TELKOM
NIKA
, Vol.13, No
.1, March 2
0
1
5
, pp. 277~2
8
3
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i1.924
277
Re
cei
v
ed O
c
t
ober 3
0
, 201
4; Revi
se
d Ja
nuar
y 7, 201
5
;
Accepte
d
Ja
nuary 24, 20
1
5
Raptor Code for Energy-Efficient Wireless B
ody
Area Network Data Transmission
Ly
di
a
S
a
r
i
*
1
, Antonius
Ad
it
y
a
2
Electrical E
ngi
neer
ing D
e
p
a
rtment, F
a
cult
y
of Engin
eer
ing,
Atma Ja
y
a
C
a
tholic U
n
ivers
i
ty of Indo
nes
ia
Jln. Jend. Su
di
rman Kav. 51,
Jakarta 12
93
0, Ph. 021-5
708
826
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: l
y
d
i
a.sar
i
@at
m
aja
y
a.
ac.id
1
, anton
ius.a
d
it
ya
09@
gmai
l.com
2
A
b
st
r
a
ct
W
i
reless Bo
dy Area Netw
ork (W
BAN) is a de
vice dev
el
ope
d
mai
n
ly for the
purp
o
se of
mo
nitori
n
g
the medic
a
l co
nditi
on of a hu
ma
n. W
BAN is w
o
rn on t
he surface or in th
e hu
ma
n bo
dy, and it conta
i
n
s
a
w
i
reless co
mmunic
a
tion d
e
vic
e
. A
W
BAN device is requ
ir
ed
to be smal
l-si
zed, w
i
th limite
d
pow
er and hi
g
h
data re
lia
bil
i
ty. The data r
e
li
ab
ility can
be
obt
ain
ed by
usi
n
g
a carefu
lly d
e
s
ign
ed ch
an
nel
codi
ng sch
e
m
e
so that the en
ergy cons
u
m
e
d
can
be
mai
n
tain
ed at a l
o
w
level. In this pa
per, dat
a trans
missi
on
in
Rayle
i
g
h
, Rici
a
n, and
Naka
ga
mi-
m
fa
din
g
ch
ann
els us
in
g
R
aptor a
nd BC
H
codes is
s
i
mul
a
ted. Si
mu
lati
on
results sh
ow
that Ra
ptor-co
ded
data
tran
smiss
i
on
co
ns
umes l
o
w
e
r e
nergy c
o
mp
ar
ed to B
CH-co
de
d
transmissio
n
f
o
r vari
ous
fadi
ng c
han
ne
ls if
the tra
n
s
m
iss
i
on
dista
n
ce
e
xceeds
10
me
ters. T
herefor
e,
Raptor co
de is
a goo
d can
d
id
ate for the cha
nne
l codi
ng sc
he
me for W
BAN.
Ke
y
w
ords
:
w
i
reless b
ody ar
e
a
netw
o
rk, raptor code,
dat
a trans
missi
on, ra
yleig
h
, fadi
ng c
han
nel
1. Introduc
tion
Wirel
e
ss Bo
d
y
Area
Netwo
r
k
(WBAN) i
s
a cl
us
te
r of
wirel
e
ss
se
nsors worn
by
human
s
mainly for the purp
o
se of medical co
nd
ition
monitori
ng. The hum
an physiol
ogi
cal data such
as
blood p
r
e
s
sure or body temperature a
r
e monitore
d by the sensors and sent to a data pro
c
e
s
sor
rega
rdl
e
ss of
the location o
r
the a
c
tivity
of the
su
bject
[1]. WBAN is a
stru
cture
whi
c
h
contain
s
a
sho
r
t-rang
e communi
catio
n
system ba
sed o
n
I
EEE 802.15.6. The stan
da
rd
allows for low-
power a
nd
small
-
si
ze
d device
s
an
d
includ
es
chara
c
te
rizatio
n
of electro
m
agneti
c
wa
ve
prop
agatio
n tran
smitted by
a device lo
ca
ted on or in th
e human b
o
d
y
.
