TELKOM
NIKA
, Vol.14, No
.4, Dece
mbe
r
2016, pp. 13
13~132
0
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i4.4177
1313
Re
cei
v
ed
Jun
e
18, 2016; Revi
sed O
c
tob
e
r 19, 201
6; Acce
pted No
vem
ber 1, 20
16
Laser-Induced Color Marking of Titanium Alloy
Li Chunling*
1
, Lu Changh
ou
2
1,2
Key
Lab
orat
or
y
of Hi
gh-
efficienc
y a
nd Cl
e
an Mech
anic
a
l Manufactur
e
,
Ministr
y
of
Edu
c
ation,
Schoo
l of Mechan
ical En
gi
ne
erin
g, Shan
don
g Univ
ersit
y
,
179
23 Ji
ngsh
i
Roa
d
, Jina
n, Shan
do
ng Provi
n
ce, Chi
na, 05
31-8
839
21
18
1
School of Mec
han
ical a
nd Au
tomotive Eng
i
n
eeri
ng, Qilu Un
iversit
y
of T
e
chnol
og
y
350
1 Da
xue R
oad, Jin
an, Sh
and
on
g Provin
ce, Chin
a, 053
1-89
631
13
2
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: lcl_Alic
e@
12
6.com
1
, luchh
@
sdu.e
du.cn
2
A
b
st
r
a
ct
A Nd:YAG n
a
n
o
seco
nd
las
e
r
w
a
s utili
z
e
d
in t
he
laser
color m
a
rking
of
titani
um
alloy substrates. It
w
a
s focused
o
n
how
sever
a
l
laser
para
m
eters, such
as
p
u
mpi
ng curr
en
t, delay b
e
tw
een the
effectiv
e
vector step,
las
e
r li
ne
sp
acin
g, Q-sw
itch frequ
ency
an
d foc
a
l
pla
ne
offset, af
fected th
e res
u
lting
col
o
rs, a
n
d
the influ
enc
e o
f
the resultin
g colors
o
n
the
substrate. F
i
rstly, singl
e-facto
r
experi
m
ents w
e
re carried o
u
t.
T
hen the dark
blue sq
uare
pattern an
d two sampl
e
s w
e
re ana
ly
z
e
d u
s
ing a
n
envir
o
n
menta
l
scann
in
g
electro
n
micros
cope (ES
E
M)
and X-r
a
y d
i
ffractometer (XR
D
) resp
ectively
. Results c
l
ear
l
y
show
ed th
at
the
Nd:YAG nan
o
s
econ
d las
e
r
can i
nduc
e
multipl
e
co
lors
on titan
i
u
m
all
o
y substrates
and
all t
he f
i
ve
para
m
eters h
a
d
an
effect on
the resu
ltin
g c
o
lors s
i
gn
ifica
n
t
ly. T
he dark
b
l
ue s
q
u
a
re p
a
ttern d
i
dn
’
t
in
du
ce
intern
al stress
es w
i
thin th
e s
ubstrate
mat
e
ri
al, so th
e infl
u
ence
of the r
e
sultin
g
col
o
rs o
n
the s
ubstrate
is
neg
lig
ibl
e
.
Ke
y
w
ords
: laser color
m
a
rking, titanium
alloy, su
rface oxid
ation, las
e
r pro
c
essin
g
para
m
eter
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Colo
r markin
gs on metal
surfa
c
e
s
a
r
e
made by the traditional t
e
ch
nolo
g
ies
su
ch a
s
printing,
ele
c
t
r
oplatin
g, p
a
inting a
n
d
so
on. Howe
ver,
these
pro
c
e
s
se
s h
a
ve
so
me limitation
s
i
n
pra
c
tical
ap
pl
ication
s
[1].
The p
o
o
r
scratch
and
we
ar of
pri
n
ting
co
ating
s
a
n
d
complexity of
electroplatin
g
pro
c
e
s
ses a
nd high
co
st of paintin
g
s
a
r
e re
co
gni
zed
proble
m
s. S
o
the traditio
nal
colo
r markin
g
technol
ogie
s
are gradu
all
y
replaced by
the lase
r col
o
r ma
rkin
g techn
o
logy whi
c
h
requi
re
s a la
ser to
scan
the metal su
rface
and
gi
ve rise to
surface oxidat
ion to create
a
perm
ane
nt color
markin
g
on a
metal
su
rface
an
d d
o
e
s
not u
s
e
an
y che
m
ical
s,
coatin
gs or to
ols
[2]. The laser-indu
ce
d col
o
r pattern
s ca
n make the
metal su
rface
visually more attractive a
nd
are gai
ning in
terest for
con
s
ume
r
produ
cts [3, 4].
