TELKOM
NIKA
, Vol.13, No
.1, March 2
0
1
5
, pp. 341~3
4
8
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i1.1321
341
Re
cei
v
ed O
c
t
ober 1
3
, 201
4; Revi
se
d Ja
nuar
y 18, 20
1
5
; Acce
pted
February 1, 2
015
Solving the Complexity of Heterogeneity Data on
Learning Environment Using Ontology
Arda Yunian
ta*
1,2
, Mohd Shahizan O
t
hman*
1
, Noraz
a
h Yusof*
1,
3
, Liz
a
w
a
ti Mi Yusuf
1
,
Ju
w
a
iriah
4
, Nurul Sy
azana Selamat
5
1
Facult
y
of Co
mputin
g, Unive
r
siti T
e
knologi
Mala
ysi
a
,81
3
1
0
, Mala
ysi
a
2
F
a
cult
y
of Informatio
n
T
e
chnol
og
y a
nd Co
mmunica
ti
on.
Mula
w
a
rma
n U
n
iversit
y
, 75
11
9, Indon
esia
3
F
a
cult
y
of Co
mputin
g an
d Information T
e
chnol
og
y,
Kin
g
Abdu
l aziz Un
ive
r
sit
y
, 21
911, S
aud
i Arabi
a
4
F
a
cult
y
of Ind
u
strial T
e
chnol
og
y. Univ
ersita
s
Pemban
gu
na
n Nasi
oan
al Ve
teran, 552
83, Indo
nesi
a
5
Centre for Informatio
n
an
d Commun
i
cati
o
n
T
e
chnolo
g
y
,
Univers
i
t
y
T
e
knol
ogi Ma
la
ysi
a
,813
10, Mal
a
ysi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: arda.mti08
@
mail.u
g
m.ac.id;
noraza
h
6
4
@g
mail.com; sha
h
i
zan@
utm.m
y
A
b
st
r
a
ct
Distribut
ed a
n
d
vario
u
s syst
ems
on l
ear
nin
g
env
iron
ment
are the c
u
rre
nt issues to
pr
oduc
e bi
g
data an
d heter
oge
neity d
a
ta prob
le
m. Heter
oge
neity o
n
le
arni
ng env
iro
n
m
e
n
t is abo
ut nu
mer
ous le
ar
nin
g
app
licati
ons a
nd vari
ous
lea
r
nin
g
infor
m
ati
on to su
pport
a lear
ni
ng pr
o
c
ess in e
duc
ation
a
l i
n
stitutio
ns.
T
here ar
e a
lot
of relati
ons
hip
s
are for
m
e
d
b
e
tw
een e
l
e
m
e
n
ts on
lear
nin
g
envir
on
me
nt. T
he el
e
m
e
n
ts
o
n
lear
nin
g
env
iro
n
ment co
nsist
of lear
nin
g
dat
a, lear
ni
n
g
ap
plicati
ons, d
a
ta
sources, le
arn
i
ng co
nce
p
t, an
d
data het
erog
en
eity aspect o
n
l
earn
i
ng
envir
o
n
ment.
T
hese
ele
m
ents are i
n
terrel
a
ted a
n
d
produc
e co
mp
lex
relati
onsh
i
p
b
e
tw
een
each
other. A
co
mp
lex
rel
a
tion
ship
pro
b
l
e
m betw
e
e
n
e
l
e
m
e
n
ts o
n
l
e
a
r
ni
n
g
envir
on
me
nt makes a proc
ess
of analysis a
n
d
ide
n
tificati
o
n
difficult to be d
one. Existin
g
meth
od to dra
w
ing
this h
e
tero
gen
eity pr
obl
e
m
mak
e
c
onfuse
an
d
mis
u
n
d
e
r
standi
ng r
e
a
d
e
rs. T
o
so
lve
d
this
pro
b
l
e
m,
researc
her usi
ng ont
olo
g
y k
now
led
ge to d
e
scrib
e an
d
dr
aw
a semantic
relatio
n
shi
p
that repres
ent
the
compl
e
xity of d
a
ta rel
a
tions
hi
p on l
ear
nin
g
e
n
viro
nment.
T
h
e result of this
ana
lysis is to d
e
vel
op o
n
tol
o
g
y
know
led
ge to
solve h
e
tero
gen
eity data
prob
le
m sp
eci
f
ic in co
mp
le
xity relatio
n
sh
ip on
lear
ni
n
g
envir
on
me
nt. T
h
is res
u
lt can
give
better u
n
d
e
rstand
ing
to the re
ad
ers ab
o
u
t co
mpl
e
x rel
a
tions
hip
betw
e
e
n
ele
m
ents on l
e
arni
ng env
iro
n
m
e
n
t.
Ke
y
w
ords
: lea
r
nin
g
envir
on
ment, data heter
oge
neity,
onto
l
ogy know
le
dg
e
,
sema
ntic app
roach
1. Introduc
tion
Implementati
on of Ele
c
tro
n
ic
system
o
n
lea
r
nin
g
e
n
v
ironme
n
ts i
s
be
comin
g
p
o
pular an
d
very importa
nt in today’s
scena
ri
o b
e
cause of their
flexibility,
convenien
ce an
d
accessibility
to
s
u
pport learning ac
tivities
in traditional lear
ning process
[1],[2]. T
here
is
numerous
and various
appli
c
ation
systems on
le
arnin
g
e
n
viro
nment from
d
i
fferent fun
c
ti
on a
nd
with
spe
c
ific pu
rp
ose,
this is
usually
kno
w
n
as
he
teroge
neity o
n
learning
en
vironme
n
t. The hete
r
og
en
eity may be the
differen
c
e in
: Use
r
inte
rface, Platfo
rm, Application sy
stem, Datab
a
se
system, Data
rep
r
e
s
entatio
n etc.
The hete
r
og
eneity of data is a curre
n
t issu
e in d
i
stribute
d
an
d variou
s inf
o
rmatio
n
sou
r
ces.
Dev
e
lopme
n
t of appli
c
ation
s
and info
rm
ati
on syste
m
s
make
s h
e
terogen
eity pro
b
lems
grow up and
more
com
p
lex, and from that prob
lem
s
need to find
the best solut
i
on [3],[4]. Data
on lea
r
nin
g
e
n
vironm
ent is increa
singly
gro
w
n u
p
a
nd be
comi
ng
more m
eani
ngful to su
pp
ort
learning ac
tivities
[5],[6].
