ISSN: 1693-6
930
ยข
1
SOUND OF PADDLE WHEEL ON SEA BASS GROWTH
Sunardi
1
, Anton Yudha
na
2
, Ahmad Sy
ahril Mohd Na
w
i
3
4
, Jafri Di
n
, Saberi Ma
w
i
5
1,2,3,4
Faculty of Electrical En
ginee
ring, Un
iversiti
Te
knol
ogi Malaysi
a, Joh
or 81
310,
Malaysia
1,2
Electrical E
ngine
erin
g Departm
ent, Universita
s
Ah
mad Da
hlan,
Yogyaka
r
ta 5
5164, Indo
ne
sia
5
Pusat Penye
lidika
n
dan T
e
rna
k
a
n
Air p
a
yau, Gelan
g
Patah, Joho
r, Malaysia
email: sun
a
rg
m@e
e
.uad.a
c
.id
Abs
t
rak
Tujuan p
enel
itian ini adal
ah m
enguji peng
aru
h su
ara pa
da ika
n sia
k
ap (Se
a bass,
Cyno
sci
on n
o
bilis). Pe
neliti
an ini dila
ksa
nakan p
ada
kolam
ikan ai
r
payau b
eru
ku
ruan
25
x10
0m,
ked
alam
an 2
m
, serta 6 b
uah pa
ddle
whe
el se
bag
ai sum
ber
su
ara. Profil
su
ara di
ukur u
ntuk
m
engetahui
am
plituda p
ada b
erb
ag
ai titik pen
gukura
n da
n
ked
alam
an
yan
g be
rb
eda
m
engguna
ka
n hyd
r
op
hon
e Ceta
cea
n tipe C3
04. Keluara
n hydrop
hone di
anali
s
is m
enggun
a
k
an
softwa
r
e Spe
c
traPlu
s. Unt
uk pe
ngu
ku
ran ke
dua, d
ua bua
h sa
n
gka
r de
ngan
uku
r
an 3
x
3
m
digun
akan sebag
ai habit
at ikan. Ika
n pad
a m
asing
-m
asin
g
san
gkar
se
jum
l
ah 20 e
k
or,
sed
ang
ka
n ikan dilua
r
sa
n
gka
r sejum
l
ah 1250
0. Profil suara kem
udian diu
k
u
r
la
gi berd
asarka
n
posi
s
i
(sang
kar tepi/teng
ah), b
erd
asa
r
ka
n
wa
kt
u
(pagi/
s
ian
g/sore
)
, dan
b
erda
s
a
r
kan t
i
tik
peng
ukura
n
yan
g
berbed
a. Data tim
e
serie
s
, sp
e
k
trum
frekue
nsi, dan fa
se dianali
s
is l
agi.
Pertum
buhan
ika
n di
ukur bula
nan
unt
uk
setia
p
sa
ngkar
ya
ng
ada.
Ikan di
dalam
sang
kar
ternyata tum
buh
se
ca
ra li
nier,
sed
ang
kan
ika
n di l
uar
sa
ng
kar
tum
buh se
ca
ra e
k
spo
nen
sial.
Ukura
n da
n
berat i
k
an
da
lam
kedua
sang
kar l
ebih
ke
cil. Da
ri pe
nelitian ini d
a
pat disim
pul
kan
bah
wa
sua
r
a tidak m
em
punyai
pe
ngaruh
ya
ng
signifi
kan
terha
dap
pe
rtum
buhan i
k
an.
Keterbata
s
a
n
pergerakan
untuk m
en
da
patka
n m
aka
nan d
an
kon
disi
stre
ss le
bih be
rpe
nga
ruh
terhad
ap pe
rt
um
buhan ika
n darip
ada p
e
ngaruh sua
r
a
.
