2
)(
(
2
)
2
)(
(
4
3
4
3
j
Z
jZ
Z
Z
Z
j
Z
jZ
Z
Z
Z
Z
Z
Z
Z
Z
b
la
lm
b
lm
f
la
lm
f
lm
(11
)
In (11),
Z
3
an
d
Z
4
are th
e
para
m
eters i
n
term
s of in
ducta
nces
(
L
ds
and/or
L
qs
and/or
M
ds
and/or
M
qs
). As ca
n be
seen u
s
in
g (1
0), the eq
uivalent
ci
rcuit of singl
e-p
h
a
s
e IM (Figu
r
e 2
)
cha
nge
d into a balan
ce
d ci
rcuit (Figu
r
e
3).
Equation (10) can be
re
-written as fol
l
ows:
m
a
m
a
m
a
m
a
I
I
N
N
j
I
jI
I
N
N
jI
1
1
(
1
2
)
And,
m
a
m
a
V
Z
V
jZ
V
V
jZ
V
Z
jV
3
4
1
3
4
1
(
1
3
)
Equation
(12
)
and (13
)
are
transfo
rmati
on matri
c
e
s
f
o
r tra
n
sfo
r
ma
tion of variabl
es fro
m
unbal
an
ced set (eg., Figure 2) to the balan
ced
set (eg., Figure 3
)
. Based on
(12
)
and (1
3),
followin
g
tran
sform
a
tion m
a
trice
s
for
sta
t
or voltage an
d curre
n
t variable
s
ca
n be
derived:
Tran
sfo
r
m
a
tion m
a
trix for
stator
voltage
variable
s
:
s
qs
s
ds
e
e
e
e
s
qs
s
ds
e
vs
e
qs
e
ds
Z
Z
Z
Z
T
cos
sin
sin
cos
3
4
3
4
(
1
4
)
Tran
sfo
r
m
a
tion m
a
trix for
stator
current
varia
b
le
s:
s
qs
s
ds
e
e
qs
ds
e
e
qs
ds
s
qs
s
ds
e
is
e
qs
e
ds
i
i
M
M
M
M
i
i
T
i
i
cos
sin
sin
cos
(
1
5
)
To obtai
n (14
)
an
d (15), fo
llowing
sub
s
titu
ting
have b
een con
s
id
ered
(i
n (14) a
nd (15)
sup
e
r
s
c
r
ipt
“
e
’’ indicate
s that the variabl
es are in t
he rotating reference frame.
More
over, “
θ
e
’’ is
the angle b
e
twee
n the stat
ionary refere
nce fra
m
e an
d the rotor flu
x
oriented referen
c
e frame
)
.
s
qs
m
s
ds
a
e
qs
e
ds
s
qs
m
s
ds
a
e
qs
e
ds
ds
qs
a
m
e
e
i
I
i
I
i
I
i
jI
v
V
v
V
v
V
v
jV
M
M
N
N
j
,
,
,
,
,
,
,
,
cos
1
,
sin
1
1
1
1
(
1
6
)
It is expecte
d by using (14) an
d (15
)
t
he unbalan
ced e
quation
s
of singl
e-p
hase IM
become si
mil
a
r to the bala
n
ce
d equ
atio
ns.
4.2. Equatio
n
s of RF
OC
for Single-Ph
ase IM Bas
e
d
on Propos
ed Meth
od
In this se
ctio
n vector cont
rol equ
ation
s
of
single-ph
ase IM ba
se
d RFO
C
is p
r
esented.