Heteroge
neit
y
of data on learnin
g
environm
ent
is a
bout different
data representation
and type
s of
informatio
n o
r
data in
different
a
nd n
u
m
ero
u
s
appli
c
ation
s
to
su
pport a l
earni
ng
pro
c
e
s
s in
e
ducation i
n
sti
t
utions [7].
Different
ap
pli
c
ation
s
are
d
e
velop fo
r
sp
ecific pu
rpo
s
es
based on fu
nction a
nd f
eature th
at inclu
ded o
n
that appli
c
ati
ons [5]. A lot of applicati
ons
develop
ed on
learnin
g
environm
ent, su
ch as Tea
c
hi
n
g
and lea
r
nin
g
online ap
pli
c
ation, Lib
r
ary
appli
c
ation
system, Que
s
tion ban
k
system, St
ud
ent man
age
ment an
d p
a
yment sy
stem,
Acade
mic i
n
formatio
n ma
nagem
ent
system, Stude
n
t
regi
stration
system
and
subj
ect
co
urse
evaluation sy
stem. In this pape
r, re
sea
r
che
r
s a
r
e u
s
i
ng UTM (Uni
versiti Te
knol
ogi Malaysi
a
) as
a ca
se stu
d
y
to analyze
the data heterog
enei
ty probl
em on
university environme
n
t. With
nume
r
ou
s ap
plicatio
ns tha
t
develop wit
h
vari
ou
s system and data
base schem
a
,
produ
ce
s a big
data with het
erog
eneity problem on that
environm
ent.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 341 – 3
4
8
342
The ai
m in
this
pap
er i
s
to analy
z
e
a
nd to i
dentify wh
at ki
nd
o
f
data h
e
tero
geneity
probl
em th
at be
hap
pen
on le
arni
ng
environ
ment,
wh
at a
r
e th
e sema
ntic
relation
ship
relate
betwe
en el
e
m
ents
on d
a
ta hete
r
og
e
neity on
lea
r
ning
enviro
n
ment. After analyzi
ng
and
identificatio
n pro
c
e
ss,
the main
c
ontri
bu
tion of this re
sea
r
ch is to
d
e
velop o
n
tolo
gy kno
w
le
dge
to
descri
be
wh
a
t
kind
of d
a
ta hete
r
og
ene
ity proble
m
o
n
lea
r
nin
g
e
n
vironme
n
t an
d to g
e
t bett
e
r
read
er
und
e
r
stan
ding
wit
h
ontolo
g
y
viewing
th
at
contai
n se
mantic relati
onship
b
e
tween
element
s on l
earni
ng environment.
We d
e
scribe
that there
are
four m
a
in a
s
pec
t
s
of h
e
terogen
eity on l
earni
ng e
n
vironment.
The fo
ur
asp
e
cts a
r
e
heterogen
eity
data
,
learning
re
sour
ce
s, a
ppli
c
ation
s
, a
nd l
earni
ng th
eo
ri
es.
Detail
s heterogen
eity crite
r
ia’s
w
ill discu
ss in the n
e
xt sectio
n.
This pa
pe
r is extended pa
p
e
r from this p
aper
[20]. To
compl
e
te the resea
r
ch, this paper
divided into
several
stage
s, the first is to
analyz
e
and
identify four main a
s
pe
cts of heterog
en
eity
on learning
environ
ment.
The next step is to cr
e
a
te sema
ntic relation
ship
between all
of
element
s on l
earni
ng envi
r
onment. And
the final re
su
l
t
is to develo
p
ontology kn
owle
dge to d
r
aw
the com
p
lexi
ty that happen on d
a
ta hetero
gen
eity probl
em on
learni
ng en
vironme
n
t wi
th
sema
ntic rela
tionshi
p.
2. Hete
roge
n
e
it
y
Aspects
On Learnin
g
En
v
i
ronment
2.1. Hete
rog
e
neit
y
on Data
In the
hetero
geneity of
da
ta aspe
ct
we
de
sc
rib
e
tha
t
there
a
r
e fi
ve su
b
aspe
cts with
some of the
elements
co
ntained in it. The five
sub asp
e
ct
s are data types, data struct
ure,
learni
ng i
n
formation, d
a
ta
base
system,
and
data
re
pre
s
entatio
n. In the
next
para
g
raph
we will
explain mo
re
detailed a
bou
t this five sub asp
e
ct
s.
There are numerous data type format
and
dat
a
structure format
[8],[9]. For t
he data
stru
cture fo
rmat ther
e a
r
e three type
s of
da
ta str
u
ctur
e
, the
r
e
are u
n
struct
ured
data,
semi-
stru
cture d
a
ta an
d
stru
ct
ured
d
a
ta
.
Different with data stru
cture,
da
ta t
y
pes
have
five
data
types, they a
r
e m
u
ltimedi
a data, im
ag
es
data,
text data, web/web-se
rv
ice
d
a
ta an
d data
base
data.
With n
u
merou
s
a
ppl
ication
s
th
at
develop
with
vario
u
s
system an
d d
a
taba
se
sch
e
ma,
prod
uces
a
big data
with heteroge
n
e
ity pr
oble
m
on that environment. Diffe
rent ap
plication
system
with
nume
r
ou
s
a
nd hete
r
o
gen
eity info
rmati
on, data
sou
r
ce
s,
d
a
taba
ses
system
an
d
data
re
pre
s
e
n
tation
ma
ke
s
commu
nication
and
i
n
tegratio
n
pro
c
ess b
e
twe
en
this a
ppli
c
atio
n
s
diffic
u
lt to implemented [8],[10].
Databa
se s
y
stem
a
s
pe
ct also
compl
e
ted the data
hetero
gen
eity proble
m
on l
earni
ng
environ
ment.
Some appli
c
ations a
r
e d
e
v
elop und
er t
he sa
me dat
aba
se sy
ste
m
and the ot
her
appli
c
ation
s
are devel
ope
d with different databa
se
system. Re
sea
r
che
r
s a
r
e identifying
a
several data
b
a
se
system t
o
develop
an
applicati
on,
there are Ora
c
le
data
b
a
s
e system,
MySQL
databa
se
system, SQL Server, an
d Po
stgre S
Q
L.