Kata kunci
:
profil su
ara, air payau, pad
dle wh
eel, Siaka
p, Sea ba
ss
A
b
st
r
a
ct
The obje
c
tive of this re
sea
r
ch is so
und effect for bracki
sh water fo
r Sea ba
ss
(Cyno
s
cion
n
obilis). Bree
ding farm
25x1
00m
, 2m
of d
epth, and 6 p
addle
whe
e
ls which ge
nerate
the so
und
are availabl
e for resea
r
ch. Sound p
r
ofile
has
bee
n
m
easured to
inve
stigate t
he
am
plitude at vari
ou
s m
ea
s
urem
ent poi
nts at va
rio
u
s
de
pths
by
usin
g Cetace
an h
y
droph
o
n
e
C30
4. The
o
utput of hydropho
ne h
as
been
anal
yze
d
by
usi
ng S
pectraPlu
s software. F
or
the
se
con
d m
ea
s
urem
ent, two
ca
ge
s
whi
c
h
si
ze
3
x
3m
h
ave
be
en
used fo
r life
fish ha
bitat. Th
en,
fish put in th
e edge
ca
ge
(20
)
, cente
r
cag
e (2
0), a
nd out of ca
ge (1
250
0).
Sound p
r
ofile
has
been
m
easu
r
ed fo
r p
ositio
n-ba
s
e
d
(ed
g
e/cente
r
ca
ge
), tim
e-ba
s
ed
(m
orning/n
oo
n/eve
ning
), a
nd
point-b
ased. Tim
e serie
s
, spe
c
trum
freque
ncy,
an
d pha
se ha
ve been an
al
ysi
s. Fish g
r
owth
prog
re
ss ha
s been m
onthl
y m
easu
r
ed
at eve
r
y
ca
g
e. Fish in th
e cag
e is g
r
owth a
s
line
arly,
while fi
sh
gro
w
th for out of
cag
e
i
s
e
x
p
onentiall
y. Si
ze a
nd
wei
g
h
t
of fish in th
e both
ca
ge
s is
less than
out
of ca
ge. Thi
s
research
concl
ude
s
that
sou
nd
ha
ve
no si
gnificant
ly effect fo
r fi
sh
gro
w
th. Lim
i
ted m
obility to look fo
r food and
stre
ss are m
ore influen
ce
s to fish growth t
han
sou
nd effect.
Key
words
:
sound p
r
ofile, bra
cki
sh
wate
r, paddle
whe
el, Sea bass
1. INTRODUCTION
A wide
ra
ng
e of waterb
orne
soun
d
is ge
ne
rated
by hum
an
activities in
aquati
c
environ
ment
s. Con
s
e
quent
ly, fish are
subje
c
ted to
e
x
treme level
s
of chro
nic (continuo
us) a
n
d
acute
(tra
nsi
ent) noi
se
which m
ay stress them
to
the point of redu
ced g
r
o
w
th rate, red
u
c
ed
rep
r
od
uctive
perfo
rman
ce,
incre
a
se
d
di
sea
s
e
susce
p
tibility and
even m
o
rtalit
y. A numbe
r of
studie
s
have
focu
se
d o
n
fish
hea
ring
and
pe
rc
ep
tion. Ho
weve
r, no
stu
d
y
has examin
e
d
Sound of Pad
d
le Wh
eel on
Sea Bass Growth (Su
nard
i)
Evaluation Warning : The document was created with Spire.PDF for Python.
ยข
ISSN: 16
93-6
930
2
waterbo
r
ne
sou
nd ch
ara
c
teri
zation in
fish farmin
g (aqu
acultu
re)
conditio
n
s
and re
al time
conditions.
Fish a
r
e exp
o
s
ed to a
wid
e
rang
e of wat
erbo
r
n
e
so
un
d in natu
r
al a
nd cultu
r
e
co
ndition
s.