Usi
ng (1
5) a
n
d
after simplif
ying, the equ
ations of si
ngl
e-ph
ase IM are obtain
ed a
s
follows:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 783 – 793
788
Rotor voltag
e
equation
s
:
s
qr
s
dr
e
s
e
s
r
r
r
r
r
r
r
r
e
s
s
qs
s
ds
e
is
e
is
qs
ds
r
qs
r
ds
e
s
e
s
i
i
T
T
dt
d
L
R
L
L
dt
d
L
R
T
i
i
T
T
dt
d
M
M
M
dt
d
M
T
T
1
1
0
0
(
1
7
)
After simplifying Equation
(17) can be
written as:
e
qr
e
dr
r
r
r
e
r
r
e
r
r
r
e
qs
e
ds
qs
qs
e
r
qs
e
r
qs
i
i
dt
d
L
R
L
L
dt
d
L
R
i
i
dt
d
M
M
M
dt
d
M
0
0
(
1
8
)
Electrom
agn
etic torqu
e
eq
uation:
s
qs
s
ds
e
is
e
is
ds
qs
T
e
s
T
e
s
s
qr
s
dr
s
qs
s
ds
ds
qs
s
qr
s
dr
s
qr
s
ds
ds
s
dr
s
qs
qs
e
i
i
T
T
M
M
T
T
i
i
Pole
i
i
M
M
i
i
Pole
i
i
M
i
i
M
Pole
1
1
0
0
2
0
0
2
)
(
2
(19
)
After simplifying Equation
(19) can be
written as:
)
(
2
e
qr
e
ds
e
dr
e
qs
qs
e
i
i
i
i
M
Pole
(
2
0
)
In summ
ery
based on E
q
uation (17)-(2
0
), equ
at
ion
s
of RFO
C
for singl
e-Pha
s
e IM are
obtaine
d a
s
f
o
llowin
g
e
q
u
a
tions. In th
e
pro
c
e
s
s of
obtainin
g
the
s
e
equatio
ns the a
s
sumpt
i
on
λ
dr
e
=
ǀ
λ
r
ǀ
and
λ
qr
e
=0 is
con
s
i
dere
d
(i
n RF
OC meth
od, the ro
to
r flux
vector i
s
alig
ned
with d-axis;
λ
dr
e
=
ǀ
λ
r
ǀ
and
λ
qr
e
=0):
dt
d
T
i
M
r
e
ds
qs
r
/
1
(
2
1
)
e
qs
r
qs
r
e
i
L
M
Pole
2
(
2
2
)
r
r
e
qs
qs
r
e
T
i
M
(
2
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
A Novel T
e
ch
nique for F
aul
t-Tolerant Co
ntrol of Single
-
Pha
s
e IM (M
. Jannati)
789
In Equatio
n
(21),
T
r
i
s
rot
o
r time
con
s
t
ant (
T
r
=
L
r
/
R
r
). As
can
b
e
see
n
from
e
quation
s
(21
)
-(23
) the
stru
ctu
r
e of
RFO
C
e
quati
ons of
si
ngle
-
pha
se
IM u
s
ing p
r
op
osed
tran
sform
a
tion
matrix for stat
or cu
rrent variable
s
, beco
m
e like bal
an
ced e
quatio
n
s
.
Con
s
e
quently
, Figure
4 i
s
pro
p
o
s
ed f
o
r IRF
O
C of
singl
e-p
h
a
s
e IM. As m
entione
d
before, by su
bstituting
L
ds
=M
ds
=R
ds
=0,
this cont
rol system can b
e
used for fa
ulty single-ph
ase
IM. In This
Figure, 2 to 2 trans
formation
matrix for stat
or cu
rrents i
s
as follo
ws:
s
qs
s
ds
bs
as
i
i
i
i
1
0
0
1
(
2
4
)
Figure 4. Block di
agram of
propo
se
d IRFOC
for b
o
th healthy and f
a
ulty single
-
p
hase IM
5. Simulation Resul
t
s
To evalu
a
te t
he effe
ctiven
ess of th
e p
r
o
posed
cont
rol
l
er fo
r vecto
r
control of
hea
l
thy and
faulty singl
e-pha
se IM,
simulation i
s
con
d
u
c
ted
u
s
ing
MATLA
B
simul
a
tion
pa
ckage. T
he
simulate
d
sin
g
le-p
ha
se IM
is fed
by two-leg Volt
ag
e S
o
urce I
n
verte
r
(VSI) a
s
u
s
ed in
[9]. The
d-
q model b
a
sed on Equ
a
tion (1
)-(3
) an
d (7)-(9) h
a
s been u
s
e
d
for he
althy an
d faulty singl
e-
pha
se IM
re
spectively. Th
e Runge
-Kutt
a
algo
rithm
i
s
used to
solv
e dynami
c
eq
uation
s
of
sin
g
le-
pha
se IM u
n
der
healthy a
nd faulty con
d
itions. M
o
re
over,
a cont
roller system
based
o
n
Fig
u
re 4
is co
nsi
dered
for vector
co
ntro
l of both single-pha
se I
M
whe
n
wo
r
k
w
i
th
o
n
e
(
f
aulty s
i
n
g
l
e
-
ph
as
e
IM) an
d two
windi