Aside from b
e
ing a
b
le to
sen
d
info
rma
t
ion usi
ng
a
small
-
si
ze
d a
n
tenna
and
limited
power, a WBAN device
must al
so b
e
able to se
nd inform
atio
n reliably ov
er a long te
rm.
Relia
bility and durability can be
achieved thro
ugh
a
ppro
p
ri
ate m
odulatio
n and
codi
ng
sche
mes.
The mod
u
lati
on sche
me choice will affe
ct the tran
smi
tter and receiver po
wer
re
quire
d by WB
AN
device, which will subsequently a
ffect the device lifetime. Howev
e
r to achieve high reli
abilit
y,
the
coding schem
e will play
the
m
o
re important part
compared
to that of
the modulati
on
scheme.
An
ideal
codin
g
sch
e
me
fo
r
WBAN is
one th
at e
n
sure
s
relia
ble
tran
smi
ssi
o
n
of
informatio
n in
a rapidly ch
a
nging
wirel
e
ss ch
ann
el.
Raptor
co
de
s, an exten
s
i
on of Luby-T
ran
s
fo
rm
(LT
)
co
de
s with
linear time
e
n
co
ding
and de
co
ding
have bee
n shown to attain good
uppe
r-b
oun
d on o
v
erall erro
r p
r
oba
bility wh
en
use
d
in
bin
a
ry era
s
u
r
e
cha
nnel [2]. Sev
e
ral
chann
el
model
for WB
AN h
a
s be
en
prop
osed
ba
sed
on nu
meri
cal
simul
a
tion
s
and/or mea
s
urem
ents.
A
mathemati
c
al
model
usi
n
g
dyadic Gree
n
function to m
odel the hu
m
an body a
s
a
simplifi
ed
cylinder
has
bee
n pro
posed a
nd used to sh
ow
the receive si
gnal variation
s
aro
und the
human b
ody
[3]. Another rese
arch prop
ose
s
the use of
pathlo
ss
cha
nnel mod
e
l b
a
se
d on mea
s
ureme
n
t [4
]-[5]. The pathloss ch
ann
el is stated a
s
a
function
of distan
ce a
nd f
r
equ
en
cy, an
d the fl
uctu
ating po
we
r is sho
w
n to m
a
tch lo
gno
rm
al
distrib
u
tion. As the we
arer
of a WBAN d
e
vice mo
ve
s
arou
nd, the
wirel
e
ss
chan
nel is subje
c
t
to
fading.
Obje
cts
aro
und
th
e hum
an
bod
y will al
so
refl
ect a
nd
scatter the
si
gnal,
contri
buting
to a
multipath fadi
ng of
a
Rice
distrib
u
tion [6
]. A more
gen
eral fa
ding
m
odel fo
rm
WB
AN is Rayleig
h
-
distributed. Another
possibility
that
can be taken into
cons
i
deration i
s
t
he
Nakagam
i
-m
distrib
u
ted fa
ding
chan
nel
, as this i
s
the model
whi
c
h p
r
ovi
des i
ndo
or-mobile m
u
ltipath
prop
agatio
n in addition to iono
sph
e
ri
c ra
dio link [6
]. Variou
s re
se
arche
s
have sh
own that Ra
p
t
or
cod
e
s provid
e a
rob
u
st
d
a
ta tra
n
smi
s
sion
even
in
noi
sy chan
n
e
ls.
The
pe
rforma
nce of
an
optimize
d
Ra
ptor code i
n
q
uasi
-
stati
c
Ra
yleigh fading
cha
nnel h
a
s
been a
nalyze
d and
sho
w
n
to
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 277 – 2
8
3
278
be cl
ose to t
he theo
reti
cal
limits on
varied del
ay
re
q
u
irem
ents [7]
.
