TELKOM
NIKA
, Vol.14, No
.2, June 20
16
, pp. 471~4
7
7
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i1.2394
471
Re
cei
v
ed Au
gust 6, 201
5; Re
vised Ma
rc
h 6, 2016; Accepte
d
March
20, 2016
Harmonic Suppression Rectangular Patch Antenna with
Circularly Polarized
Nur
z
aimah Z
a
inol*, Zahriladha Za
karia
, Maisarah Abu, Ma
w
a
rni
Mohamed Y
unus
Micro
w
av
e Re
search Grou
p, Centre for T
e
leco
mmunic
a
tio
n
Researc
h
an
d
Innovati
on (C
e
T
RI),
F
a
cult
y
of Elec
tronics an
d Co
mputer Eng
i
n
e
e
rin
g
, Un
ivers
i
ti T
e
knikal Mala
y
s
ia Melaka (UT
e
M),
761
00 D
u
ria
n
T
unggal, Mela
ka, Mala
ysi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: nurzaim
ahza
i
nol@
y
m
a
il.c
o
m
A
b
st
r
a
ct
T
he rectan
gul
a
r
patch ante
n
n
a
w
i
th proxi
m
it
y c
oupl
in
g at 2
.
45 GH
z
is
de
sign
ed a
nd pr
i
n
ted o
n
F
R
-4 substrate
w
i
th diel
ectric constant
r
4.3 and
loss tan
g
ent 0.01
9. T
he
over
all si
z
e
of prop
os
e
d
anten
na
giv
e
s
36 %
red
u
ctio
n of su
bs
trate
area
as co
mp
ared t
o
co
nve
n
tion
al
desi
gns
. T
he symmetrica
l
arm
of inverte
d
U-stub a
nd
U-sl
ot e
m
b
e
d
d
ed o
n
the tran
smiss
i
on fe
ed
line s
u
p
p
ress
har
mo
nic si
gn
a
l
effectively at
secon
d
an
d th
ird ord
e
r w
i
th mi
ni
mu
m r
e
fl
ection c
oeffici
ents of –0.5
1
dB an
d -2.28
dB
respectiv
e
ly w
h
ile c
i
rcul
arly
p
o
lari
z
a
tio
n
w
a
s obtai
ned by
co
rner
trunc
ated and U-sl
ot o
n
the p
a
tch el
e
m
ent.
T
he return loss
is -23.95 dB at
funda
me
ntal
mo
des w
i
th gai
n 4.61 dB a
nd
axial r
a
tio of 1.48 dB.
Ke
y
w
ords
: circularly
pol
ari
z
a
t
ion (CP), har
monic re
jectio
n, micr
ostrip p
a
tch anten
na, rect
enn
a an
d stub
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
The ra
pid g
r
owth of wi
rel
e
ss produ
cts and
se
rvice
s
in wi
rele
ss commu
nication field
su
ch a
s
Blue
tooth, GSM, satellite a
nd
military appl
i
c
ations
req
u
ire
flexible ante
nna to inte
grate
with Active Integrated Ante
nna (AIA). Th
is wi
rele
ss
co
mmuni
cation
system
s mod
u
late data at a
resona
nt fre
quen
cy and
being u
s
e
d
in energy
scavengin
g
to conve
r
t radi
o
frequen
cy (RF)
energy to
DC voltag
e o
r
vice ve
rsa.
The
com
pon
ent u
s
ed
for ene
rgy
con
v
ersio
n
in
en
ergy
harve
sting sy
stem kno
w
n
as re
ctenn
a whe
r
e
it
co
n
s
ist
an a
n
ten
na, lo
w pa
ss filter, diod
e
and
load.
The wirel
e
ss power
tran
sfer
system m
u
st op
erate e
fficient
ly and
the losse
s
of
ene
rgy
durin
g re
ceivi
ng and conv
ersi
on of sig
nal pro
c
e
s
se
s sh
ould be
minimized by supp
re
ssi
ng
the
unde
sired
si
gnal.