ng
s (he
a
lthy singl
e-p
hase IM). In
all sim
u
lations a
phase cut-off is
occurred in
auxiliary wi
nding. The proposed
drive system i
s
tested under
various operat
ing conditi
ons
namely, healt
h
y and faulty con
d
ition
s
an
d variation
s
o
f
load torqu
e
and refere
nce spe
ed. In this
pape
r, imme
diate fault d
e
tection
is
a
s
sumed
a
s
consi
dered i
n
[25]. The
p
a
ram
e
ters of
the
simulate
d ma
chin
e are a
s
follows:
Voltage: 110
V, f = 50 Hz, No. of poles
= 4, Power
= 475 Watt, J = 0.0038 kg.m
2
, R
ds
= 20.6
,
R
qs
= 6.2
,
L
lr
= L
ls
= 0.0
814 H, R
r
=
1
9
.15
, L
ms
= 0.851 H, L
ds
= 1.28 H L
ds
=
0.43 H
Figure 5 sho
w
s the
simul
a
tion re
sults
of t
he propo
s
ed
controlle
r for sin
g
le-p
hase IM
unde
r he
althy and faulty co
ndition
s. In this Figu
re,
fro
m
t=0s to t
=
2
s
, the sin
g
le
-pha
se IM works
with two m
a
in
and auxilia
ry
windin
g
s
an
d from t=2s
t
o
t=7
s
, the si
ngle-pha
se I
M
wo
rks
with only
main win
d
ing
.
Moreover, a
t
t=2.5s, a step load to
rqu
e
equal to 0.1N.m is ap
pli
ed. Figure 5(c)
and 5(d) sho
w
the elect
r
o
m
agneti
c
torque of t
he single-pha
s
e I
M
. It can be
seen that the
electroma
gne
tic torqu
e
ha
s a q
u
ick re
spo
n
se with
no pul
s
ation
s
in both he
a
l
thy and fault
y
con
d
ition
s
. Fi
gure
5(e), 5
(
f
)
an
d 5
(
g)
sh
ow the
refe
re
nce
and
re
al
motor
spe
ed,
whe
n
the
sp
eed
referen
c
e varied from 50
0rpm to 450
rp
m. It is obv
ious from th
ese
Figure
s that
the singl
e-p
h
a
se
IM can follo
w the refe
re
nce
spe
ed without any
overshoot an
d steady-state
error even u
nder
load. Ba
sed
on Fig
u
re
5,
the maximum
error bet
wee
n
refe
re
nce a
nd real
sp
ee
d in the
he
althy
con
d
ition an
d
at steady st
ate is
~
0.2rpm and th
e maximum e
r
ror in the faul
ty condition
after
applying lo
ad
and at ste
a
d
y
state is ~
5rpm. From
th
e
pre
s
ente
d
si
mulation resu
lts of Figu
re 5
it
can
be
seen
that the
dyn
a
mi
c
pe
rform
ance of th
e
prop
osed I
R
FOC drive
system for ve
ctor
control of sin
g
le-p
ha
se IM unde
r healthy
and faulty co
ndition
s
are a
c
ceptabl
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 783 – 793
790
(a)
(b)
(c
)
(d)
(e)
(f)
(g)
Figure 5. Simulation re
sult
s of the pro
p
o
s
ed
contro
lle
r
;
(a) Stator cu
rre
n
t, (b) Zo
o
m
of stator
curre
n
t, (c) T
o
rqu
e
, (d) Z
o
om of torque,
(e) Spee
d, (f) Zoom of sp
eed in the no
rmal con
d
ition
,
(g) Z
oom of speed in the fa
ulty condition
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
A Novel T
e
ch
nique for F
aul
t-Tolerant Co
ntrol of Single
-
Pha
s
e IM (M
. Jannati)
791
6. Conclusio
n
In this p
ape
r, a ne
w
sche
me for ve
cto
r
c
ontrol
of h
e
althy and fa
ulty single
-
ph
ase I
M
(ope
n-pha
se
fault)
ha
s b
een
pre
s
e
n
te
d. A novel
single-pha
se
IM mod
e
l
with on
e a
n
d t
w
o
windi
ng
s
b
a
sed
o
n
d-q
m
odel ha
s bee
n
devel
ope
d to provide a useful solutio
n
to apply FOC
techni
que
to
co
ntrol
the
sin
g
le
-pha
se IM u
nde
r
norm
a
l a
n
d
open
-ph
a
se
fault co
nditio
n
s.