For
Rici
an
fading
cha
n
n
e
l,
the Rapto
r
co
de perfo
rma
n
c
e is
sho
w
n t
o
also
h
a
ve n
ear-Shan
non
cap
a
city perf
o
rma
n
ce wh
e
n
use
d
with fixed rate
s [8]. A
nother research
sh
o
w
s
th
at R
a
p
t
or
c
o
de c
o
mb
in
ed
w
i
th
tu
r
b
o co
d
e
s
can
yield
go
od p
e
rfo
r
ma
nce
in
soft-bl
ockag
e
a
nd
hard
-
bl
ockag
e
chan
nel m
odel
s, where
the
soft-blo
c
kag
e
chan
nel u
s
e
s
Na
ka
gami
-
m distrib
u
tion
[9].
In this
pap
er,
the p
e
rfo
r
m
ance of
Ra
ptor
cod
e
s
in Na
kag
a
mi-m,
Ri
cian, and
Rayleig
h
distrib
u
ted fa
ding
chan
nel
based on th
e total ene
rg
y con
s
ume
d
is con
s
ide
r
ed
. The ene
rg
y
con
s
um
ed
when d
a
ta is t
r
an
smitted u
nder va
rio
u
s fading
con
d
i
t
ions u
s
in
g
Rapto
r
code
and
BCH
code i
s
also si
mulat
ed. Simulatio
n
s sho
w
that Rapto
r
co
de
d data in BF
SK modulatio
n
scheme
consumes compa
r
able
ene
rgy
in Na
ka
gami
-
m
,
Rayleigh and Rici
an
fa
ding cha
nnel
s.
The co
nsume
d
energy for Rapto
r
co
ded
data is as
lo
w as 0.3 Jo
ul
e for a transmissi
on di
sta
n
ce
of 50
meters. Com
pared
to BCH
cod
ed d
a
ta, the
Ra
ptor cod
ed d
a
ta
sho
w
s lo
wer e
n
e
rgy
con
s
um
ption
whe
n
the tran
smissi
o
n
dist
ance exce
ed
s 10 mete
rs.
The re
st of the pape
r is o
r
gani
zed a
s
fo
llows.
Sectio
n 2 provid
es
the descriptio
n
of the
system
mode
l, while in
Se
ction 4
the
si
mulation
re
su
lts are p
r
e
s
e
n
ted. T
he
co
nclu
sio
n
is gi
ven
in Section 5.
2. Sy
stem Model
The WBAN
consi
dered in this pap
er foll
ows t
he mod
e
l prop
osed in [1] that consist
s
of a
wea
r
abl
e b
o
d
y
sen
s
o
r
equi
pped
with
a
transmitte
r, an
d a
ce
ntral
p
r
oce
s
sing
unit
as th
e
re
ceiv
er.
The
WBAN works in
cycl
es co
nsi
s
ting
of
active
mod
e
, tran
sie
n
t mo
de, an
d
slee
p
mod
e
p
e
rio
d
s
.
Duri
ng a
c
tive mode pe
riod
,
T
ac
,
the data obtaine
d b
y
the wearabl
e
sensor is amplified, filtered,
digitize
d and
cod
ed. An
L-
bit bin
a
ry
messag
e is
gene
rated i
n
the digitization process.
The
encode
r in tu
rn will
split th
e bit strea
m
into blocks wit
h
equal le
ngt
h
B
j
,
j =
1, …,
L/k
whe
r
e
k
is
the blo
c
k len
g
th. The
en
coder will th
e
n
gen
erate a
co
ded
bit st
ream
C
j
,
j
= 1,…,
L/k
with
a
rand
om blo
ck length de
pe
nding o
n
the
cha
nnel
con
d
i
tion [1]. The cod
ed bit are
FSK modulat
ed
and tran
smitted to th
e
ce
ntral p
r
o
c
e
s
si
ng u
n
it,
and
the wearable
body
se
nsor retu
rn
s to t
he
slee
p mode
whi
c
h last
s for
T
sl
. The period b
e
twe
e
n
the active mode an
d the sleep mo
d
e
is
denote
d
as t
he tran
sie
n
t mode
T
tr
. Th
e Rapto
r
cod
e
paramete
r
s used in thi
s
pape
r are taken
from [1].