A lot of inve
stigation
s
ha
ve been carried out to better unde
rstand the la
se
r colo
r
marking p
r
o
c
ess. The
colo
r patterns
we
re marked
on
stainle
s
s stee
l by an infra
r
e
d
lase
r [5,6], or
fiber laser [7-12] or KrF excime
r lase
r [13] or
UV laser [14] and
marked on titanium by a fibe
r
lase
r [15,
16]. The
s
e
studi
e
s
mai
n
ly focu
sed
on th
e inf
l
uen
ce of l
a
ser p
r
o
c
e
s
sing
paramete
r
s
on
the re
sultin
g
colo
rs an
d th
e analy
s
is of
lase
r in
du
ced
oxide films o
n
metal
su
rfa
c
e
s
. It has be
en
proved that
the lase
r-in
d
u
ce
d colo
rs are sen
s
itive to laser proce
s
sing pa
rameters whi
c
h
con
s
i
s
tently appe
ar in the
s
e
studie
s
a
r
e lase
r p
o
we
r, scanni
ng
speed, an
d fo
cal pla
ne off
s
et.
But the cont
rolled
pa
ram
e
ters differ i
n
vario
u
s
la
ser ma
rki
ng
system
s. Th
e effect
of o
t
her
para
m
eters o
n
the lase
r-in
duced colors was n
o
t
rep
o
rted, su
ch a
s
pumpi
ng current, Q-swit
ch
freque
ncy, la
ser line
sp
acing, Q relea
s
e time et
c.
Regarding th
e
analysi
s
of
oxide films, t
he
surfa
c
e
mo
rp
hology
a
nd o
p
tical pro
pert
i
es of
t
he oxi
de films an
d
their thi
c
kne
s
s
were m
a
inl
y
studie
d
. But as the la
se
r b
eam ge
nerates inte
nse
he
at, internal
stresse
s
may o
c
cur, which
may
cau
s
e di
stort
i
on of the substrat
es o
u
t
side its limi
t
s. It is must be avoid
ed in indu
st
rial
appli
c
ation
s
of laser
colo
ring markin
g tech
nolo
g
y.
So far the rela
ted re
sea
r
ch
es have
n
’t been
repo
rted.
In this study, a Nd:YAG nano
se
co
nd lase
r wa
s u
s
ed to mark
several col
o
r squa
re
pattern
s of
5
mm×5m
m o
n
titanium all
o
y su
bstrate
s
in
air. T
h
e
influen
ce
of sel
e
cte
d
la
ser
pro
c
e
ssi
ng p
a
ram
e
ters o
n
the obtain
ed col
o
rs was inve
stigat
ed by One-Facto
r
-at-a
-
Ti
me
(OFAT
)
expe
riment
s. As well a
s
the i
n
fluen
ce
of the re
sulting
colo
rs
on th
e sub
s
trate wa
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1313 – 132
0
1314
explore
d
by analyzin
g the lase
r treate
d
area a
nd two
sample
s u
s
i
ng an environ
mental scan
n
i
ng
electron mi
croscope (ESEM) and X-ray diffractom
e
te
r (XRD) respectively.
The researches have
greatly impro
v
ed the indu
strial appli
c
atio
ns
of laser
co
lor markin
g techn
o
logy.
2. Rese
arch
Metho
d
2.1. Experimental Setup
A HAN’S Q
-
switch
ed la
mp pum
ped
neodymiu
m
-dop
ed, yittrium-al
uminiu
m-ga
rne
t
(Nd
:YAG) l
a
ser was u
s
e
d
in the
la
se
r col
o
r m
a
rkin
g process
of
titanium alloy
.
The te
chni
cal
para
m
eters o
f
the laser a
r
e
sho
w
n in Ta
ble 1.
Table 1. Te
ch
nical p
a
ra
met
e
rs of the
HAN’S YAG-T8
0
C
laser
Technical Parameters
Specification
Technical Parameters
Specification
Maximum Avera
ge Po
w
e
r/W
80
Oper
ating Fr
equ
enc
y
/
kHz
0-20
Beam Qualit
y
Fa
ctor
10
Laser Spot Diam
eter/mm
0.010~0.150
Suppl
y
Voltage/V
380
Machine Power(
MAX)/kW
7.5
Suppl
y
Cu
rrent/A
25
Maximum
Q-S
w
it
ched Laser Po
wer/W
70
Suppl
y
F
r
equenc
y/Hz
50
Pulse Duration/n
s
80~260
Suppl
y
Phase
three-p
hase
Laser Wavelength/nm
1064
Laser Beam Dive
rgence Angle/mr
ad 5.5
Marking
Depth/m
m
<2.0
Peak Pow
e
r(MA
X
)/kW
140
Marking Linear V
e
locity
/(mm
·s
-
1
)
≤
7000
The la
ser-ind
u
ce
d col
o
rs
were analy
z
e
d
by mean
s of a Quant
a 200 envi
r
o
n
mental
scanni
ng electron mi
croscope (ESEM)
whose
resoluti
on is 3.5nm
. The intern
al
micro-stresses
of the lase
r marked bl
ue
area
we
re an
alyzed u
s
in
g a D8
-ADVAN
CE X-ray
diffr
actomete
r (X
R
D
)
whi
c
h i
s
cop
per
(Cu) ta
rg
et X-ray tub
e
.