Simulation re
sults have val
i
dated the propo
sed me
th
odolo
g
y. The perfo
rman
ce
of the propo
s
ed
scheme i
s
hi
ghly satisfa
c
t
o
ry for co
ntrolling both
h
ealthy and fa
ulty single-ph
ase IM. In future
resea
r
ch, the other fault condition
s will
be add
re
ss
ed
. Experiment
al re
sults
will be ca
rri
ed ou
t to
empha
si
ze th
e simulatio
n
result
s, whi
c
h
are so far a
c
ceptable.
Appe
ndix
Based o
n
Fig
u
re 2, the stat
or main
a
nd a
u
xiliary voltages can be
wri
tten as:
bm
ba
fm
fa
a
la
a
ba
bm
fa
fm
m
lm
m
E
j
E
E
j
E
I
Z
V
E
j
E
E
j
E
I
Z
V
Whe
r
e:
In Figure 2,
V
m
, V
a
, I
m
and
I
a
are the main and auxiliary voltages an
d current
s,
a=N
a
/N
m
and
j
i
s
the
tu
rn
ratio a
nd
square root of
“-1
”.
E
bm
, E
ba
, E
fm
and
E
fa
are the
ba
ckward
and fo
rward
voltage of m
agneti
z
ing
branch of th
e main
a
nd au
xiliary
win
d
in
gs.
R
lm
, R
la
, X
lm
and
X
la
are th
e
leakage
re
si
stance
and
in
ducta
nce of t
he
mai
n
an
d auxiliary wind
ing.
Moreove
r
,
R
f
, R
b
, X
f
and
X
b
are the fo
rwa
r
d
and b
a
c
kwa
r
d
stator resi
stan
ce
a
nd ind
u
ctan
ce. Usi
ng follo
wing
ch
ange
of
variable
s
,
Ratio of cu
rre
n
t is obtaine
d
as followi
ng
equatio
ns:
Let us a
s
sum
ed:
a
m
V
jZ
V
Z
V
4
3
1
Con
s
e
quently
, Figure 2 can
be simplified
as Figu
re 3.
la
la
la
lm
lm
lm
b
b
b
f
f
f
a
b
ba
a
f
fa
m
b
bm
m
f
fm
jX
R
Z
jX
R
Z
jX
R
Z
jX
R
Z
I
Z
E
I
Z
E
I
Z
E
I
Z
E
,
,
,
,
,
2
2
)
(
2
),
(
2
1
2
1
2
1
I
I
j
I
I
I
I
a
m
)
1
(
2
)
1
(
2
)
(
)
(
)
(
2
1
2
j
Z
jZ
Z
j
Z
jZ
Z
I
I
Z
Z
j
Z
Z
Z
Z
Z
j
Z
Z
Z
I
I
f
la
lm
b
la
lm
b
f
b
f
lm
b
f
b
f
la
a
m
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 783 – 793
792
whe
r
e:
))
1
(
2
(
2
)
2
))(
1
(
2
)(
(
2
)
2
)(
(
4
3
4
3
j
Z
jZ
Z
Z
Z
j
Z
jZ
Z
Z
Z
Z
Z
Z
Z
Z
b
la
lm
b
lm
f
la
lm
f
lm
Referen
ces
[1]
HW
Beat
y
,
JH Kirtle
y
.
El
ectric
Motor Hand
bo
ok. Ne
w
York: McGra
w
-
Hil
l. 1998.
[2]
AS Ba-T
huny
a
,
R Khopkar, K
Wei, HA T
o
liy
a
t.
Single
p
hase
ind
u
ctio
n
moto
r drives-
a
lit
era
t
ure survey
.
In Electric Mac
h
in
es an
d Driv
es
Confer
enc
e, IEMDC 2001.
200
1: 911-
916.
[3]
F
Blaabj
erg, F
Lung
ea
nu, K
Skaug, M T
o
nnes. T
w
o-p
h
a
s
e ind
u
ctio
n motor drives.
IEEE Industr
y
Appl
icatio
ns Maga
z
i
ne
. 2
004;
10(4): 24-3
2
.
[4]
ER Col
lins. T
o
rque
and s
l
i
p
b
ehav
ior of si
ngl
e-ph
ase i
n
d
u
ction mot
o
rs driv
en from vari
ab
l
e
-frequ
enc
y
supplies.