In natural waters,
so
und i
s
gene
rated
by machine
r
y, propul
sio
n sy
stems of la
rge
ship
s a
nd by
-
flow
(wa
k
e
n
oise
)
. Even
wider ra
nge
s
o
f
sou
nd
ar
e p
r
odu
ce
d in
h
eavy shi
p
traffic a
r
ea
s. So
nar
system
s, sho
ck te
sts,
boat
rep
a
irs, und
e
r
wate
r expl
osions
and
airb
orne
sound
(f
rom ai
rcraft a
nd
soni
c b
oom
s) alo
ng
with
offsho
re
co
nstru
c
tion,
a
uto traffic
an
d co
astal
an
d othe
r hu
m
an
activities
a
r
e signifi
cant so
urces
of soun
ds.
Th
e
imp
a
c
t of a
c
ou
stic
stre
sse
s
coul
d be
parti
cula
rly
importa
nt in
coa
s
tal
zon
e
s
that a
r
e th
e pr
im
ary
sp
awni
ng g
r
ou
nds fo
r ma
n
y
comme
rcia
lly
importa
nt spe
c
ie
s.
Sound is a mech
ani
cal di
sturb
an
c
e tha
t
propag
ates
throug
h wate
r as a pre
s
su
re wave
in an el
asti
cs medi
um. T
he pressu
re
wave
s ra
di
ates
sph
e
ri
cally from its sou
r
ce with
the
intensity, I de
cre
a
si
ngly inv
e
rsely with
th
e squa
re
of di
stan
ce,
R [1]. Sound
p
r
e
s
sure l
e
vel
(SPL)
or
sou
nd l
e
vel is a l
oga
rithmic
mea
s
u
r
e of the
rm
s so
und
pressure
of a
so
u
nd relative to
a
referenc
e value. It is
measured in dec
i
bels
(dB
(SPL), d
BSPL, or dBSPL) [2].
Sound Pressure Level (dB) = 20 log (
p/p
ref)
(1)
The soun
d le
vels to whi
c
h
most mamm
als
a
r
e sen
s
i
t
ive extend ov
er many orders of
magnitud
e
. Bracki
sh water is wate
r that is saltie
r th
a
n
fresh wate
r. It
is a mixture fro
m fresh
water
and
se
a wate
r. Tech
nically, bracki
sh water
cont
ains b
etwe
en
0.5 and 30 g
r
am
s of salt p
er
liter.
The numerous species from many unrel
a
ted
families produce
sounds
, and that acoustic
excha
nge
s a
r
e part
of
the
agg
re
ssive and re
pro
d
u
c
tive behavio
r of ma
ny fish
es.
Ho
weve
r, a
fish'
s
environ
ment contai
n
s
far more so
und
s t
han tho
s
e produ
ce
d by nearby co spe
c
ifics alon
e.
Furthe
rmo
r
e, the degree of auditory
acui
ty a specie
s exhibits is no
t always po
sitively correl
ate
d
with the extent to which it use
s
s
oun
d in intra-sp
ecifi
c
co
mmuni
ca
tion [3].
The a
uditory
system
is
particula
rly importa
nt for aquati
c
vertebrate
s
whe
n
visua
l
orientatio
n is restri
cted.
Sound
s from d
i
fferent sou
r
ces provide th
em with information releva
nt
for
survival, e.g.,
finding mates and p
r
ey
or
av
oidi
ng p
r
ed
ators. The n
a
tural
enviro
n
ment
of
fishe
s
, espe
cially that of marin
e
fishe
s
but al
so fresh
w
ate
r
ha
bitats is
cha
r
acte
ri
zed by
a
perm
ane
nt b
ackgroun
d n
oise
of a
bioti
c
(current
s,
rain, seismic
events,
coa
s
t
a
l surf) an
d b
iotic
(vocali
z
atio
ns of animal
s
, photo
s
ynthe
s
is) o
r
ig
in. Most
inve
stig
ations on so
und
d
e
tectio
n
in
fishe
s
, ho
wev
er,
were p
erf
orme
d u
nde
r
quiet la
bor
ato
r
y condition
s,
and
their results m
a
y be
il
l-
suited to information on the
ability of fishes to
dete
c
t signal
s in their natural envi
r
onment [4].