The XRD
was e
quip
ed
with a
θ
/
θ
go
niomete
r
wh
ose
angle repe
ata
b
ility is 0.000
1º and de
gre
e
of accura
cy
is ±0.00
1
º [17].
2.2. Substra
t
e Materials
Experiment
s
were
con
d
u
c
ted for plate
s
of co
mmonly
use
d
T
C
4 tita
nium all
o
y (chemica
l
composition Fe=0.
3
%
max
, C=0.1%
max
, N=0.05%
max
, H=0.015%
max
, O=0.2%
max
, Al=5.5%~6.
8%,
V=3.5%~4.5
%, the rest i
s
Ti) with thi
ckness of
2m
m. The plate
s
were
rin
s
ed u
s
i
ng ethyl alco
hol
to remove an
y oil and dust
resid
u
e
s
bef
ore the expe
ri
ments.
2.3. Experimental Proc
ed
ure
The la
ser to
ol path pattern
wa
s one
-way raste
r
scanni
ng whi
c
h was d
epi
cted in
Figure 1. The triangle an
d circle re
prese
n
ted
the starting a
nd
endin
g
point
of laser be
am
respe
c
tively. The l
a
ser
scann
ed th
e
first lin
e al
ong th
e x d
i
rectio
n, then
waite
d
for
the
galvanom
etri
c sca
nne
r ba
ck to th
e sta
r
ting point
of th
e se
co
nd line
.
The dotted l
i
ne re
pre
s
e
n
te
d
the return rou
t
e where no l
a
se
r wa
s emi
t
ed. The
wo
rktable wa
s adj
ustabl
e in three dimen
s
io
n
.
The controll
e
d
pro
c
e
s
sing
para
m
eters i
n
HA
N’S la
se
r markin
g system 2000
we
re up to
12 whi
c
h
wa
s sh
own in Table 2. The l
a
se
r ene
rg
y
can b
e
co
ntrolled by adju
s
ting the pu
mping
curre
n
t, Q-switch freq
uen
cy and Q rele
ase time. Th
e pumpi
ng
cu
rre
nt refe
rre
d
to the cu
rre
n
t
of
the pumpi
ng
sou
r
ce of the
lase
r (i. e. the
krypt
on la
mp
) [18]. The ou
tput powe
r
ca
n be re
gulate
d
dire
ctly when
the pumping
current is
ch
ange
d.
The relation
ship b
e
twee
n the p
u
mping
cu
rre
nt
and o
u
tput p
o
we
r i
s
sho
w
n in
Tabl
e
3 [19].
The l
a
se
r
step
ca
n be
co
ntroll
ed by the fo
u
r
para
m
eters, i
.
e. effective vector
step,
delay betwee
n
the effect
ive vector
step
, empty vector
step, an
d del
ay betwe
en t
he empty
ve
ctor
step. Adj
u
sting th
e effective vecto
r
step a
nd d
e
l
a
y
betwe
en th
e
effective vect
or
step, th
e l
a
se
r
scanni
n
g
spee
d
can
be
cha
nge
d [
20]. The
emp
t
y
vector step
and delay
b
e
twee
n
the empty
vecto
r
step
were
related
to th
e empty
stroke
corre
s
p
ondin
g
to the dotted line in Fi
gure 1, du
rin
g
whi
c
h no l
a
se
r wa
s em
itted. so the two
para
m
eters
had n
o
si
gni
ficant effect
on the la
se
r-indu
ced
col
o
rs. Th
ere is
no la
ser stro
ke
con
n
e
c
tion p
r
oblem i
n
colo
r ma
rki
ng,
so
the fou
r
p
a
rameters
( i.e.
delay of l
a
ser o
n
, del
ay
of
laser off, delay of jumping, delay
of turning
) are related to t
he laser stroke connection, which
had
no
sig
n
ificant
effect o
n
the la
se
r-i
nd
uce
d
colo
rs.
The la
se
r li
ne
sp
aci
ng
refe
rs to th
e
spa
c
i
ng
betwe
en la
se
r line
s
, na
mel
y
s
in Fi
gure
1. This pa
ra
meter
can
affect the
accu
mulation
of la
se
r
heat in the
substrates,
an
d then affe
ct
the re
sultin
g
colo
rs. T
he f
o
cal
plan
e offset refers to t
he
distan
ce
between th
e focal
point an
d the
sub
s
trate
po
sition.