However, the i
n
terf
ace
bet
w
een
the ante
n
n
a
an
d the
nonlin
ear ci
rcuit
comp
one
nt such a
s
di
ode
[1-2] or FET
for acti
ve int
egrate
d
ante
nna (AIA) o
r
recte
nna
syst
em
has a
harmo
nic
supp
re
ssi
on filter whi
c
h req
u
ire
extra spa
c
e fo
r i
n
stallatio
n
. Then, the ante
nna
harm
oni
c su
ppre
s
sion
is use
d
to avoid
spuri
o
u
s
radiation
that
easily
pro
d
u
c
ed at
high
-order
resona
nt freq
uen
cie
s
of the antenna from the circ
ui
ts [3]. This wea
k
sig
nal
then flow to the
rectifie
r
circui
t for the
RF
-to-
DC co
nversion and
the pro
c
e
s
s
is
re
peated
ca
use
d
the o
u
tput
of
the re
ctenn
a is low fo
r wi
rel
e
ss po
we
r tra
n
sfer
sy
s
t
em
[4-7]. Researc
h
findings
in
[8] highlighted
that the input
impeda
nce o
f
the antenna
desig
n w
oul
d allow th
e seco
nd ha
rmo
n
ic at hig
h
-o
rder
freque
ncy
which o
c
cu
rs
at twice of i
t
s de
sign fre
quen
cy and
these d
e
g
r
a
de the ante
nna
perfo
rman
ce
in term of minimum refle
c
tion coe
ffici
e
n
ts and total
gain. However, highe
r order
harm
oni
c ca
n
be blocke
d a
s
input impe
d
ance at
highe
r ord
e
r alm
o
st zero o
r
unm
atche
d
.
In brief, various ha
rmoni
c rejectio
n tech
ni
que
s asso
ci
ated with thei
r desi
gn discrepan
cy
have be
en re
viewed exten
s
ively in orde
r to obtai
n
ha
rmoni
c reje
ction prope
rty. These findin
g
s
sup
porte
d in [9-10], a phot
onic b
and g
a
p
stru
cture a
nd sh
orting p
i
n [11] can b
e
use
d
to blo
c
k
high h
a
rm
oni
cs. An
un
bal
anced
circul
a
r
sl
ot on
the
circula
r
p
a
tch
[12], and fo
u
r
ri
ght an
gle
slit
[13] also h
a
ve capa
bilities
to rej
e
ct th
e
harm
oni
cs si
gnal
and
attai
n
ci
rcula
r
ly p
o
lari
zed
ante
nna.
The pa
ramet
r
ic studi
es on
each de
sign
para
m
eter
of
the slots, slit
s and stub
s n
eed to be do
ne
and were
ca
refully optimi
z
ed u
n
til achieve good
re
sult
s in terms of return
loss, ha
rmo
n
ic
reje
ction pe
rf
orma
nce and
axial ratio.
In this p
ape
r, the si
gnifi
can
c
e
of the
antenn
a
ha
rmoni
c sup
p
ression provides
th
e
radiatin
g an
d
filtering in a
single m
odu
le without
u
s
i
ng extern
al circuit. Th
us, i
m
provem
ent
of
conve
n
tional recta
ngul
ar p
a
tch
a
n
tenn
a were
ma
de
b
y
using
dou
bl
e layer
su
bstrate in
sand
wi
ch
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 471 – 47
7
472
config
uratio
n
with ha
rmon
ic rej
e
ctio
n i
s
pr
esented for
re
cten
na appli
c
at
ion. The
symm
etrical
inverted
arm
U-stu
b
a
n
d
U-sl
ot on
th
e tra
n
smi
s
sio
n
feed
line
were
examin
ed a
s
ha
rmo
n
ic
reje
ction te
ch
nique b
o
th at
second
and
third orde
r.
Then, the
circula
r
ly pola
r
i
z
ation
reali
z
e
d
by
cutting th
e co
rne
r
of the
re
ctang
ular pat
ch
and
U-slot
embe
dde
d o
n
its
radi
ating
eleme
n
t. Th
e
desi
gn proce
ss
will discu
s
sed furt
her
wi
th their releva
nt result
s obt
ained.