IEEE Transactio
n
s o
n
Industry App
l
icatio
ns
.19
92; 28(3): 71
0-7
1
5
.
[5]
B Z
ahedi, S Vaez-Z
ad
eh. Efficienc
y
optimiz
ati
on co
ntrol of
singl
e-ph
ase i
nducti
on motor
drives.
IEEE
T
r
ansactio
n
s o
n
Pow
e
r Electronics
. 20
09; 24
(4): 1062-
10
70
.
[6]
J Schraud, EF Fuchs, HA Fuchs. Ex
perim
e
ntal
verific
a
tio
n
of critical-sp
e
ed i
n
creas
e of
singl
e-p
hase
i
n
du
cti
o
n ma
ch
i
n
e
s
vi
a
w
i
nd
i
n
g
re
con
f
ig
u
r
ation
w
i
th s
o
l
i
d-state s
w
itc
h
es.
IEEE Transactions on
Energy C
onver
sion
. 20
08; 23(
2): 460-4
65.
[7]
M Jann
ati, NR
N Idris, MJA Aziz, SH Asga
ri, A Mona
di,
AAM F
audzi.
A new
method
for RF
OC of
singl
e-p
has
e in
ductio
n
motor
base
d
o
n
rotati
ona
l transfor
m
ations
. In
201
3
IEEE Student
Confer
en
c
e
on Res
earch
a
nd Dev
e
lo
pme
n
t (SCOReD). 201
3: 215-
220.
[8]
GS Ilang
o, N
Rajas
e
kar. A
n
improve
d
ener
g
y
savi
ng v/f c
ontrol t
e
chn
i
q
u
e
for so
lar
po
w
e
re
d sin
g
l
e
-
phas
e in
ductio
n
Motor.
Energ
y
conversi
on a
nd Man
a
g
e
m
e
n
t
. 2009; 50(
12
): 2913-2
9
1
8
.
[9]
MB Correa, CB Jaco
b
i
n
a
, A
M
N Lim
a
, ER
C Da S
ilva.
R
o
tor-Flu
x-Orie
n
t
ed Co
ntrol
of
a Sin
g
l
e
-Phas
e
Inductio
n
Moto
r Drive.
IEEE Transacti
ons o
n
Industria
l Elect
r
onics
. 20
00; 4
7
(4): 832-
84
1.
[10]
MB Corre
a, C
B
Jacob
i
n
a
, ERC Da
Silv
a, AM
N Lim
a
. Vector contro
l
strategies f
o
r sing
le-p
has
e
ind
u
ction mot
o
r drive s
y
stems
.
IEEE
Transac
tions on Indust
r
ial Electr
onics
.
2004; 5
1
(5): 1
073-
108
0.
[11]
S Vaez-Z
ad
eh
, SR Haro
oni.
Deco
upl
ing V
e
ctor Co
ntrol
of Si
ng
le-Ph
a
s
e
Inducti
on M
o
tor Drives
.
Procee
din
g
s of
36th IEEE Conferenc
e on Po
w
e
r
Electro
n
ics
Specia
lists PESC. 2005: 7
33-
738.
[12]
S Reic
y, S Va
ez-Z
ade
h.
Vec
t
or Control of
Sing
le-Ph
a
se I
nducti
on Mac
h
ine w
i
th Maxi
mu
m T
o
rq
ue
Operatio
n
. Pro
c
eed
ings
of the IEEE Internation
a
l S
y
mp
o
s
ium on In
dus
trial Electro
n
ic
s. 2005: 92
3-
928.
[13]
M Jann
ati, NR
N Idris, MJA A
z
iz. Spee
d S
e
n
s
orle
ss F
a
ult-T
o
ler
ant Driv
e S
y
stem
of 3-Ph
a
s
e Ind
u
ctio
n
Motor Usin
g
S
w
itc
h
i
ng E
x
tend
ed Ka
lman
F
ilter.
T
E
LKOMNIKA Indonesi
an Jo
urna
l of Electrica
l
Engi
neer
in
g
. 2014; 12(
11): 76
40-7
649.
[14]
M Jannati, SH
Asgari, NR
N Idris, MJA Aziz.
S
pee
d Sens
orl
e
ss Direct Rot
o
r F
i
eld-Ori
ent
ed Co
ntrol o
f
Sing
le-Ph
a
se
Inductio
n
Mot
o
r Usin
g Ext
end
ed Ka
lma
n
F
ilter.