Different d
a
ta are
save
d
in the datab
ase
system
also
have different
schem
as to
develop th
e
d
a
taba
se
syst
em this i
s
pro
duce a
different
data rep
r
e
s
e
n
tation format
.
Develo
pment
and i
m
ple
m
entation
system on
l
earni
ng
envi
r
onm
ent p
r
o
duce a
d
i
ffe
r
e
nc
es
in
data re
pres
enta
tion
a
s
p
e
ct. System developm
ent
with differe
nt develope
r al
so
make
s differe
nce
s
in data repre
s
e
n
tation
sch
ema on d
a
taba
se sy
stem.
Heteroge
neit
y
data spe
c
ific on
lear
ning inform
ation
will
have interrelation with
con
s
tru
c
tive
alignme
n
t theory that ha
ve three el
e
m
ent with o
ne extra el
e
m
ent. The t
h
ree
element
s th
ere a
r
e te
a
c
hin
g
an
d l
earni
ng Ex
p
e
rien
ce
s,
a
s
se
ssm
ent
t
a
sk
s a
nd le
a
r
ning
outcom
e
s. Where
a
s, the e
x
tra element is relate to
the
purpo
se of constructive ali
gnment theo
ry,
namely stud
e
n
t result.
2.2. Hete
rog
e
neit
y
on Learning Re
so
urces
Learning
re
source
s i
s
rela
te with
refere
nce
source
s
as
a refere
nces fo
r
stude
n
t
s to g
e
t
better le
arni
n
g
kn
owl
edg
e
and to fini
shi
ng all
assign
ment that giv
en by le
ct
urers. In the l
earning
pro
c
e
ss
con
d
u
ct by stude
n
t
s and le
cture
r
s they have
referen
c
e so
urces. Th
e re
feren
c
e
sou
r
ces
is not only from lectu
r
e
r
slides b
u
t there are a
lot of
learnin
g
mat
e
rial from th
e
other source
s
su
ch a
s
jou
r
nal pap
ers, web
s
ite pa
ge
s, boo
ks,
a
r
ticle
s
, Instag
ram, YouTub
e and the ot
her
external sou
r
ce
s [11]. Fro
m
these
sou
r
ce
s
st
udent
s ca
n learn
not just from
text book, but
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Solving T
he
Com
p
lexit
y
of Hetero
gen
eity Data o
n
Le
arnin
g
Envi
ro
nm
ent .... (Arda Yunianta
)
343
stude
nts
also
ca
n l
earn fro
m
au
dio
and
video
cont
e
n
t
on internet. These learnin
g
sou
r
ces rel
a
te
with data types an
d data structu
r
e
s
ele
m
ent on the o
t
her hete
r
og
e
neity aspe
cts.
2.3. Hete
rog
e
neit
y
on Applications
No
wad
a
ys, a
pplication sy
stem develop
ment
on lea
r
ning envi
r
on
ment is g
r
o
w
i
ng fast. A
lot of appli
c
a
t
ion sy
stem
develop
ed to
help l
earni
n
g
process in
som
e
e
d
u
c
a
t
ion institutio
ns.
Every appli
c
ation is deve
l
op for
sp
ecif
ic pu
rp
oses
with several
facilities. Ea
ch appli
c
atio
n
is
developin
g
with different functio
n
, purp
o
se a
nd
with
different dev
elope
r produ
ce hete
r
og
en
eity
asp
e
ct on th
e appli
c
ation
perspe
c
tive. Applicat
ion
develop
er un
der different
prog
rammi
n
g
langu
age, system archit
ecture, mod
e
l, interfac
e, platform a
nd data
b
a
s
e
s
sy
stem m
a
ke
comm
uni
cati
on and inte
gration pro
c
e
ss more difficult
.
Data hete
r
og
eneity on ap
plicatio
ns a
s
pect
is ab
out
different data representat
ion and
types of information or d
a
ta in different
and nu
merou
s
appli
c
atio
ns to supp
ort a l
earni
ng p
r
o
c
e
s
s
in education
institution
s
[7]. Different applicatio
n
s
are develop for spe
c
ific pu
rposes ba
se
d
on
function
an
d
feature th
at i
n
clu
ded
on
that ap
p
licatio
ns [5]. A l
o
t
of appli
c
atio
n
s
d
e
velop
ed
on
learni
ng e
n
vironm
ent, su
ch as te
achin
g
and l
earni
ng onli
ne ap
plicatio
n called Moo
d
le
e-
learni
ng, academi
c
information man
ageme
n
t system, student
manage
me
nt and pay
ment
system, Que
s
tion
B
a
n
k
System,
Sub
j
ect Cou
r
se
s evaluatio
n
system,
stud
ent regi
strati
on
system, library application
system an
d o
t
her lear
ning
appli
c
ation
s
. In this research, re
sea
r
che
r
s
are u
s
ing UT
M (Unive
rsiti Tekn
ologi Ma
laysia) le
arni
ng appli
c
atio
ns as a
ca
se study to anal
yze
the data hete
r
oge
neity pro
b
lem on ap
pli
c
ation
s
.
2.4. Hete
rog
e
neit
y
on Learning Theor
ies
Learning th
e
o
rie
s
a
s
pe
ct i
s
relate with l
earni
ng info
rmation an
d the othe
r ele
m
ents o
n
learni
ng e
n
vironm
ent. Th
ere
are
two
learning th
eorie
s
relate
on thi
s
research th
ere
are
con
s
tru
c
tive alignme
n
t an
d intelligent tutoring
syste
m
.
Cons
tru
c
tiv
e
alignment
is an ed
ucational mod
e
l to con
d
u
c
t learnin
g
proce
ss. T
w
o
asp
e
ct a
r
e
b
u
ilt on con
s
tructive
align
m
ent is
a
constructive
a
s
pe
ct refers
to the idea
that
stude
nts
co
n
s
tru
c
t the
me
aning
on l
e
a
r
ning
pro
c
e
s
s
throug
h
relev
ant lea
r
nin
g
a
c
tivities.The
key
is that the co
mpone
nts in
the
teaching
system, e
s
pe
cially the tea
c
hin
g
metho
d
s u
s
ed a
nd t
he
asse
ssm
ent
tasks are alig
ned with
the learni
ng
a
c
tivities a
s
sume
d in the inte
n
ded o
u
tcom
e
s
.