2. Ante
nna Design
This
se
ction
discu
s
ses th
e antenn
a ge
omet
ry by examining th
e antenn
a de
si
gn ba
se
d
on tra
n
smi
s
si
on line
mod
e
l
. The ante
n
n
a
is
co
nstr
uct
ed u
s
ing
FR-4 on
a 1.6 m
m
of su
bst
r
at
e
thickne
ss with
diele
c
tric consta
nt
r
4.3 and loss tang
e
n
t 0.019. The
dimensi
on of
rectan
gula
r
microstri
p
pat
ch ante
nna
can be dete
r
mi
ned u
s
ing formula given in
[14].
2
1
2
r
o
f
c
W
(1)
L
L
L
eff
2
(
2
)
reff
o
eff
f
c
L
2
;
]
12
1
1
[
2
1
2
1
W
h
r
r
reff
(3)
)
8
.
0
(
*
)
258
.
0
(
)
264
.
0
(
*
)
3
.
0
(
*
412
.
0
h
W
h
W
h
L
reff
reff
(4)
Whe
r
e;
W
= width of pat
ch
L
= length of pa
tch
o
f
= Re
son
ant frequ
en
cy
c
= sp
eed of lig
ht;
8
10
3
r
= diele
c
tric
consta
nt of su
bstrate
eff
L
= Effective length
reff
= Effective dielectri
c
con
s
tant of patch
(a)
(b)
(c
)
Figure 1. De
sign geom
etry; (a)
Conventi
onal micro
s
tri
p
recta
ngul
ar
patch a
n
tenn
a; (b)
Improveme
n
t for the co
nventional patch ant
enn
a wit
h
proximity couplin
g for overall si
ze
redu
ction; (c)
Layer sta
c
k-u
p
in bottom view
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Harm
oni
c Su
ppre
s
sion
Re
ctang
ular Pat
c
h Antenn
a with Circula
r
ly
Polari
zed (Nu
r
zaim
ah Zai
n
ol)
473
Figure 1
(
a)
sho
w
s the
g
eometry of t
he c
onventio
nal mi
cro
s
tri
p
re
ctan
gula
r-p
atch
antenn
a
whe
r
eas Figu
re
1(b) d
e
mo
nstra
t
ed the
de
sig
n
imp
r
oveme
n
t made
to
re
duce the
overall
size and wei
ght of the rectenna. Thu
s
, in this
desi
g
n
the propo
se
d antenna
structure is fed
by
proximity
cou
p
ling with dou
ble
laye
r su
b
s
trate
a
s
sh
o
w
n i
n
Fi
gure
1(c)
and
yield
s
3
6
%
of ove
r
all
size redu
ctio
n wh
en
com
pare
d
with th
e co
nventio
n
a
l de
sign. T
h
e main fe
atures of th
e d
e
sign
para
m
eter a
r
e record
ed in
Table 1 whe
r
ea
s Table 2
sho
w
s the pu
rpo
s
e of pro
p
o
se
d antenn
a
to
make it com
p
act. The first
layer of sub
s
t
r
ate
for the p
r
opo
se
d ante
nna in proximity coupling
is
55 mm x 60 mm whe
r
ea
s
its se
con
d
layer is 60 m
m
x 60 mm.
Table 1.
De
sign p
a
ra
meter of re
ct
angul
ar
pat
ch
antenna in
stack co
nfigura
t
ion
Design paramete
r
Value (mm)
Width of patch,
26.7
Length of patch,
24.8
Width of feed line,
3.77
Length of fee
d
line,
18.5
Table 2. Perf
orma
nces
co
mpari
s
o
n
bet
wee
n
co
nven
tional anten
n
a
and the pro
posed ante
n
n
a
in
stacke
d co
nfiguratio
n
Design
Overall size (mm)
Size of patch element (mm)
Conventional Re
ctangular Patch
Antenna
69 x 71
38 x 28.
9
Rectangular Patc
h Antenna
w
i
th P
r
oximit
y
coupled
60 x 60
26.7 x 2
4
.8
2.1. Harmon
ic Rejectio
n Techniqu
es
The p
r
op
ose
d
de
sign
provides
sim
p
le h
a
rmo
n
ic rej
e
ction
tech
niqu
es whe
r
e
th
e feed
lin
e
area
on the
seco
nd laye
r o
f
sub
s
trate i
s
examined to
block ha
rmo
n
i
cs
rathe
r
tha
n
other m
e
th
od
use
d
in litera
t
ure stu
d
ie
s [15]. Figure
2
(
a) d
epi
ct
s th
e initial stru
ct
ure of
feed li
ne in proximity
cou
p
ling
whe
r
ea
s Figu
re
2(b
)
illust
rate
s its ha
rmo
n
ic rej
e
ctio
n techni
que a
dop
ted on the fe
ed
line usin
g U slot. De
sign
para
m
eter “d
” denote
s
the
distan
ce of U slot from i
nput port is 5
mm
and it is
po
sitioned
at optim
um value
s
.