The total e
n
e
rgy
con
s
um
ed by the
WBAN to tran
smit
L-
bit me
ssag
e con
s
ide
r
ing th
e
power
co
nsu
m
ed by th
e p
o
we
r
synthe
sizer (
P
sy
), th
e
powe
r
am
plifier
(
P
Am
p
) and the
circuit
(
P
c
)
can b
e
stated
as [1]
c
dec
enc
tr
sy
c
Amp
c
b
c
c
d
L
R
E
E
L
T
P
M
B
R
ML
P
P
P
M
M
R
L
G
N
E
75
.
1
log
2
4
ln
log
1
2
2
2
0
(1)
w
h
er
e
is p
o
we
r
amplification fa
ctor b
a
se
d
o
n
the
t
y
pe of the
p
o
w
er am
plifier,
d
is the
ratio
betwe
en the
transmitted a
nd received
sign
al po
we
rs for the
we
arabl
e b
ody
sen
s
o
r
a
nd t
he
central proce
ssi
ng unit se
parate
d
by distan
ce
d
,
M
is the modul
a
t
ion orde
r,
P
b
is the bit error
rate,
c
R
is the
averag
e Ra
p
t
or co
de rate
, and the
co
mputation en
ergy of the encode
r an
d
decode
r is de
noted a
s
E
enc
and
E
dec
, respec
tively.
For BCH-co
d
ed data tran
smissi
on, the energy con
s
u
m
ed is
trans
b
BCH
E
P
E
1
1
(2)
whe
r
e
P
b
is the bit error proba
bility given in (9) and
E
trans
is the total energy required by the
transmitter an
d receiver
wh
ich can be
stated as
r
t
trans
P
P
L
E
(3)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Rapto
r
Co
de
for Energ
y
-Efficient Wi
rele
ss Bod
y
Area
Netwo
r
k
Dat
a
Tran
sm
issi
on (L
ydia Sa
ri)
279
whe
r
e
P
t
and
P
r
are the transmitte
r and
receive
r
po
wer, re
spe
c
tive
ly. The total required po
we
r
can b
e
stated
as
TA
rc
tc
r
t
e
e
e
P
P
P
(4)
whe
r
e
e
tc
a
nd
e
rc
are the ene
rgy consumed
by the tr
an
smi
tter and receiver ci
rcuitry,
respe
c
tively, and
e
TA
is th
e
ene
rgy requi
red fo
r the
tra
n
smitter ampl
ifier. The
pa
rameter
e
TA
can
be stated a
s
[10]
amp
ant
r
s
TA
G
N
NF
e
4
0
(5)
whe
r
e
s
is the
SNR,
NF
r
is
the noi
se figu
re of the
re
ce
iver,
i
s
th
e path lo
ss e
x
ponent,
is
the wavelength in meters
,
G
ant
is the antenna g
a
in an
d
am
p
is the tran
smitter po
wer effi
cien
cy.
To analy
z
e
P
b
, several formul
ation
s
are u
s
e
d
accordin
g to fadi
ng ch
ann
els
involved.