The le
arn
e
r is a pe
ople
s
who
want g
e
t b
e
tter un
de
rst
andin
g
to
sol
v
e learning
problem th
at gi
ven
to them [12],[
13].
To co
ndu
ct a
better lea
r
nin
g
pro
c
e
s
s tro
ugh con
s
tru
c
t
i
ve alignment
is ho
w to perform all
asse
ssm
ent
tasks
and
te
achi
ng l
earni
ng p
r
o
c
e
s
s (inclu
ded
con
t
ent and
met
hod
s) mu
st
be
linke
d to the desired unit
of study learning o
u
tcom
es. Figure 1
shows the interrelation
s
h
i
p
betwe
en the three el
eme
n
ts on con
s
tru
c
tive alignmen
t concept [14].
Figure 1. Con
s
tru
c
tive Alignment The
o
ry, adapted fro
m
[13]
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 341 – 3
4
8
344
The im
po
rtan
t thing o
n
a
constructive
ali
gnment
is to
get bal
an
ce
b
e
twee
n tea
c
h
i
ng a
nd
learni
ng
acti
vities, asse
ssment ta
sks activi
ties
a
nd lea
r
ni
ng
outcom
e
s to
be a
c
hi
eve
d
. A
Con
s
tru
c
tive
alignme
n
t is
an edu
catio
n
a
l model [15
], this con
c
e
p
t base
d
up
on co
nst
r
u
c
tive
learni
ng the
o
r
y (con
stru
cti
v
ism) a
nd
aligned
cu
rri
cu
l
u
m. The
aim
of this
con
c
ept is
get be
tter
stude
nts’ pe
rforma
nce to enhan
ce stu
d
e
n
t out
come
s.
While the model ha
s bee
n implemente
d
on ma
ny do
mains an
d li
nke
d
to p
o
si
tive effect
to
the stu
dent
re
sults,
also for l
earnin
g
environ
ment this con
c
ept really clo
s
ed
with
all of acti
vities on learning process
[16].
Con
s
tru
c
tive Alignment co
nce
p
t
is com
p
rised
by
a
set of prin
ciple
s
that can b
e
use
d
to
devisin
g Tea
c
hin
g
an
d L
earni
ng A
c
tivities that h
e
lp in a
c
hi
e
v
ing the Intende
d Le
arn
i
ng
Outco
m
e
s
. This is a
c
com
p
lish
ed by ca
refully a
lignin
g
and learnin
g
asse
ssm
en
ts to suppo
rt the
stude
nts to fulfill the Intended Lea
rnin
g Outco
m
e
s
[12]-[14].
Learning m
o
del is a p
a
rt
of
Intelligent Tutoring S
y
stems
con
c
e
p
t that compl
e
ted with
interface as
a bridge to communi
ca
te with
user
l
earner.
Intelligent tutoring systems contai
n
four
comp
one
nts:
domain,
stud
ent, tutor and
use
r
inte
rfa
c
e [16]. Intelligent tutorin
g
system
s (ITS
s)
must b
e
e
qui
pped
with
an
explicit rep
r
e
s
entatio
n
of t
he d
o
main
kn
owle
dge th
at
is the
subje
c
t
of
the lea
r
nin
g
activity to en
able l
earners to a
c
qui
re
knowl
edge
an
d devel
op
skills in
a
spe
c
ific
domain. It m
u
st al
so
be
e
quipp
ed
with
the me
cha
n
isms by
whi
c
h
can
be to
sol
v
e pro
b
lem
s
in
the do
main
throu
g
h
a
c
qui
red
kno
w
ledg
e an
d
better
skill
devel
op
ment, be
ca
use this i
s
a
m
a
in
purp
o
se of intelligent tutoring
system
s [17]. T
he purp
o
se of the learning
pro
c
e
ss i
s
h
o
w to
provide
bette
r pe
rsonali
z
e
d
service an
d tea
c
hi
ng
material
s fo
r learners to
achi
eved b
e
tter
learn
e
rs resul
t. Figure
2 sh
ows the inte
rrelation
s
hip th
ree
eleme
n
ts
on lea
r
nin
g
m
odel a
s
a
mai
n
part of intelligent tutoring system [17].
Figure 2. Intelligent Tutori
n
g
Systems, a
dapted fro
m
[17]
The
dom
ain model
is
also called
expe
rt kn
owl
edg
e.
This mod
e
l
contai
ns the
probl
em
solving
strategies, rules and
concept
of the domain to
be learned.
It can fulfill several
rol
e
s: as
a
sou
r
ce of e
x
pert kn
owl
e
dge, a
stan
dard fo
r
eva
l
uating
the student’s perf
o
rma
n
ce
or for
detectin
g
errors, etc. Th
e
domain mod
e
l can o
r
ga
nized to be a
curri
c
ulum, le
arnin
g
stru
ct
ure
that includin
g
all the learni
ng kn
owle
dg
e element
s a
nd linke
d tog
e
ther a
c
cording to pedag
o
g
ical
seq
uen
ce
s [1
6]. The
stud
ent mod
e
l
is
the co
re
com
pone
nt of an
ITS. Ideally, it shoul
d cont
ain
as mu
ch kno
w
led
ge as p
o
ssi
ble abo
ut the stud
ent
s
cog
n
itive that supp
ort learning process to
get better
u
nderstan
ding
of stud
ent’s persp
ective
to solve l
e
arnin
g
p
r
obl
em to get
b
e
tter
stude
nts re
su
lt [16]. The
teaching mo
del
receives i
nput from the
domain an
d stude
nt mod
e
ls
and ma
ke
s d
e
ci
sion
s ab
o
u
t tutoring
strategie
s
and
action
s. Base
d on p
r
in
cipl
ed knowl
edg
e, it
must ma
ke
such d
e
ci
sio
n
s
as
whet
her or not to
intervene, a
nd i
f
so, whe
n
a
nd ho
w. Cont
ent
and d
e
livery
planni
ng a
r
e
also
part of t
he tutorin
g
m
odel’
s
fun
c
tio
n
s. Tuto
ring
deci
s
io
ns
wo
uld
ideally be reflected in
different fo
rms
of intera
ct
ion
with the stu
dent: Socrati
c
dialo
g
s, hi
nts,
feedba
ck fro
m
the sy
stem
, etc. More g
enerally,
stud
ent and te
aching inte
ra
ctions
usually o
c
cu
r
throug
h the l
earni
ng
in
ter
f
ace
,
also kn
own
as the
communi
catio
n
or i
n
terfa
c
e
com
pon
ent. This
comp
one
nt gi
ves a
c
ce
ss t
o
the
dom
ain
kn
owl
edg
e e
l
ements thro
ugh
multiple
form
s to
interact
with user lea
r
ner.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Solving T
he
Com
p
lexit
y
of Hetero
gen
eity Data o
n
Le
arnin
g
Envi
ro
nm
ent .... (Arda Yunianta
)
345
3. Semantic Relatio
n
ship
s Bet
w
e
e
n
Elements On
Learning En
v
i
ronment
After analysi
s
an
d identif
ication p
r
o
c
e
ss,
the
next step is to
dra
w
the
co
mplexity
relation
shi
p
betwe
en ele
m
ents on le
arnin
g
enviro
n
ment. Table
1 sho
w
s th
e compl
e
xity in
hetero
gen
eity aspe
ct o
n
l
earni
ng
environment
an
d
sho
w
s the
types of
realtio
n
shi
p
s bet
we
en
element
s.