The su
b
s
trate materi
a
l
s
a
r
e ea
sy
to
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Laser-Indu
ce
d Colo
r Marki
ng of
Titanium
Alloy (Li Chunling)
1315
be burned at the focal plan
e owing to th
e high laser
p
o
we
r den
sity [21], so the focal plan
e offset
had an imp
o
rt
ant impact on
the laser-in
d
u
ce
d col
o
rs.
On the ba
si
s of above a
nalysi
s
, the 5 pr
o
c
e
s
sing
param
eters
(i.e. pumpin
g
current,
delay betwe
e
n
the effective vector ste
p
,
Q-swit
ch freque
ncy, laser line sp
aci
ng, focal pla
ne
offset) we
re
sele
cted to carry out the lase
r co
l
o
r
marking exp
e
rime
nts. Ma
ny color
squ
a
re
pattern
s of 5
mm×5m
m were ma
rked
on titanium
alloy sub
s
trat
es by OFAT
experime
n
ts. In
addition, two
sam
p
les wit
h
the same
dimen
s
ion
s
were an
alyze
d
by the X-ray diffractom
e
ter
(XRD). On
e wa
s unma
k
e
d
sampl
e
, the ot
her wa
s m
a
ke
d a dark b
l
ue sq
uare pa
ttern.
Table 2. Co
ntrolled p
r
o
c
e
s
sing p
a
ra
met
e
rs
in
HA
N’S
lase
r mar
k
in
g
sy
st
em 20
00
Controlled Proce
ssing
Parameters
Range
Default
values
Controlled Proce
ssing
Parameters
Range
Default
values
Effective Vector Step/mm
0.001~0.03
0.01
Empt
y
Vector St
ep/mm
0.03~0.08
0.06
Dela
y
bet
ween t
he
Effective Vector Step/
μ
s
8~60
20
Dela
y
bet
ween t
he
Empt
y
Vector St
ep/
μ
s
4~20 8
Q-s
w
itch Fr
eque
ncy/kHz
1~20
3
Dela
y
of laser on
/step
1~60
2
Q Release Time/
μ
s
1~40
12
Dela
y
of laser off
/
μ
s 0~1000
300
Pumping current/
A
7.2~30
16
Dela
y
of jumping
/
μ
s 200~1500
400
Laser Line Spacing/mm
0.01~0.15
0.01
Dela
y
of tu
rning/
μ
s 0~6
5
Table 3. Rel
a
tionshi
p between pum
ping
curre
n
t and o
u
tput power
Pumping
current/A
Output
po
w
e
r/W
Pumping
current/A
Output
po
w
e
r/W
Pumping
current/A
Output
po
w
e
r/W
Pumping
current/A
Output
po
w
e
r/W
11
1.0
16
10.2
21 37.8
26 47.5
12
2.0
17
12.5
22 36.4
27 52.7
13
3.8
18
16.0
23 39.4
28 59.0
14
5.4
19
21.5
24 35.1
29 68.5
15
7.4
20
33.2
25 41.0
30 78.3
3. Experimental Re
sults
Laser-ind
uce
d
color patte
rns on
the tit
anium
alloy
are
sh
own in
Figu
re
2, Fi
gure
3,
Figure 4,
Fig
u
re
5
and
Fig
u
re
6
by vary
ing
some
pa
rameters
as in
dicate
d in
the
figure, an
d t
he
values of other
parameters
are taken in Table
4. The ESEM analys
i
s res
u
lt
s of Figure 6
are
sho
w
n in Fig
u
re 7. The X
RD a
nalysi
s
result
s of the two sample
s a
r
e sh
own in F
i
gure 8.