T
he len
g
th of
U sl
ot rep
r
e
s
ented by L
u1
and L
u2
whe
r
eas
W
u
use
d
to repre
s
e
n
ted the width of
slot. T
he pa
rametri
c
studi
es involved
on ea
ch de
si
gn
para
m
eter fo
r U slot is stu
d
ied for the p
u
rpo
s
e of ha
rmonic
reje
ction. Table 3 summari
ze
d the
signifi
can
c
e e
ffect on re
so
nant freq
uen
cy by varying
the length, L
u2
of the U slot. It shows t
hat
the return loss pe
rform
a
n
c
e is improved
when t
he l
e
n
g
th is incre
a
se and the resonant fre
que
ncy
shifting to
high frequency. The optimum
values
associated with better
re
j
e
ction capabilities for
L
u2
is 5.0 mm
whe
r
ea
s the
width u
s
ed i
s
0.5 mm re
sp
ectively. The
signifi
can
c
e
result
s for L
u1
is
carrie
d out for 1.5 mm, 2.0 mm and 2.5 mm and
thu
s
the optimum
result a
c
hiev
ed wh
en L
u1
is
2.0 mm. The deep re
so
n
ance exhibit near thi
r
d
order at 7.37
GHz with mi
nimum refle
c
tion
coeffici
ent of -33.3 dB is
su
ppre
s
sed effe
ct
ively using
U slot up to a
c
ceptabl
e ran
ge.
Then, the ov
erall p
e
rfo
r
m
ance for ant
e
nna is
im
proved by rem
o
ving the ha
rmo
n
ic
signal
exhibit nea
r t
he
se
cond
o
r
de
r u
s
ing
sy
mmetrical
a
r
m of inve
rte
d
U stu
b
wit
h
0.5 m
m
wi
dth
outsid
e
the transmi
ssion
feed lin
e. Thi
s
symmetri
c
al
arm of i
n
vert
ed U stu
b
a
s
sho
w
n i
n
Fig
u
re
2(c)
wa
s
crea
ted at the
mid
d
le of
L
u2
for
equal
po
we
r t
r
an
sfer an
d t
he o
p
timum v
a
lue
s
for L
s1
=1
mm, L
s2
=1.
5
mm
,
L
s3
=3.5
mm and L
s4
=2.0 mm wa
s use
d
to rep
r
e
s
ent the len
g
th for it. Figure 3
s
h
ows
th
e min
i
mu
m
r
e
flectio
n
co
e
ffic
i
en
ts
pe
r
f
or
ma
nce
s
of the
rectan
gula
r
p
a
tch i
n
stacked
config
uratio
n
with harm
o
nic rej
e
ctio
n techni
que
s a
dopted o
n
the feed line. As a re
sult, the
combi
nation
of both te
ch
nique
s
gives better
ha
rm
onic rej
e
ctio
n until
sp
uri
ous ra
diation
is
sup
p
re
ss up to greate
r
tha
n
-3 dB and i
m
prove the
system perfo
rmance.
Table 3.
Paramet
r
ic
studie
s
on L
u2
o
f
U slot on the feed line
Freque
nc
y
(
G
Hz)
Return L
o
ss (dB)
Length, L
U2
(mm
)
2.470
-22.73
4.5
2.479
-23.34
5.0
2.480
-23.75
5.5
Wp
Lp
Wf
Lf
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 471 – 47
7
474
(a)
(b)
(c
)
Figure 2. View of tran
smission fee
d
line
;
(a)
Initial feed line, (b) Fe
ed line with
U slot,
(c) Com
b
inati
on of U slot a
nd sy
mmet
r
ical arm of inve
rted U
stub
Figure 3. Minimum refle
c
tio
n
coeffici
ents
perfo
rman
ce
s of the rectan
gular p
a
tch in
stacked
config
uratio
n with harmoni
c reje
ction te
chni
que
s ad
o
p
ted on the fe
ed line
2.2.