The symb
ol e
rro
r proba
bility for orthogo
nal
M-
FSK Nak
a
gami-
m
fa
ding is [11]-[1
2
]
m
s
m
l
M
l
s
m
l
l
l
M
E
P
/
1
1
1
1
1
)
(
1
1
1
(6)
whe
r
e
m
is the sh
ape pa
rameter a
nd
denote
s
the averag
e SNR. For Rayleigh fading, t
h
e
symbol error
prob
ability is [10]
m
m
m
M
E
P
s
m
M
m
s
/
1
1
1
1
1
)
(
1
1
1
(7)
For Ri
ce fadi
ng, the symbol erro
r probability is stated as [11]
s
s
s
m
M
m
s
K
m
K
m
K
K
m
K
K
m
M
E
P
1
1
exp
1
1
1
1
1
)
(
1
1
1
(8)
The rel
a
tion between the symbol error and
the bit error rate probability is [11]
E
P
M
M
E
P
s
b
1
2
1
(9)
4. Simulatio
n
Resul
t
s
In the first simulation, a Raptor code
d data wh
i
c
h le
ngth is 819
2 bits is tran
sm
itted in a
Na
kag
a
mi-m
fading ch
ann
el. Figure 1 shows the
sim
u
lation of Ra
ptor co
ded d
a
ta transmission
perfo
rman
ce
in Na
kaga
mi
-m ch
ann
els
with
m
= 2, 3, and 4. It is sho
w
n that for tran
smi
s
si
on
distance
below 15 m, the
Raptor
coded data
will hav
e simil
a
r
energy consumpti
on. The
energy
gap for ch
an
nel con
d
ition
s
whe
r
e
m
= 2, 3 and 4 with distan
ce above 1
5
m, however, is
negligibl
e
. T
h
is m
ean
s
whe
n
the fa
ding
con
d
itio
n wo
rsen
s (
m
= 2), the
Rapto
r
cod
ed
transmissio
n
con
s
um
es ap
proximately t
he
same
e
n
e
r
gy a
s
whe
n
t
he fadi
ng
con
d
ition i
s
not t
oo
sev
e
r
e
(
m
= 4). Howev
e
r it shoul
d be noted tha
t
the bit error pro
bability for the simul
a
ted
Na
kag
a
mi-
m
cha
nnel
s vari
es bet
wee
n
1
0
-2
to 4
10
-2
.
Figure 2
sho
w
s the
sim
u
l
a
tion
re
sults
of the total
e
nergy
con
s
u
m
ed
by tran
smitting
Rapto
r
cod
e
d
data
tra
n
smitted in
Rice an
d
Raylei
gh fadi
ng
ch
annel
s.
It is
sho
w
n
that
the
energy con
s
umed for tra
n
smi
ssi
on in
a Rice fading
chan
nel slig
htly exceed
s that in Rayleigh
fading channel. However
the probabilit
y of error
resulting from the simu
l
a
ted transmi
ssion in a
Rice fadin
g
chann
el is le
ss than that i
n
a Raylei
gh fa
ding
cha
nnel.
This ag
ree
s
with the fa
ct t
hat
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 277 – 2
8
3
280
in a
Rice
fadi
ng chan
nel, t
here
exist
s
a
stron
g
Li
ne-o
f
-Sight co
mp
onent. Both f
i
gure
s
sh
ow t
hat
the Ra
ptor
co
ded d
a
ta will
con
s
um
ed 0.
1 Jo
ule of
en
ergy when th
e tran
smi
ssi
o
n
dista
n
ce is
at
least 80 mete
rs.
Figure 1. Ra
ptor co
ded d
a
t
a transmi
ssi
on in Na
ka
ga
mi-m ch
ann
el
Figure 3 sh
o
w
s the
com
p
arison of total
energy co
nsum
ed whe
n
data is
se
nt unde
r
Rayleig
h
fading con
d
ition,
using Rapto
r
cod
e
and B
CH
code. It is sh
own that
for transmi
ssion
distan
ce
belo
w
20
m, the e
nergy
req
u
ire
d
by BC
H-co
ded d
a
ta i
s
consi
derably l
o
we
r tha
n
th
at of
Rapto
r
-co
ded
data. The
ra
te of the BCH code
u
s
ed is
15
7/511, meanin
g
the numbe
r
of bits i
n
each cod
e
wo
rd se
nt is lo
wer tha
n
the
Raptor-code
d bits, whe
r
e
the code
wo
rd block lengt
h is
varied indi
cati
ng the ratele
ss beh
avior of
the Rapt
o
r
co
de [1]. The small cod
e
word size of BCH-
cod
ed data result
s in lower ene
rgy co
nsum
pt
ion compa
r
ed to the Ra
ptor-co
ded data. Th
e
energy re
qui
rement of
dat
a tran
smi
s
sio
n
u
s
ing
Ra
pt
or
cod
e
will b
e
the
sam
e
with that of B
CH
cod
e
whe
n
the transmissio
n distan
ce is
13 me
ters an
d beyond. Th
e energy con
s
ume
d
by both
BCH-code
d and Rapto
r
-cod
ed data
will incre
a
se
with re
sp
e
c
t to tran
sm
issi
on di
stan
ce.