Table
1
sho
w
s a l
o
t of
relation
ship
b
e
twee
n el
em
ents
on l
earn
i
ng e
n
viron
m
ent. Fro
m
this table
can
be seen a
n
d
con
c
lu
de tha
t
it is very co
mplex the relationship bet
wee
n
elem
en
ts.
The existing
method p
r
ov
es that the repre
s
e
n
ta
tion
of heteroge
neity
on learning environ
ment
still have a weaknesses a
nd still need to improve.
Table 1. Lea
rning Inform
ation Semanti
c
Relatio
n
ship
Elemen
ts
T
y
pe
of
R
e
lati
o
n
shi
p
Elemen
ts
Websites
hasATypeOfDa
t
a
W
eb/
W
eb-Service
Data
hasATypeOfDa
t
a
Database
Data
hasADataStructu
re
Structured
D
a
ta
hasADataStructu
re
Sem
i
Structu
r
ed
data
Journal
Paper
hasATypeOfDa
t
a
Text
Data
hasATypeOfDa
t
a
W
eb/
W
eb-Service
Data
hasADataStructu
re
Unstructured
Dat
a
hasADataStructu
re
Sem
i
Structu
r
ed
data
Learning
Outcomes
Categori
z
e
A
s Domain
M
odel
Categori
z
e
A
s Teaching
M
odel
Categori
z
e
A
s Student
M
odel
IsA Learning
Inform
ation
Teaching
and
Learning
Online
Application
HasA
DataRep
r
esentat
ion
Data
Representation 5
in Application 5
HasADatabaseS
ystem M
y
SQL
HasA User
Interf
ace
Categori
z
e
A
s Student
M
odel
Categori
z
e
A
s Teaching
M
odel
Question
Bank
Sy
s
t
e
m
HasA
DataRep
r
esentat
ion
Data
Representation 4
in Application 4
HasADatabaseS
ystem Oracle
HasA User
Interf
ace
Categori
z
e
A
s Teaching
M
odel
Categori
z
e
A
s Domain
M
odel
Subject
Course
Evaluation
Sy
s
t
e
m
HasA
DataRep
r
esentat
ion
Data
Representation 3
in Application 3
HasADatabaseS
ystem SQL
Serve
r
HasA User
Interf
ace
Categori
z
e
A
s Teaching
M
odel
Student
Registration
Sy
s
t
e
m
HasA
DataRep
r
esentat
ion
Data
Representation 7
in Application 7
HasADatabaseS
ystem M
y
SQL
Categori
z
e
A
s Student
M
odel
HasA User
Interf
ace
Student
Result
IsThePurpose
O
f
Teaching
and
Learning
Experiences
IsThePurpose
O
f
Domain
M
odel
IsThePurpose
O
f
Teaching
M
odel
Elemen
ts
T
y
pe
of
R
e
lati
o
n
shi
p
Elemen
ts
Y
o
u
t
ub
e
hasADataStructu
re
Unstructured
Dat
a
hasATypeOfDa
t
a
M
u
lti
m
edia
Data
Books
hasATypeOfDa
t
a
Text
Data
hasADataStructu
re
Unstructured
Dat
a
Instagram
hasADataStructu
re
Unstructured
Dat
a
hasADataStructu
re
Sem
i
Structu
r
e
Data
hasATypeOfDa
t
a
M
u
lti
m
edia
Data
hasATypeOfDa
t
a
Text
Data
hasATypeOfDa
t
a
W
eb/
W
eb-Service
Data
Assessment
T
a
sk
IsA Learning
Inform
ation
Categori
z
e
A
s Domain
M
odel
Categori
z
e
A
s Teaching
M
odel
Student
Result
IsThePurpose
O
f
Student
M
odel
IsThePurpose
O
f
User
Interf
ace
Academic
Information
Management
Sy
s
t
e
m
HasA
DataRep
r
esentat
ion
Data
Representation 2
in Application 2
HasADatabaseS
ystem Oracle
HasA User
Interf
ace
Categori
z
e
A
s Student
M
odel
Categori
z
e
A
s Domain
M
odel
Student
Management
and
Pa
y
m
ent
Sy
s
t
e
m
HasA
DataRep
r
esentat
ion
Data
Representation 1
in Application 1
HasADatabaseS
ystem M
y
SQL
HasA User
Interf
ace
Categori
z
e
A
s Student
M
odel
Categori
z
e
A
s Domain
M
odel
Librar
y
Application
Sy
s
t
e
m
HasA
DataRep
r
esentat
ion
Data
Representation 6
in Application 6
HasADatabaseS
ystem Postgre
SQL
Categori
z
e
A
s Student
M
odel
HasA User
Interf
ace
Teaching
and
Learning
Experiences
Categori
z
e
A
s Domain
M
odel
Categori
z
e
A
s Teaching
M
odel
Categori
z
e
A
s Student
M
odel
IsA Learning
Inform
ation
Student
Result
IsA Learning
Inform
ation
IsThePurpose
O
f
Learning
Outc
o
m
es
IsThePurpose
O
f
Assessm
ent
Task
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 341 – 3
4
8
346
Every eleme
n
t on lea
r
ni
ng environm
ent at
lea
s
t has
one
re
lationship, a
nd som
e
element
s on l
earni
ng e
n
vironment
can
have a lot of
relat
i
on
shi
p
s.