Harmoni
c Suppres
sion Antenna
w
i
th Circula
r
ly
Po
larized
Microstri
p
p
a
tch ante
n
n
a
with circul
arly
pola
r
ization ca
n be
obtained
with slight
modificatio
n
to the radi
atin
g eleme
n
t [16]. In this
design, by cuttin
g
the co
rne
r
of patch el
em
ent
and U slot e
m
bedd
ed on it
as sh
own
i
n
Fig
u
re
4 ca
n realize thi
s
obje
c
tive with
sim
p
le m
e
th
od
applie
d. The
desi
gn p
a
ra
meter of
Lu3
and
Lu4
used
to
rep
r
e
s
ent the le
ngt
h of U sl
ot o
n
the
patch el
eme
n
t. The para
m
etric
analysis wa
s
ca
rrie
d
out to se
e
k
the be
st re
sult and
Tabl
e 4
recorded the
data obtain
ed. From thi
s
, the re
so
n
ance freq
uen
cy is
shifting
with varying
the
length of U
slot and th
e
optimum val
ue us
ed fo
r Lu3 is
10 m
m
and Lu
4 i
s
8.85 mm.
The
truncated pat
ch is
cutting b
y
6 mm each
side to get th
e optimum re
sult.
Figure 4. Harmonic
sup
p
re
ssi
on ante
n
n
a
with circul
arly polarization
Table 4.
Paramet
r
ic
studie
s
on L
u3
o
f
U slot on the patch el
em
ent
Freque
nc
y
(
G
Hz)
Return L
o
ss (dB)
L
U3
(mm
)
2.450
-23.950
8.85
2.455
-23.977
10
2.420
-23.887
11
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
Harm
oni
c Su
ppre
s
sion
Re
ctang
ular Pat
c
h Antenn
a with Circula
r
ly
Polari
zed (Nu
r
zaim
ah Zai
n
ol)
475
In first attempt, the anten
na ha
rmoni
c
sup
p
re
ssion i
s
linea
r pol
ari
z
ed
with axia
l ratio of
19.36 dB.
Th
e
pat
ch elem
ents ra
diate prima
r
ily
lin
e
a
r pola
r
ized wave
s;
ho
we
ver,
by
int
r
od
uci
n
g
U-slot a
nd
cu
tting the corn
ers of pat
ch
element, a
ttai
n
ci
rcularly
p
o
lari
zed
ante
nna. As
a result,
the sim
u
lated
axial ratio
of the propo
se
d de
sign
yiel
d 1.48 dB
<
3 dB a
s
sho
w
n in
Figu
re
5.
Thus, the a
n
tenna d
e
si
gn i
s
a go
od choi
ce for
wire
less po
we
r tran
sfer appli
c
atio
n sin
c
e
circul
ar
polari
z
e
d
syst
em is mo
re
suitable in
several
ca
se
s
du
e to its in
sen
s
itivity to both
tran
smitter
a
nd
receiver o
r
ien
t
ation. Hen
c
e
,
the polari
z
at
ion mi
sm
atch
or any lo
ss
betwe
en it ca
n be minimi
zed
by circula
r
ly polari
z
ed a
n
te
nna a
s
it gives stabl
e DC
voltage irre
spe
c
tively to its rotation [17-1
8
].
Figure 5. The
simulated axi
a
l ratio of the prop
osed de
sign
3. Result a
n
d Discus
s
io
ns
Figure 6 illustrates the mini
mum
reflection c
oefficient
of the
proposed antenna harmonic
sup
p
re
ssion
with ci
rcularl
y
polari
z
ation
at 2.45
GHz. From this fi
gure, it shows anten
n
a h
a
v
e
good
retu
rn
loss with
-23.95 dB
at fundam
e
n
ta
l mode
s a
n
d
better
harmonic rej
e
cti
on
perfo
rman
ce
at second an
d third ord
e
r
sin
c
e supp
re
ss u
p
to -0.51
dB and -2.28
dB respe
c
tively.