Figure 1. One
-
way raste
r
scan
ning
Figure
2. Effect of delay be
tween the eff
e
ctive
vector
step o
n
the lase
r-i
n
duced colors
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1313 – 132
0
1316
(a)
(b)
(c
)
Figure 3. Effect of pumping
current an
d focal
pl
ane off
s
et on the la
ser-i
ndu
ce
d co
lors: (a) fo
cal
plane offset 3.0, (b) focal pl
ane offset
4.6
mm, (c) fo
cal
plane offset 5.9mm
(a)
(b)
Figure 4. Effect of lase
r line sp
a
c
in
g on
the lase
r-i
ndu
ced
colo
rs
Figure 5. Effect of Q-switch
frequen
cy on
the
colo
rs
Figure 6. The
blue pattern
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Laser-Indu
ce
d Colo
r Marki
ng of
Titanium
Alloy (Li Chunling)
1317
Figure 7. ESEM photographs
of the blue pattern
Figure 8. XRD analy
s
is re
sults, with 2
θ
betwe
en 10
° and 90
° (a
) , 35° - 45
° (b
)
and 55
° - 70°
(c):
(1) u
n
ma
rked
sample, (2)
sample with th
e blue squa
re
pattern.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1313 – 132
0
1318
Table 4. La
se
r paramete
r
value
s
in ea
ch
experime
n
t
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Controlled Proce
ssing Parameter
s
Val
ues Values
Values Values
Values
Effective Vector Step/mm
0.001
0.001
0.001
0.001
0.001
Dela
y
bet
ween t
he Effective Vect
or Step/
μ
s variable
40
30
40
42
Q-s
w
itch Fr
eque
ncy/kHz
5
5
4
variable
5
Laser Line Spacing/mm
0.08
0.08
variable
0.08
0.08
Pumping
Curr
ent
/A
15.0 variable
15.5 16.0
16.0
Focal Plane Offs
et/mm
5.2
variable
5.2
5.2
5.0
Q Release
T
i
me/
μ
s
12 12
12 12
12
Empt
y
Vector St
ep/mm
0.06
0.06
0.06
0.06
0.06
Dela
y
bet
ween t
he Empt
y
Vecto
r
Step/
μ
s
8 8
8 8
8
Dela
y
of laser on
/step
2
2
2
2
2
Delay
of laser
off/
μ
s
300 300
300 300
300
Delay
of jumping/
μ
s
400 400
400 400
400
Dela
y
of tu
rning/
μ
s
5 5
5 5
5
4. Discussio
n
s
On the wh
ol
e, the lase
r-i
ndu
ced
colo
rs
gradually d
eepe
n even
burni
ng bla
ck with the
increa
se in
the del
ay be
tween th
e e
ffective
vector
step, pu
mping
cu
rre
nt, and Q
-
swit
ch
freque
ncy
as sho
w
n i
n
Fi
gure
2, Figu
re 3, and
Figu
re 5
re
spe
c
ti
vely, while th
e col
o
rs b
e
ca
me
light grad
uall
y
with the incre
a
se in the laser line
sp
acin
g and fo
cal plan
e offset as sho
w
n in
Figure 4 and Figure 3 resp
ectively. The rea
s
on may
b
e
as follows. Whe
n
a colo
r squa
re patte
rn
wa
s bein
g
marked, a tran
spa
r
ent oxide
film was fo
rmed on the surface of the titanium alloy [13].
The resulting
colo
rs
we
re
formed
owi
ng to the in
t
e
rferen
ce eff
e
ct in the th
in film, so the
thickne
ss
of the film de
termine
d
the
colo
rs. T
h
e
accumul
a
te
d laser h
eat
determi
ned
the
thickne
ss
of the film, beca
u
se th
e influe
nce
of
the pa
ramete
rs on t
he obtai
ned
colors a
r
e b
a
sed
on heat treat
ment.
The o
u
tput p
o
we
r in
crea
ses
with the in
cre
a
se
of p
u
m
ping
cu
rre
n
t
as
sho
w
n in
Table
3,
so th
e la
se
r
power
den
sit
y
in the l
a
ser treated
a
r
ea
increa
se
s
co
rre
sp
ondi
ngly wh
en th
e fo
ca
l
plane offset is ke
pt con
s
t
ant. The foca
l plane offset
is also
clo
s
e
l
y related to the laser po
wer
den
sity in the lase
r treate
d
area. T
he smaller the
fo
cal pla
ne offset, the smalle
r the la
ser
sp
o
t
radiu
s
on the
sub
s
trate, th
e
highe
r the l
a
ser po
we
r de
nsity, so th
e
deep
er the
re
sulting
col
o
rs. It
can
be seen f
r
om Fig
u
re 3
that there i
s
a
suitabl
e l
a
se
r po
we
r den
si
ty range, som
e
col
o
rs cann
’t
be obtain
ed if the laser p
o
w
er d
e
n
s
ity is too high or to
o low.
The del
ay be
tween the
effective vecto
r
step refe
rs to
the pre
s
et time for ea
ch
effective
vector
step.
The la
se
r scannin
g
sp
ee
d de
cre
a
se
s grad
ually wi
th the increa
se of the d
e
l
ay
betwe
en the
effective vector
step. When la
se
r scanne
d on th
e metal surf
ace
due to t
h
e
movement of
the galvano
meter, many
contin
uou
s
li
near m
a
rking
s
we
re obtai
n
ed as a
re
sul
t
o
f
the overla
p o
f
laser
pul
se
spot. The
dist
ance betwe
e
n
the two a
d
j
a
ce
nt lase
r li
near
markin
g
s
is
calle
d laser li
ne spa
c
ing, n
a
mely the
s
i
n
Figu
re 1. T
he wi
der th
e l
a
se
r line
sp
a
c
ing, the l
e
ss the
lase
r line
ne
e
ded fo
r ma
rki
ng a
squ
a
re
pattern, the l
e
ss the l
a
se
r
heat a
c
cumul
a
tion, and
so
the
lighter th
e o
b
t
ained
colo
rs. The fa
ct that
the resultant
col
o
rs p
r
o
d
u
c
ed
by the
same p
r
o
c
e
s
si
ng
para
m
eters
e
x
ist colo
r diff
eren
ce
are a
l
so o
b
serv
ed in Figure
4. It is mainly
caused by the
instability of the laser
color marki
ng process.