This
sit
uat
io
n mak
e
s
dif
f
i
cult
to get clea
r view and
better un
derstandi
ng, be
cau
s
e the
r
e
are no d
e
scriptio
n nam
e of
relation
shi
p
betwe
en ele
m
ents o
n
le
arnin
g
enviro
n
ment. Even though the
r
e are n
a
me
of
descri
p
tion of
relation bet
ween the
s
e ele
m
ents st
ill dif
f
icult to get understan
ding
and to analyze
the pi
cture.
Ontology
giv
es a better
solution
to
solve this p
r
ob
lem b
e
cause
ontology
give
s a
sema
ntic rela
tionshi
p attrib
ute on every
element on le
arnin
g
enviro
n
ment [19].
From
Tabl
e 1
we
co
ncl
ude
that there
are
68 relatio
n
sh
ips betwe
en element
s
o
n
l
earni
ng
environ
ment
with 8
types of
relati
onship, the
r
e are
hasAT
ypeOfData, hasAD
ataStruc
ture,
hasAD
atab
ase
S
ystem, hasA
D
ataR
epres
ent
ation, hasA, ca
tegor
i
z
e
A
s, isA, isT
hePurpos
e
O
f.
Table
1 sho
w
s three
colum
n
s
with two
column
s a
r
e el
ements that h
a
ve interrelati
onship
betwe
en
ea
ch othe
r
and
one
colum
n
is type
o
f
relationship
of elements on learnin
g
environ
ment.
From this type of relation
ship
we
ca
n build ontolo
g
y
knowl
edge
to represent the
hetero
gen
eity on lea
r
nin
g
e
n
vironm
ent to
give
a cl
ea
r i
m
age a
nd b
e
tter un
derstan
ding a
bout th
e
compl
e
xity of
hetero
gen
eity on learni
ng e
n
vironm
ent.
4. Ontolog
y
Kno
w
l
e
dge
Data He
ter
o
geneity
On Learning Env
i
ronment
Analysis
and
identification
pro
c
e
ss to d
e
sc
rib
e
a co
mplexity on data heteroge
neity on
learni
ng envi
r
onment have
sho
w
n on p
r
evious
cha
p
ter on thi
s
pa
per. After cre
a
te a sem
ant
ic
relation
shi
p
b
e
twee
n ele
m
ents
on le
arni
ng e
n
vir
onm
e
n
t, the next
step i
s
to d
e
vel
oping
ontolo
g
y
to sho
w
s m
o
re de
rail
ed
all of sem
antic rel
a
tion
ship o
n
dat
a hetero
gen
eity on learning
environ
ment.
Data hete
r
og
eneity com
p
lexity shows on Tabl
e
1 as an expl
an
ation to sho
w
s all
o
f
element
s o
n
data h
e
tero
g
eneity on
lea
r
ning
env
i
r
on
ment
a
nd rel
a
tionship bet
wee
n
el
emen
ts.
After this, re
sea
r
che
r
will
use
ontology
approa
ch
to
get better
re
pre
s
entatio
n
from complex
i
ty
relation
shi
p
b
e
twee
n elem
ents on le
arn
i
ng enviro
n
m
ent. Before d
e
velop sema
ntic rel
a
tionship
betwe
en ele
m
ents.
Figure 3. Ontology of Hete
roge
neity
asp
e
cts o
n
Lea
rn
ing Environm
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Solving T
he
Com
p
lexit
y
of Hetero
gen
eity Data o
n
Le
arnin
g
Envi
ro
nm
ent .... (Arda Yunianta
)
347
Ontology kn
owle
dge that
shows on
Figure
3 is compl
e
te ont
ology kno
w
le
dge with
sema
ntic rela
tionshi
p between all of
ele
m
ents on le
arning environ
ment.
Applic
ations cla
s
s
has
seven in
stan
ce
s, there
are
student M
a
n
age
ment A
n
d
Payment Syst
em, st
ude
nt R
egistrati
on
Sys
t
em,
questi
on B
ank
System,
libr
a
ry Ap
plic
atio
n Syste
m
,
su
bject C
ours
e
Evalu
a
tion
Sy
stem, ac
ad
e
m
ic
Information Ma
nag
e
m
ent System, an
d teac
h
i
ng And L
ear
ni
ng Onli
ne App
l
icatio
n
.
Learning Reso
urc
e
s
cla
ss that ha
ve youtube,
books, Instag
ram, journ
a
lPaper a
nd we
bsite
s
.
Learn
i
ng Theor
y
c
l
ass
with two sub
c
la
ss a
nd se
ven instan
ce
s. In the
Intelligent Tutoring
System
subcl
a
ss ha
s
teachin
g
Mode
l, do
ma
i
n
Mod
e
l, stud
ent Mod
e
l
and
user Interface
. W
h
er
e
as
for
Constructive Alli
gn
me
nt
sub
c
la
s
s
ha
s
teachingA
n
dLe
arni
ng Ex
peri
ences,
le
arni
ng
outco
mes
an
d as
sessment T
a
sk
.
Het
e
rog
e
neit
y
Data
cla
ss
that has five
sub
c
la
sse
s
a
nd tw
e
n
ty three in
stan
ce
s. In the learni
ng
Information
sub
c
la
ss ha
s a
s
se
ssm
e
n
t Task, le
a
r
ning
Out
c
o
m
es, tea
c
hi
n
g
And
Lea
rning
Experien
c
e
s
and stu
dent
Re
sult. In the Data St
ru
cture sub
c
la
ss have semi
Structu
r
ed
Data,
stru
ctured
Da
ta and
un
stru
cture
d
Data. I
n
the
Da
ta
ba
se Sy
stem
su
bcla
ss h
a
ve
ora
c
le, MySQ
L,
sql Serve
r
an
d postg
re SQ
L. In the Data Ty
pes su
bclass have mu
ltimedia Data
, images Dat
a
,
text Data, web/We
b Serv
ice Data an
d databa
se
Data. And th
e last sub
c
la
ss i
s
the Da
ta
Rep
r
e
s
entati
on sub
c
la
ss has
data
Rep
r
esentation
1
In Appli
c
atio
n 1, d
a
ta
Re
pre
s
entatio
n
2 In
Applicatio
n 2,
data
Rep
r
e
s
entation 3
In
Applicat
io
n 3,
data
Rep
r
e
s
entation 4
In
Applicatio
n 4,
data Re
pre
s
entation 5 In Application
5, data
Rep
r
ese
n
tation 6
In Application 6 and d
a
ta
Rep
r
e
s
entati
on 1 In Application 7.