From Fi
gu
re
7(b
)
an
d Figu
re 7
(
c), cl
earl
y
sho
w
s
cu
rrent dist
ributio
n
we
re bl
ock at symmetri
c
al
arm of i
n
vert
ed U-stub a
n
d
U-sl
ot area
s at
se
con
d
and thi
r
d o
r
d
e
r effe
ctively. Findin
g
s i
n
[19]
reveale
d
that
surfa
c
e
wav
e
can
ch
ang
e the amou
nt of current flo
w
on e
a
ch el
ement an
d thus
make
anten
n
a
radi
ation p
a
ttern differe
nt too. Base
d
on ra
diation
pattern di
spl
a
yed in Figu
re
8,
the main lo
be
magnitud
e
fo
r the ante
nna
desi
gn is
6.4
dBi at 6.0 de
gree
direction
from the o
r
igi
n
point. The antenna
radiat
ed in
s
p
ec
ific direc
t
i
on wit
h
smaller HP
B
W
93.
4 deg
ree due t
o
t
h
in
substrate u
s
e
d
. Then, the
performance
of pr
oposed
antenna was
analyzed as
displays in Figure
9(a)
and Fig
u
r
e 9(b)
with 6
.
4 dBi of its d
i
rectiv
ity and
offer high gai
n 4.61 dB. A
novel study i
n
[20] also demonstrated the proxim
ity co
upled rectang
ular patch de
sign with co
rner truncated
for
circula
r
polari
z
ation at 2.2
5
GHz. Howeve
r, the stu
b
was deplo
y
ed for matc
hing impedance
bandwidth. Surprisingly, the 4x1 arrays yield 9.
281 d
b
which is m
oderate for array arrangem
ent
compare with
this work which use inexpensive ma
terial but offer high
gain for single element.
Figure 6. The
Minimum refl
ection
coeffici
ent of
the pro
p
osed ante
nn
a harm
oni
c suppressio
n
with circul
arly
polari
z
ation
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 2, June 20
16 : 471 – 47
7
476
(a) 2.4
5
GH
z
(b) 4.9 G
H
z
(c
) 7.35 G
H
z
Figure 7.Electric current di
stribut
io
n in p
r
opo
se
d ante
nna structu
r
e
Figure 8. Rad
i
ation pattern
of the antenn
a desi
g
n
(a) Dire
ctiv
ity
(b)
G
a
in
Figure 9. Dire
ctivity and t
he gain of anten
na de
sign
4. Conclusio
n
A miniaturize
d
antenna h
a
r
moni
c su
pp
ression wi
th a
d
vantage of circula
r
ly pol
arization
is p
r
e
s
ente
d
in thi
s
p
a
p
e
r. Th
e p
r
o
posed
anten
na d
e
si
gn
p
e
rform
e
d
ha
rmonic reje
ction
cap
abilities
u
s
ing
combi
n
a
t
ion of symm
etrical in
ve
rte
d
arm of U-st
ub and
U-slot
on the feed li
ne
up to -0.51
dB and -2.28
dB respe
c
tively at
secon
d
and third o
r
de
r. The p
r
o
posed ante
n
na
provide
s
-23.
95 dB of mini
mum refle
c
tio
n
co
e
fficient
and offer
hig
h
gain
4.61 d
B
at 2.45 G
H
z.
This
ante
nna
desi
gn with p
r
oximity
co
upl
ing
effe
ct
ively re
du
ced
36
% of the
overall si
ze
an
d 6
6
%
of the radi
ating elem
ent a
r
ea
whe
n
co
mpared
with the co
nventio
nal pat
ch ant
enna. Th
us, t
he
study
can
be
further explo
r
ed by
i
m
plem
enting
a p
r
oto
t
ype of the
an
tenna
ha
rmo
n
ic
su
pp
ressi
o
n
to validate its concept and
this
new structure wo
uld
be useful fo
r RF-fro
nt-e
nd
subsy
s
tem
s
as
well a
s
provid
ing an attra
c
tive solution fo
r the miniat
uri
z
ation of the
overall phy
sical dimen
s
ion
s
.