Figure 10 i
n
d
i
cate
s two
ad
jace
nt pul
se
s are
markin
g
on metal
su
rf
ace
at a
cert
ain time
interval and
spaci
ng. The relation
ship b
e
twee
n them is to be:
f
v
s
f
t
1
Whe
r
e:
∆
t is t
he time interv
al of two adja
c
ent pul
se
s
∆
s is the sp
aci
ng of
two adja
c
ent
pulse
s
f
is the Q-switch f
r
equ
en
cy
v
is the laser sca
n
n
ing spee
d
This sho
w
s t
he heat accu
mulation pro
c
e
ss
will be affected by the time interval and
spa
c
in
g of two adjacent pu
lse
s
and the extent of
the impact de
pen
ds on the Q-switch fre
que
n
c
y
and
the la
se
r scan
ning
speed. Th
e sl
owe
r
the la
se
r sca
nnin
g
spe
ed, the smaller the
p
u
lse
spa
c
in
g, the
more
the
he
at accu
mulati
on effe
ct, an
d so the
d
e
e
per the
col
o
rs. Simila
rly, the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Laser-Indu
ce
d Colo
r Marki
ng of
Titanium
Alloy (Li Chunling)
1319
bigge
r the Q
-
swit
ch fre
que
ncy, the dee
p
e
r the colo
rs.
But Figure 5
sho
w
s that there i
s
little col
o
r
differen
c
e wh
en the Q-swit
ch freq
uen
cy is more tha
n
10kHz. The p
henom
ena a
r
e cau
s
ed by the
cha
nge
of la
ser outp
u
t po
wer an
d p
u
lse wi
dth.
Obvi
ously, effe
ctive vecto
r
ste
p
an
d Q
rele
ase
time also si
g
n
ificantly affect the obtaine
d colo
rs,
but they
were ke
pt
con
s
tant in experiment
s.
In
pra
c
tice, the i
n
fluen
ce of the two pro
c
e
s
sing p
a
ra
met
e
rs o
n
the re
sulting
colo
rs can be de
riv
ed
from delay be
tween the eff
e
ctive
vecto
r
step an
d Q-switch freque
n
c
y re
spe
c
tively. The influen
ce
of lase
r p
r
o
c
essing
param
eters on th
e
obtaine
d
colo
rs
wa
s b
a
sed
on the
com
b
ination of h
e
a
t
accumul
a
tion
and oxidati
on of su
bstrate mate
rial
s. So the sa
me col
o
r
ca
n be ma
rke
d
by
different set
s
of param
eters.
Figure 10. Schematic di
ag
ram of
lase
r p
u
lse ove
r
lap
region
s
The blu
e
sq
u
a
re in Fig
u
re
6 isn’t a flush or smooth
mark and the
r
e are many
obviou
s
continuous li
near
markings
and ci
rcular dents
under ESEM
with 100 and 400 times
magnification
re
spe
c
tively as sh
own
in Figure
7.
T
h
e
s
e circul
ar de
nts can be se
en clea
rly
un
der
ESEM with
800 and 1600 times
magnification. T
h
i
s
illustrates t
hat the
surface of the laser
marked
blue
squ
a
re
ha
s b
een m
o
lten a
nd resolidifie
d to form l
a
rg
er
clu
s
ters of
cry
s
tals.
As can
be seen in
Figure
8 (a
), (b
) and
(c), wit
h
in the
rang
e
of diffraction
angle b
e
twe
en 10
° and
9
0
°,
there is n
o
evident increa
se in the width
of t
he diffraction pea
k for the lase
r color marked sa
m
p
le
and n
o
ap
pe
aran
ce
of ne
w diffra
c
tion
pea
k o
r
the di
spla
cem
ent o
f
those i
n
itially record
ed o
n
t
h
e
unma
r
ked sa
mple.
So
the nature of
the pha
se
s
and
t
he structu
r
e
of the su
bstrate haven’t b
een
modified, the
n
one can say laser
col
o
r markin
g didn’t indu
ce
internal st
re
sses
within the
sub
s
trate m
a
terial.