Every class, subcl
a
ss a
nd instan
ce
on ontology
possibl
e to have more t
han one
relation
shi
p
. On this ontol
ogy kno
w
led
g
e
research
er
descri
be a four main cl
ass under root cl
ass
(Thin
g
), the
r
e are le
arni
n
g
information
,
heter
o
gen
ei
ty data, learning m
odel
and
co
nstructive
alignme
n
t cla
ss. F
r
om fou
r
classe
s the
r
e are two
cla
s
ses that h
a
ve sub
c
la
ss a
s
a detail of ea
ch
cla
ss.
Hete
ro
geneity cl
ass
has five su
b
cla
s
ses
are d
a
taba
se
syst
em, data
rep
r
ese
n
tation, d
a
ta
stru
cture, data types and l
earni
ng kno
w
ledge.
In the ontolo
g
y kno
w
le
dg
e so
metime
s they hav
e
same in
stan
ce
in differe
nt cla
ss
or
sub
c
la
ss. Thi
s
o
ccu
rs in
con
s
tru
c
tiveA
llignment
su
bcla
ss and l
earni
ngInfo
r
mation sub
c
l
a
ss
,
there a
r
e h
a
ve three
sa
me
instan
ce
s wi
th one extra i
n
stan
ce
on le
arnin
g
Inform
ation sub
c
lass.
This is b
e
cause of in these two
sub
c
la
sses have three
same
in
stances that
have
interrelation
s
hip between t
hem.
5. Conclusio
n
A complexity relation
shi
p
p
r
oble
m
on le
arnin
g
enviro
n
ment is ve
ry difficult to draw an
d
descri
be u
s
in
g ba
sic
meth
od. The
r
e
a
r
e ma
ny
thin
gs o
n
hete
r
o
geneity a
s
pe
ct on le
arnin
g
environ
ment su
ch as
el
e
m
ent
s,
aspe
cts and
relat
i
onship
between th
em. T
he el
ement
on
learni
ng
envi
r
onm
ent
con
s
ist
s
of
lea
r
n
i
ng mo
del, le
arnin
g
a
ppli
c
ations, l
earni
ng
sou
r
ces,
and
learni
ng data
co
ncept (co
n
stru
ctiv
e
ali
gnment
). Whi
l
e for a
s
pe
cts on
lea
r
nin
g
environ
ment i
s
a
data hete
r
og
eneity asp
e
ct on learni
ng
environm
ent
. Data heterogen
eity asp
e
ct on le
arni
ng
environ
ment
con
s
i
s
ts of le
arnin
g
kno
w
ledge,
data ty
pes, data
structure,
datab
ase system a
nd
data represe
n
tation. All of
eleme
n
ts
an
d a
s
pe
cts on
learning env
ironm
ent
a
r
e interrelated a
n
d
prod
uce com
p
lex relatio
n
ship between
each othe
r. A complex relation
ship p
r
oblem b
e
twe
e
n
element
s o
n
l
earni
ng
environment
ma
ke
s a
process
of analy
s
is a
nd
id
entificati
on difficult to
be
done. Sema
ntic tech
nolo
g
y through o
n
tology kn
o
w
ledge is a
current app
ro
ach to solve
a
compl
e
xity re
lationship o
n
some
dom
ain
.
Ontology kn
owle
dge
usin
g a semanti
c
relation
shi
p
i
s
to han
dle
a
nume
r
ou
s
an
d vario
u
s rel
a
tionship th
at exists on
th
at. Ontology
kno
w
le
dge
is a
better solutio
n
to handle d
a
ta hetero
g
e
neity proble
m
on learni
ng e
n
vironm
ent.
Ackn
o
w
l
e
dg
ments
The auth
o
rs
woul
d like to
thank to
Universiti T
e
knologi M
a
lay
s
ia for th
eir
financi
a
l
s
u
pport to s
u
bmit this
paper into this
journal.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 341 – 3
4
8
348
Referen
ces
[1]
Dietinger
T
.
Aspects Of E-Learnin
g
Enviro
n
m
ents
. Austria. Graz Universit
y
of T
e
chnolo
g
y. 20
03.
[2]
Xi
aofe
i
L, Sa
d
d
ik AE, Geor
g
anas
ND.
An implementable architec
ture of an
e-learning system
.
Electrical
an
d Comp
uter
En
gi
neer
ing, 200
3 IEEE
CCECE
200
3 Ca
na
dia
n
Co
nfere
n
ce
on 2
0
0
3
; 2:
717-
720.
[3]
Kim W
,
Seo
J. Classif
y
in
g schematic a
n
d
data heter
og
ene
it
y
i
n
multi
databas
e s
y
s
t
ems.
IEEE
Co
mp
uter
. 199
1; 24: 12-1
8
.
[4]
Kash
ya
p V, Sheth A.
Sem
a
ntic heter
ogeneity in global informa
tion system
s: The ro
le of m
e
tedata,
context an
d o
n
tolo
gies
. Pa
p
a
zog
l
ou MP,
Schla
geter G, editors. Co
op
e
r
ative inform
ati
on s
y
stems.
San Di
ego. Ac
adem
ic Press. 199
7: 139
–1
78
.
[5]
Sh
yama
la R, Sunith
a R, Ag
hila G. T
o
w
a
r
d
s Lear
ner M
ode
l Shari
ng
Among H
e
tero
gen
eo
us E-
Lear
nin
g
E
n
vir
onme
n
ts.
Inter
natio
nal
Jo
urn
a
l of E
n
g
i
ne
eri
ng Sc
ienc
e a
n
d
T
e
ch
nol
ogy (
I
JEST
)
. 2011;
3: 2034-
20
40.