Ackn
o
w
l
e
dg
ements
The a
u
thors
woul
d like to
expre
s
s thei
r than
ks to t
he an
onymo
us
revie
w
ers for thei
r
careful re
adin
g
of the rese
a
r
ch a
r
ticl
e, an
d thei
r co
nst
r
uctive su
gge
stions for the i
m
provem
ent of
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Harm
oni
c Su
ppre
s
sion
Re
ctang
ular Pat
c
h Antenn
a with Circula
r
ly
Polari
zed (Nu
r
zaim
ah Zai
n
ol)
477
our
work. The work
wa
s supported by UTeM
under resear
ch grants
RAGS/2013/FKEKK/TK02/
02/B0003
1.
Referen
ces
[1]
Dasg
upta S, G
upta B, S
a
h
a
H.
Deve
lo
p
m
e
n
t of C
i
rcul
ar
Microstrip P
a
tch Ante
nn
a Arra
y for Rect
enn
a
Appl
icatio
n
. IEEE INDICON.
2010.
[2]
Rivier
e
S, Alic
ala
pa F
,
Dou
y
ere A, Lan Su
n Luk JD
. A C
o
mpact Recte
nna D
e
vice
at Low
er Pow
e
r
Leve
l
.
Progres
s in Electroma
gnetics R
e
sear
ch C. 2010; 1
6
: 137-1
46.
[3]
Yin X,
Z
h
a
ng H,
Hua
ng XY, Xu
HY.
Sp
urio
us Mod
e
s R
e
d
u
ction
in
a Pat
c
h Anten
na
us
ing
an EBG-
Based Micr
ostrip T
r
ans
missi
o
n
Lin
e
F
ilter.
Progress i
n
Ele
c
tromagn
etics Rese
arch C. 2
012; 2
5
: 41-
54.
[4]
Xi
ao
S, Jia
n
g
L, W
ang
BZ
, W
ang J. A
Mil
limet
er W
a
v
e
Microstrip A
n
t
enn
a Arra
y
w
i
t
h
H
a
rmon
i
cs
Suppr
essio
n
El
ements.
IEEE
. 200
8.
[5]
Xu Y, Gon
g
S
,
Guan Y. Coaxial
l
y
F
ed
Mi
crostrip Ante
n
na for Harm
on
ic Suppr
essi
on
.
Electronics
Letters
. 201
2; 48(1
5
).
[6]
Z
hang
Z
,
Jia
o
YC, W
e
ng
Z
B
. Desi
gn
of 2.4GHz P
o
w
e
r D
i
vid
e
r
with H
a
rmon
i
c
Suppr
essio
n
.
Electron
ics Let
ters
. 2012; 48(
12).
[7]
Czarn
e
cki LS. An Overvie
w
of
Method of
Har
m
onic Su
ppres
sion i
n
Distrib
u
t
ion S
y
stems.
IEEE
. 2000.
[8]
Radisic V,
Che
w
ST
, Qian Y, Itoh T
.
High-Effi
cienc
y P
o
w
e
r Amp
lifier
Int
egrate
d
w
i
th A
n
tenn
a.
IE
EE
Microw
ave an
d
Guided W
a
ve
Letters
. 199
7; 7(2).
[9]
Hassa
n N, Ahmad BH, Z
o
in
ol M, Z
a
karia
Z
.
Micr
ostrip Patch Anten
na
w
i
t
h
a Com
p
le
mentar
y
Un
it of
Rhom
bic Split
Ring R
e
so
nato
r
(R-SRR)
Stru
cture.
W
o
rld
A
ppli
e
d
Sci
ence
s
Jour
nal
2
1
(S
peci
a
l Issu
e
of Engin
eer
ing
and T
e
ch
no
log
y
)
. 2013: 85-
90
.
[10]
Liu
H, Li Z
,
Sun
X, M
ao J.
Harmon
i
c Su
p
p
ressi
on
w
i
t
h
Photon
ic Ba
nd
gap
an
d Defe
cted Groun
d
Structure for a Microstrip Patch Antenn
a.
IEEE Microw
ave
and Wirel
e
ss Co
mp
one
nts L
e
tters
. 2005;
15(2).
[11]
Melh
a MS, Abd-Alh
a
mee
d
R
A
, See
CH, Usman M, Elfergan
i IT
E, Noras JM.