Ho
wever, the
incre
a
se of energy requi
re
ment for
Ra
ptor-co
ded d
a
ta is not as
steep a
s
that of a
BCH-code
d d
a
ta due to the
code
rate of
Rapto
r
c
ode.
This ma
ke
s t
he implem
ent
ation of Ra
ptor
cod
e
in WBA
N
more favorable than BCH co
de.
Figure 2. Rap
t
or cod
ed dat
a transmissio
n in Rayleigh
and Ri
cia
n
fading chan
nel
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Rapto
r
Co
de
for Energ
y
-Efficient Wi
rele
ss Bod
y
Area
Netwo
r
k
Dat
a
Tran
sm
issi
on (L
ydia Sa
ri)
281
Figure 4 sh
ows the sim
u
lation re
sult
for Rapto
r
-cod
ed data
and BCH-co
ded data
transmitted u
nder Nakaga
mi-
m
fading
cha
nnel, wh
e
r
e
m
= 4.
T
he
re
sult i
s
similar to
that
of
Rapto
r
-co
ded
and BCH-coded d
a
ta transmi
ssion
u
nder
Raylei
g
h
fading
con
d
ition, with the
BCH-code
d d
a
ta requi
ring l
e
ss ene
rgy for sho
r
t tran
smissi
on di
sta
n
ce. In the ca
se of Na
ka
ga
mi-
m
fading ch
a
nnel, the B
C
H-cod
ed
dat
a tran
smi
ssi
o
n
will
co
nsu
m
e the
sam
e
ene
rgy a
s
the
Rapto
r
-co
ded
data tran
smissi
on whe
n
the
tran
smissi
on di
st
ance re
ach
e
s 10.3m. For
transmission distance
greater than 10.3m, t
he BCH-coded data transmi
s
sion
will require
con
s
id
era
b
ly greate
r
e
n
e
rgy than
Rapto
r
-co
ded
data. Ag
ain, the in
crea
se of e
n
e
rgy
requi
rem
ent for Ra
ptor-cod
ed data is n
o
t as
stee
p as t
hat of a BCH-cod
ed data.
Figure 3. Rap
t
or-cod
ed vs
BCH-code
d d
a
ta
tran
smitted unde
r Rayl
eigh fadin
g
condition
A similar result is sho
w
n i
n
Figure 5, w
here
Rapto
r
-cod
ed data a
nd BCH-cod
e
d
data is
transmitted u
nder
Ri
cian f
ading.
Unde
r Rici
an f
adin
g
,
the
tran
sm
issi
on Rapto
r
-co
ded data will
requi
re
the
same a
m
ou
nt of BCH-co
d
ed d
a
ta
whe
n
the
t
r
an
sm
issi
on dista
n
c
e re
ach
e
s 11
meters. Fro
m
Figure 3
– 5 it is apparent that
for all simulate
d fading ch
a
nnel
s, the use of
Rapto
r
co
de i
s
favorabl
e for tran
smi
ssio
n
distan
ce of
more tha
n
10
meters.