[6]
Qomarud
d
in M
,
Rahma
n
AA, A Lah
ad N. C
APBL
AT
: An Innov
ative C
o
m
puter-Assiste
d
Assessmen
t
T
ool for Probl
em Base
d Le
arni
ng
.
T
E
LK
OMNIKA T
e
lecommunic
a
tio
n
Co
mputi
ng El
ectronics a
n
d
Contro
l
. 201
4; 12(1): 24
1-2
5
0
.
[7]
Yuni
anta
A, Y
u
sof N, J
a
ya
d
i
anti
H, Othm
an M, S
uha
im
i S.
Ontol
ogy
Deve
lo
p
m
ent
to H
and
le
Semantic Re
la
tionsh
i
p betw
e
en Moo
d
le
E-l
earn
i
ng a
nd
Question Ba
n
k
System
. In: Hera
w
a
n T,
Ghazal
i R,
De
ris MM, e
d
itor
s. Re
ce
nt Adv
ances
o
n
Soft
Com
putin
g
a
nd
Data
Min
i
n
g
: Spri
ng
er
Internatio
na
l Publis
hi
ng. 20
14
: 691-70
1.
[8]
Dong MH, Yan LD, Ming HZ, Chi Z.
Applicatio
n of ontol
ogy-b
ased
aut
omatic ET
L in
mari
ne d
a
ta
integr
ation.
El
ectrical & Elect
r
onics En
gin
e
e
r
ing (EEESYM)
,
2012 IEEE S
y
mposi
u
m on. 2
012: 11-
23.
[9]
Z
heng
L, T
e
rpen
n
y
J. A h
y
br
id
ontol
og
y appr
oach f
o
r
integr
ation
of
obso
l
esce
nce
informati
on.
Co
mp
uters & Industri
a
l En
gin
eeri
n
g
. 20
13; 6
5
: 485–
49
9.
[10]
W
ang CC, Pa
i W
C
, Yen NY.
A Sharabl
e
e-Lear
nin
g
Pl
atform Bas
ed
on Cl
oud
Co
mp
utin
g.
3rd
Internatio
na
l C
onfere
n
ce o
n
Comp
ut
er Res
earch a
nd D
e
v
e
lo
pment (ICC
RD
)
. 201
1: 1-5
.
[11]
Gudanescu
N.
Usin
g moder
n technology
f
o
r impr
oving learning proc
e
ss at different educ
ational
levels.
Proc
edi
a - Social a
nd
Behav
iora
l Sci
ences
. 20
10; 2
:
5641-5
6
4
5
.
[12]
Biggs J.
Alig
ni
ng teach
i
n
g
for constructing l
e
arni
ng
. Buckin
gham. Open U
n
iversit
y
Press.
2003.
[13]
Biggs J, T
ang C.
T
eachin
g
fo
r Quality Le
arn
i
ng at U
n
ivers
i
ty
. Berkshire, Engl
and. Op
en
Univers
i
t
y
Press. 2007.
[14]
Biggs J. Enh
a
n
c
ing teac
hi
ng throu
gh co
nstru
c
tive ali
gnme
n
t.
High Educ
. 1
996; 32: 3
47-3
64.
[15]
Cain A, Woo
d
w
a
r
d CJ.
T
o
w
a
rd constructiv
e
ali
g
n
m
e
n
t w
i
th portfoli
o as
sessment for i
n
troductory
progr
a
m
min
g
.
IEEE
Internatio
nal C
onf
erenc
e on
Teach
i
ng, Asse
ssment and
Lear
nin
g
for
Engi
neer
in
g (T
ALE). 2012: 1
1
-
17.
[16]
Nkamb
ou R, B
ourd
eau J,
Mi
zoguc
hi R. Intro
ductio
n
: W
hat Are
Intelli
ge
nt T
u
toring Syste
m
s, an
d W
h
y
T
h
is Book
?
In
: Nkambo
u R,
Bourd
e
a
u
J,
Mizog
u
chi
R,
editors. Adv
a
n
c
es in I
n
tell
ige
n
t T
u
toring
S
y
stems: Spri
n
ger Berl
in He
id
elb
e
rg. 20
10: 1
-
12.
[17]
Nkamb
ou
R.
M
ode
lin
g th
e D
o
ma
in: A
n
Intro
ductio
n
to t
he
Expert Mo
dul
e
. In: Nkam
bou
R, Bour
dea
u
J, Mizoguc
hi R
,
editors. Adva
nces i
n
Intell
ig
ent T
u
toring S
y
stems: Spri
ng
er Berli
n
H
e
id
e
l
ber
g. 201
0
:
15-3
2
.
[18]
You
D, She
n
L
,
Peng
S, L
i
u J
.
F
l
exibl
e
Col
l
a
borativ
e L
ear
ni
ng M
ode
l i
n
E-
Lear
nin
g
w
i
th
Person
ali
z
e
d
T
eachi
ng Mate
rials
. In: Jin D, Lin S, editors.
Advances
in
Comp
uter Scie
nce, Intelli
ge
nt S
y
stem an
d
Enviro
nment: Sprin
ger Berl
in
Heid
elb
e
rg. 20
11: 127-
13
1.
[19]
F
i
rdausi
ah AB,
S. DO, Yuhana UL, Kita T
.
Si
stem Peni
lai
a
n
Otomatis Ja
w
aba
n Essa
y M
eng
gu
naka
n
Ontolog
i
Pa
da
Mood
le.
T
E
LK
OMNIKA T
e
lec
o
mmunic
a
tio
n
Co
mp
uting
Ele
c
tronics a
nd
C
ontrol
. 200
8;
6(3): 167-
17
5.
[20]
Yuni
anta A, Yusof
N,
Othman MS, Aziz A, Dengen N.
An
alysis
an
d Ide
n
tific
a
tion
of D
a
ta
Hetero
gen
eity on Lear
ni
ng
E
n
viro
nment Us
ing
Ontolo
gy Know
led
g
e
.
Internati
o
n
a
l C
onfere
n
ce o
n
Electrical E
ngi
neer
ing, C
o
mp
uter Scienc
e
and In
form
atic
s (EECSI 201
4). Yog
y
ak
arta
, Indones
ia:
IAES. 2014: 15
4-16
0.
Evaluation Warning : The document was created with Spire.PDF for Python.