Internatio
nal J
ourn
a
l of Pow
e
r
Electron
ics an
d Drive Syste
m
s (IJPEDS)
. 2014; 4(4): 43
0-4
38.
[15]
M Jannati, SA
Anbar
an, MI
Alsof
y
ani, NR
N Idris, MJA Aziz.
Model
ing
and
RF
OC of faulty three-ph
as
e
IM using Extende
d Kal
m
a
n
F
ilter for rotor
spee
d esti
mati
on.
In 8th Internatio
nal Po
w
e
r Engin
eeri
n
g
and Optimiz
a
ti
on Co
nfere
n
ce
(PEOCO). 2014: 270-2
75.
[16]
M Jan
nati, S
H
Asgari, A
Mo
n
adi,
NRN
Idris,
MJA Aziz, D
D
ehg
ha
ni, AAM
F
audzi.
M
o
d
e
li
ng an
d
sp
ee
d
estimatio
n
of
a faulty 3-
ph
a
s
e in
ductio
n
motor
by us
in
g exten
d
e
d
K
a
l
m
a
n
filter
. In 2014 IEEE
S
y
mp
osi
u
m on
Computer Ap
p
licatio
ns an
d In
dustria
l Electro
n
ics (ISCAIE).
201
4: 76-8
1
.
[17]
HB Azza, N Z
a
idi, M J
e
mli,
M Boussak. D
e
ve
l
opme
n
t an
d E
x
per
iment
al
Evalu
a
tio
n
of
a Sens
orles
s
Spee
d C
ontro
l
of SPIM Usi
n
g
Ada
p
tive S
lid
i
ng M
ode-M
R
A
S
Strateg
y
.
IE
EE Jour
nal
of
Emer
gi
ng
an
d
Selected Topic
s
in Power Electronics
. 201
4; 2(2): 319-
32
8.
[18]
HB Azza, M Jemli, M Bouss
a
k, M Gossa. High pe
rforma
nc
e sens
orless
s
pee
d vector c
o
ntrol of SPIM
Drives
w
i
t
h
on
-line stat
or res
i
stance
estima
tion.
Si
mul
a
tio
n
Mod
e
ll
ing P
r
actice a
nd T
h
eory
. 20
11
;
19(1): 27
1-2
8
2
.
[19]
M Jann
ati, A
Mona
di, NR
N Idris, MJA Aziz.
Spee
d Se
nsor
less Vector
Co
ntrol of U
n
b
a
la
nced T
h
ree-
Phase Ind
u
ctio
n Motor
w
i
t
h
Adaptiv
e Slid
in
g
Mode Contr
o
l.
Internation
a
l J
ourn
a
l of Pow
e
r Electronics
and Dr
ive Systems (IJPEDS)
.
2014; 4(3): 4
0
6
-41
8
.
[20]
M Jemli, H
Ben Azza, M B
o
ussak. Sensorless I
ndir
e
ct Stator F
i
el
d Orie
ntation
Spe
e
d
Contro
l fo
r
Sing
le-Ph
a
se
Inducti
on
Moto
r Drive.
IEEE
T
r
ansactio
n
s o
n
Pow
e
r
Electr
onics
.
2
0
0
9
;
24
(6
): 16
18
-
162
7.
[21]
M Jan
nati, A
M
ona
di, GW Ye
n, SH As
gari,
NRN Idr
i
s, MJ
A Aziz.
A s
i
m
p
le vector
control technique for
3-ph
ase in
duct
i
on
motor u
n
d
e
r ope
n-p
hase
fault bas
e
d
o
n
GA for tuning of spee
d PI control
l
er
. In
201
4 IEEE Co
nferenc
e on En
erg
y
Co
nv
ersi
o
n
(CENCON). 201
4: 213-
218.
[22]
S Kascak, M
Prazen
ica, B Dobr
uck
y
. Pos
i
tion C
ontrol of
T
w
o-Phase Inductio
n
Motor usin
g dSpac
e
envir
on
me
nt
. Procee
din
g
s
o
f
38th IEEE
C
onfere
n
ce
on
Industri
a
l E
l
ectr
onics
Soci
et
y
IECON201
2.
201
2: 195
8-19
63.
Evaluation Warning : The document was created with Spire.PDF for Python.