Harmo
n
ic Rej
e
ctio
n
T
r
iangl
e Patch
Antenn
a.
PIERS Proceedings.
Kuala L
u
mp
ur, MALAYSIA. 2012: 15
14-
151
7.
[12]
Pogorz
e
lski
R
J
. An Effective
Metho
d
of Isolati
ng P
o
rtio
n
s
of a
Ra
di
ato
r
in
Ne
ar-F
iel
d
or F
a
r-F
ie
ld
Antenn
a Meas
ureme
n
ts.
IEEE Antenn
as an
d Propa
gati
on
Maga
z
i
ne.
2
0
1
3
; 55(3): 15
6-1
68.
[13]
Hua
ng F
J
, Y
o
T
C
, Lee CM
, Luo
CH.
D
e
sig
n
of
Circu
lar P
o
lar
i
zatio
n
Ante
nn
a
w
i
t
h
H
a
rmon
i
c
Suppr
essio
n
fo
r Rectenn
a Ap
plicati
on.
IEEE Antennas and Wire
less Propagation Letters
. 201
2; 11.
[14]
Ghosh CK, Pa
rui SK. Desi
gn,
Anal
ysis
an
d
Optimi
zatio
n
of
A Slotted Micr
ostrip Patch A
n
tenn
a Arra
y
at F
r
eque
nc
y 5
.
25 GHz for W
L
AN-SDMA S
ystem.
Internati
ona
l Jour
na
l o
n
Electric
al En
gin
eeri
ng
an
d
Informatics
. 20
10; 2(2).
[15]
Sabran MI, Rahim SKA, Rahman T
A
, Eten
g AA, Yamada Y.
U-Shape
d
Har
m
on
ic Re
je
ction F
ilten
n
a
for Co
mp
act R
e
ctenn
a Ap
pl
ic
ation.
Pr
ocee
di
ngs of As
ia-P
a
c
ific Mi
cro
w
a
v
e Co
nfere
n
ce.
201
4: 10
07-
100
9.
[16]
Lam KY, L
u
k
KM, Lee KF
,
W
ong H,
Ng
KB. Sm
all
Cir
cularl
y
Pol
a
riz
ed U-S
l
ot W
i
d
eba
nd P
a
tc
h
Antenn
a.
IEEE Antennas
and
Wireless Pro
p
a
gatio
n Letters.
201
1; 10.
[17]
W
ang YQ, Ya
n
g
XX. D
e
sig
n
o
f
a H
i
gh-Effici
e
n
c
y
Circ
u
l
a
rl
y
Polariz
e
d
Rect
enn
a for
35
GHz Micro
w
a
v
e
Po
w
e
r T
r
ansmi
ssion S
y
stem.
IEEE
. 2012.
[18]
Barrera
OA, L
ee
DH, Qu
yet
NM, Ho
an
g-T
he V,
Cha
n
g
Parl H.
A C
i
rc
ularl
y
Po
lariz
e
d H
a
rmon
i
c-
Rejecti
ng A
n
te
nna for W
i
r
e
les
s
Po
w
e
r T
r
ansfer App
licati
ons
.
IEICE Electronics Expr
ess
. 2
013; 1
0
(1
9)
:
1-6.
[19]
Nings
ih
YK, H
a
din
egor
o
R. Lo
w
Mutu
al
Co
up
ling
D
ual
ba
nd
MIMOMicrostrip Ante
nn
a P
a
r
a
sitic
w
i
t
h
A
i
r
Gap.
T
E
LKOMNIKA T
e
leco
mmu
n
ic
ation C
o
mp
utin
g Electr
onics a
nd C
ont
rol.
201
4;
12(2)
: 405-41
0.
[20]
Darso
no M,
Wija
ya
E. Circ
u
l
a
rl
y Po
lariz
e
d
P
r
ox
imit
y-Fed
Microstrip
Arra
y
Antenn
a for
Mi
cro Sate
llite
.
T
E
LKOMNIKA T
e
leco
mmunic
a
tion C
o
mputi
n
g Electron
ics a
nd Co
ntrol
. 20
13; 11(4): 8
03-
810.
Evaluation Warning : The document was created with Spire.PDF for Python.