5. Conclusio
n
Based
on th
e
obtaine
d results an
d di
scussion
s
, the
main
con
c
lu
si
ons
are: The
Nd:YAG
nano
se
co
nd l
a
se
r can ind
u
c
e several co
lors
on titaniu
m
alloy sub
s
t
r
ates,
su
ch a
s
yellow, g
r
a
y
,
blue an
d so o
n
. The sam
e
colo
r ca
n be
marked by
dif
f
erent set
s
of
param
eters; All the select
ed
para
m
eters (i
.e. pumping
curre
n
t, delay betwee
n
the
effective vector step, Q-switch fre
que
n
c
y,
lase
r line
spa
c
ing, focal pl
ane offset
) h
ad an effe
ct
on the re
sulti
ng col
o
rs si
g
n
ificantly. But the
resultant colo
rs produ
ced
by
the
same
para
m
eter
s
exis
t c
o
lo
r
d
i
ffe
r
e
nc
e ow
in
g to
th
e
ins
t
a
b
i
lity
of the la
ser color m
a
rkin
g
pro
c
e
ss;
The
r
e i
s
a
suita
b
l
e
laser
po
we
r de
nsity ran
ge, so
me
col
o
rs
can
n
’t be obt
ained if the la
ser
power d
e
n
sity is t
oo hi
gh or too lo
w;
and The
surf
ace of the la
ser
marked
blue
squ
a
re
ha
s
b
een m
o
lten,
but la
ser col
o
r m
a
rking
di
dn’t ind
u
ce
i
n
ternal
st
re
sse
s
within the subs
trate material.
Ackn
o
w
l
e
dg
ments
This work
wa
s fina
nci
a
lly
sup
porte
d by
Natio
nal
Nat
u
ral
Sci
e
n
c
e
Found
ation
o
f
Chin
a
(513
752
75) a
nd Prom
otive Re
sea
r
ch F
und for Ex
cel
l
ent Young
a
nd Middl
e-ag
ed Scie
ntists of
Shando
ng Province (BS2
0
12ZZ2
005
).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1313 – 132
0
1320
Referen
ces
[1]
Hua
ng T
Q, Li JM, Lu C
H
, et
al. L
a
ser-i
nd
u
c
ed co
lor m
a
r
k
ing
on
30
4 st
ainl
ess ste
e
l
b
y
Nd:YAG
nan
osec
ond l
a
ser.
Appli
ed L
a
s
er
. 2013; 3
3
(6
): 586-59
0.
[2]
Dusser B, S
a
gan Z
,
F
ouc
o
u
A, et a
l
.
Ne
w
s
applic
atio
n
s
in
authe
nt
ic
ation an
d
trac
eab
ility usin
g
ultrafast laser
mark
ing
. Proc
e
edi
ngs of SPIE-T
he Internatio
nal Soc
i
et
y
f
o
r Optical Eng
i
n
e
e
rin
g
. 200
9;
720
1(24): 3
605
-360
5.
[3]
Gabzd
y
l J. Ornamenta
l
color l
a
ser marki
ng o
f
metals.
Industrial L
a
ser Sol
u
tions
. 20
08.
[4]
Ng TW, Yeo
SC. Aesthetic laser ma
rki
ng
assessme
n
t using lum
i
n
anc
e ratios.
Optics & Lasers in
Engi
neer
in
g
. 2001; 35(
3): 177
-186.
[5]
Liu Z
M
, Z
han
g
QM, et al. Influe
nce of L
a
s
e
r Pr
ocess P
a
rameters on Colo
r Obtained
by
Marking.
Chin
ese Jo
urn
a
ls of Lasers
. 2
014; 41(
4): 121
-127.
[6]
Arkadiusz J. Anto
ń
czak, Bogusz St
ę
pak, Pa
w
e
ł
E. Kozio
ł
,
et al. T
he influ
ence
of proces
s paramet
ers
on the las
e
r-in
duce
d
col
o
rin
g
of titanium.
Applied Physics A
. 2014; 11
5(3): 100
3-10
13.
[7]
Laaks
o
P, Ruo
t
salai
nen S, Pa
ntsar H, et al.
Rela
ti
on of las
e
r param
eters i
n
color marki
n
g of stainless
steel.
Physica B
Cond
ens
ed Matter
. 2009; 3
80: 563-
56
4.
[8]
Amara EH,
Ha
ïd F
,
Nouk
az
A. Experim
ent
al i
n
ve
sti
gatio
n
s
on fi
ber
las
e
r color
marki
n
g of ste
e
ls.
Appl
ied S
u
rfac
e Scienc
e
. 201
5; 351: 1-1
2
.
[9]
Li G, Li J,
H
u
Y, et a
l
. F
e
mtosecon
d l
a
s
e
r
col
o
r marki
ng stai
nl
ess s
t
eel surfac
e
w
i
th differe
nt
w
a
velengths.
Appli
ed Phys
ics A
. 2015; 11
8(4
)
: 1189-1
1
9
6
.
[10]
Veiko V, Odin
tsova G, Gorb
unov
a E, Ageev E,
Shimko A, Karlagina
Y, et al. Developm
ent of
compl
e
te col
o
r
pal
ette bas
ed
on sp
ectrop
h
o
tometric
me
a
s
ureme
n
ts of steel o
x
idati
o
n
results for
enh
anc
ement
of color las
e
r marking tec
h
n
o
lo
g
y
.