Figure 4. Ra
ptor-co
ded vs BCH-co
ded
data tran
smitted und
er Nakagami
-
m
fading,
m
= 4
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 277 – 2
8
3
282
Figure 5. Ra
ptor-co
ded vs BCH-co
ded
dat
a tran
smitted und
er Ri
ci
an fading
4. Conclusio
n
Simulation
s o
f
Rapto
r
cod
ed data
tran
smissi
on i
n
dif
f
erent fadi
ng
cha
nnel
s h
a
ve bee
n
done. It is sh
own that in v
a
riou
s fadi
ng
con
d
itio
n
s
, the total energ
y
consume
d
by Rapto
r
co
ded
data is l
o
w,
namely 0,1
Joule fo
r a tra
n
smi
ssi
on
di
stance of
80 m.
In
seve
re fading con
d
ition,
namely Na
ka
gami-
m
fadin
g
cha
nnel wit
h
m
= 2,
the total energy
con
s
ume
d
b
y
Raptor cod
e
d
data is
comp
arabl
e to that in better fadi
ng co
ndition
s, namely Na
kagami
-
m
fading ch
ann
els
with
m
= 3 and 4. For Raylei
g
h
and
Rice fading
cha
nne
ls, the total energy
con
s
u
m
ed is le
ss tha
n
that in Nakag
a
mi-
m
c
h
a
nne
ls
.
Simulation
s a
r
e al
so do
ne
to comp
are t
he ene
rgy re
quire
ment
s for the tran
smi
ssi
on of
Rapto
r
-co
ded
and BCH-coded
data i
n
Rayleig
h
, Na
kag
a
mi-
m
(
m
= 4) a
nd Ri
cian fa
din
g
cha
nnel
s. It is sho
w
n that
for
short tran
smissio
n
di
stance (
d
< 10 meters),
the BCH-code
d
d
a
ta
transmissio
n
will
requi
re
lo
wer e
nergy compa
r
ed
to
Raptor-code
d
data, du
e to
the la
rge
valu
e of
BCH
code
rat
e
. Howeve
r
as the tra
n
sm
issi
on di
st
an
ce increa
se
s, the ene
rgy re
quire
ment of the
BCH
co
de
wil
l
be
gre
a
ter than th
at of th
e Raptor-cod
ed d
a
ta. It is
also
sho
w
n t
hat altho
ugh
the
energy requi
rement increa
se
s for both
Rapto
r
-co
ded
and BCH-co
ded data tra
n
smi
ssi
on wit
h
respec
t to the trans
m
iss
i
on dis
t
an
ce, for
Rapto
r
-co
ded
data the in
crease is
gra
d
u
a
l as
opp
ose
d
to the very steep en
ergy requireme
nt incre
a
se for BCH-cod
ed data
.
These
simul
a
tions sho
w
that Ra
ptor c
ode
i
s
a goo
d
candi
date
as a ch
ann
el
co
din
g
scheme fo
r
WBAN d
e
vices, e
s
pe
cially
one
s that
re
quire
a tra
n
smissi
on di
sta
n
ce
between
10 –
100 meters, based on the
total energy con
s
um
ed.
Ho
wever furt
her re
se
arch
es are req
u
ired to
improve the bit error
probability of the proposed
system.
Referen
ces
[1]
Abouei J, et.al.
Raptor C
o
d
e
s
in W
i
rel
e
ss Body Are
a
Netw
orks
. IEEE Personal Indoor M
obil
Radio
Commun
i
cati
o
n
s (PIMRC).
T
o
ronto. 20
11: 2
153-
215
7.
[2]
Shokro
lla
hi A. Raptor C
odes.
IEEE Transactions on Infor
m
a
t
ion Theory
. 2
0
06;
52(6): 2
551
-256
7.
[3]
Gupta A, A
b
ha
ya
pal
a T
D
.
Body
Are
a
Netw
orks: Ra
dio
Ch
an
nel
Mode
lli
ng A
n
d
Prop
agati
o
n
Char
acteristics
.
Procee
din
g
of Austral
i
an C
o
mmu
ni
cation T
heor
y W
o
rks
hop
(AusCT
W
)
.
Christch
urch. 2
008: 58-
63.