Mater
i
al
s and Des
i
g
n
. 201
6; 89(1): 68
4-68
8.
[11]
Antonczak
AJ,
No
w
a
k M, K
o
ziol
P, et
al.
L
a
ser-in
duc
ed
c
o
lor
marki
ng
of
stain
l
ess st
eel
. Proc Spie.
201
3; 870
3(3): 343-
348.
[12]
La
w
r
ence
SK,
Adams
DP,
Bahr
DF
, et a
l
. Me
ch
anic
a
l
and
el
ectrome
c
han
ical
b
eha
vior of
o
x
i
d
e
coatin
gs gro
w
n
on stain
l
ess s
t
eel 3
04L
b
y
n
anos
eco
nd p
u
l
s
ed las
e
r irra
di
ation.
Surfac
e &
Coati
ngs
T
e
chno
logy
. 2
013; 23
5(1
2
): 860-8
66.
[13]
Z
heng HY, Li
m GC,
W
ang XC, et al. Proc
e
ss stud
y
for l
a
ser-in
duc
ed s
u
rface col
o
rati
on.
Journ
a
l of
Laser Ap
plic
ati
ons
. 200
2; 14(
4): 215-2
20.
[14]
Li Z
L
, Z
hen
g HY, T
eh KM,
et al. Ana
l
ysis
of
oxide form
ation i
n
d
u
ce
d b
y
UV las
e
r c
o
lor
a
tion
of
stainl
ess steel.
Appli
ed Surfac
e Scienc
e
. 200
9; 256(5): 1
582
-158
8.
[15]
Adams DP, H
o
dges V
C
, Hirs
c
hfeld
DA, et a
l
. Nan
o
seco
nd
puls
ed l
a
ser ir
radi
ation
of sta
i
nless st
eel
304
L: Oxid
e gr
o
w
t
h
and
effec
t
s on
und
erl
y
i
n
g meta
l.
Surfa
c
e & C
oati
ngs
T
e
chno
logy
. 2
013; 22
2(6):
1-8.
[16]
Vadim V, Gali
n
a
O, Eduard A,
et al. Control
l
ed o
x
i
de films f
o
rmatio
n
b
y
na
nosec
on
d lase
r pulses for
color marking.
Optics Express
. 2014; 22(
20): 243
42-2
4
3
47.
[17]
Li
C
L
.
Study
o
f
effect of lase
r mark
in
g Dat
a
Matrix
sy
mbo
l
s on tita
niu
m
a
lloy s
heets
usi
ng N
d
:YAG
laser
. 2
014 Int
e
rnati
ona
l Co
n
f
erence
on Ma
nufactu
ri
ng Sci
ence
and E
n
g
i
neer
ing.S
han
g
hai. 2
014:
941-
944.
[18]
Ghodsi Nahr
i D,
Arabsh
ahi
H. Static char
acterizati
on of
In
As/AlGaAs broa
dba
nd s
e
l
f
-assembl
e
d
qua
ntum d
o
t l
a
sers.
T
E
LKOMNIKA T
e
leco
mmu
n
icati
o
n
Co
mp
uting
Ele
c
tronics a
nd
C
ontrol
. 20
12
;
10(1): 55-
60.
[19]
Li C
L
, Lu
CH,
Li JM. L
a
ser
Di
rect Part
Ma
rkin
g
pa
ra
me
te
rs
b
a
s
ed
on
2D
-ba
r
co
de
s qu
a
l
i
t
y
.
Jo
u
r
na
l
of
Centra
l South
Univers
i
ty (Science a
nd T
e
ch
nol
ogy).
20
15; 46(1
2
): 448
8-4
496.
[20]
Li JM, Lu C
H
, W
ang AQ, W
u
YS, Ma Z
,
F
ang XX,
et al. E
x
perime
n
tal
inve
sti
gatio
n an
d
mathematic
al
mode
lin
g of
la
ser marki
n
g
tw
o
-
dim
ens
ion
a
l
b
a
rcod
es
on
surfaces
of
a
l
umin
um
all
o
y
.
Jour
nal
of
Manufactur
i
ng Processes
. 20
16; 21(1): 1
41-
152.
[21]
Hamza B, Z
a
tni A, Amghar A, et al. D
y
n
a
mi
c
Respo
n
se of
T
w
oE
lectro
de
Distribut
ed F
e
e
dback L
a
ser
for Stabl
e Si
g
nal M
o
d
e
Ope
r
ation.
Inter
nat
ion
a
l J
ourn
a
l
of Electrica
l
a
nd C
o
mp
uter
Engi
neer
in
g
.
201
5; 5(1): 23-
30.
Evaluation Warning : The document was created with Spire.PDF for Python.