[4]
Kata
yama
N,
e
t.al. Cha
n
n
e
l
Mode
l o
n
V
a
ri
ous F
r
e
q
u
enc
y Ban
d
s for
W
e
arab
le B
o
d
y
Ar
ea
Net
w
ork.
IEICE T
r
ansaction o
n
Co
mmu
n
icati
ons.
20
09
;
E92-B(2): 418
-424.
[5]
T
aparugssa
na
gorn A, Ra
bb
achi
n A, Ham
a
lai
n
e
n
M, Sal
o
ranta J, Iinatt
i
J.
A Review
Of Channe
l
Mode
lli
ng F
o
r
W
i
reless Bo
dy Area Net
w
ork In
W
i
reless Medica
l Co
mmun
icati
o
ns
. T
he
11th
Internatio
na
l Symp
osi
u
m On W
i
reless Pers
o
nal
Mu
ltimed
ia
Commun
i
cati
o
n
s. Lapl
an
d. 2008.
[6]
Cheffen
a
M.
T
i
me-var
yin
g
On-bod
y W
i
rel
e
ss
Chan
nel Mo
d
e
l Duri
ng W
a
lk
ing.
EURASIP Journal on
Wireless Co
mmu
n
ic
ations a
n
d
Netw
orking
.
201
4; 29.
[7] Venki
ah
A,
et.al.
Rate
less
C
odi
ng F
o
r Qu
asi-Static F
a
d
i
ng C
h
a
nne
ls
Using
Ch
an
nel
Estimatio
n
Accuracy
. Proc
eed
ing
of IEEE S
y
mp
osium o
n
Informati
on T
heor
y
(ISIT
)
.
Toronto. 20
08: 2
257-
226
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Rapto
r
Co
de
for Energ
y
-Efficient Wi
rele
ss Bod
y
Area
Netwo
r
k
Dat
a
Tran
sm
issi
on (L
ydia Sa
ri)
283
[8]
Sivasu
brama
n
i
an B, L
e
i
b
H
.
F
i
xe
d-Rate
Raptor
Co
des
Over Rici
a
n
F
adin
g
C
h
a
nne
ls.
IEEE
T
r
ansactio
n
of Vehic
u
lar T
e
ch
nol
ogy.
20
08; 57(6): 39
05-
39
11.
[9]
Blanc
o MA, B
u
rkhar
dt MV, Che
n
C.
C
odi
ng Strate
gies
for Ro
bust Miti
gatio
n of
Link
Blocka
ges
i
n
SATCOM
. IEEE Militar
y
Com
m
unic
a
tions C
onfer
e
n
ce (MIL
C
OM). San Die
go. 201
3: 611-
616.
[10]
Heiki
K, Pom
a
la-Rá
e
z
C.
Co
din
g
F
o
r E
ner
gy Efficie
n
t M
u
ltih
op W
i
r
e
les
s
Sens
or N
e
tw
orks
Nord
i
c
Radi
o S
y
mpos
ium 20
04/F
i
n
n
i
s
h W
i
reless C
o
mmunic
a
tio
n
s
W
o
rkshop 2
0
04 (NRS/ F
W
CW
2004).
200
4.
[11]
Alou
ini MS, Simon MK. Dig
ital Commu
nic
a
tion
ov
er F
adin
g
Cha
n
n
e
ls
: A Unified A
ppro
a
ch t
o
Performanc
e Anal
ysis. N
e
w
Y
o
rk: John W
ile
y & Sons. 20
00
.
[12]
Simon MK, Alou
ini MS.
A Unified
Appro
a
ch T
o
T
he Performa
nce An
aly
s
is Of Digital
Co
mmun
icati
o
n Over Gener
ali
z
e
d
F
a
d
i
n
g
Cha
nne
ls
. Pro
c
eed
ings
of th
e IEEE. 200
2; 86(9): 1
860-
187
7.
Evaluation Warning : The document was created with Spire.PDF for Python.