Most of the aquaculture
rese
arch is mo
st intere
sted on fre
s
hwate
r
and
sea
w
ate
r
becau
se the
r
e are m
ore p
opula
r
than
b
r
acki
sh
wate
r and al
so the
spe
c
ie
s of fish from thi
s
water
is m
ore
com
pare
d to
the
spe
c
ie
s f
r
om
bra
cki
sh
water. Th
us,
there a
r
e
som
e
reason
s
why t
h
is
project must to be done. T
he first
point is this
research
will come out with the characteri
stics
of
sou
nd pressure level for bracki
sh water and its effect to fish gro
w
th. Seco
ndly, with
the
laun
ching
of the National A
qua
culture Developme
n
t Plan, this fun
d
amental
re
se
arch will
su
pp
ort
the govern
me
n
t missio
n
to increa
se the q
uantity
of productio
n
of aq
uaculture in
d
u
stry.
The o
bje
ctives of thi
s
re
se
arch a
r
e to f
ormul
ate a n
ovel ch
ara
c
te
rizatio
n of
so
und fo
r
bra
cki
sh
wat
e
r f
o
r S
e
a
bas
s (
Cyn
o
scion nobili
s
) a
nd to
cha
r
a
c
teri
zati
on aq
ua
cult
ure
environ
ment
sou
nd for b
r
ackish wate
r.
The ex
pe
ct
ed outcome
this re
se
arch
is a metho
d
o
f
improvin
g Se
a ba
ss p
r
o
d
u
c
tivity and breedin
g
usi
ng
unde
rwater
audio. By kn
owin
g the so
und
cha
r
a
c
teri
stic
of fish farming (aq
ua
c
ult
ure
) co
nditio
ns a metho
d
of improving
fish prod
ucti
vity
and breedi
ng
usin
g und
erwater audi
o, co
uld be imple
m
ented.
2. SOUN
D PROFILE ME
ASU
R
EMEN
T FOR B
R
A
CKISH
W
A
T
E
R
The pe
rceptio
n of unde
rwat
er sound
poses severa
l
ch
alleng
es to fish becau
se of simila
r
aco
usti
c
imp
edan
ce
between fish bo
d
y
and its
su
rroundi
ng
wate
r medi
um, it
make
s fi
sh b
ody
almost tran
sp
arent to
passi
ng soun
d wa
ves. Un
der
such
co
ndition
the fish b
ody
vibrates i
n sync
with the sou
n
d
wave and n
o
differential
movement
of body is expe
cted to stimul
ate sen
s
o
r
y hair
c
e
lls
[5].
TELKOM
NIKA
Vol. 7, No. 1, April 2009 : 1 - 12
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOMNI
KA
ISSN:
1693-6930
โ
3
Sound of Pad
d
le Wh
eel on
Sea Bass Growth (Su
nard
i)
Several repo
rts incl
ude
co
mpre
hen
sive
treatment
s of
the ch
ara
c
te
rist
ics of u
n
d
e
rwater
sou
nd [6]. In
any medium, a prop
agate
d
sound
wave has
p
r
e
s
sure
(P), a scalar
quantity, as well
as the vecto
r
prope
rtie
s o
f
accel
e
ratio
n
,
particle di
splacement, a
nd velocity (u, a function
o
f
displ
a
cement
and freque
n
c
y). The rel
a
tionship betwe
en P and u chang
es with
distan
ce from
the
sou
nd
so
urce
for a
soun
d
wave i
n
wate
r, thoug
h n
ot in ai
r. Fi
she
s
sho
w
gre
at variation
in t
he
freque
ncy ra
nge they can
hear
and in
their sen
s
itiv
ity over those freque
nci
e
s,
althoug
h rel
a
ted
spe
c
ie
s may
exhibit simil
a
r audito
ry capabilitie
s
if
t
hey inh
abit
similar
acou
stic e
n
viro
nme
n
ts.
Specie
s
with
poo
r
se
nsiti
v
ity and na
rrow f
r
equ
en
cy ran
ge
com
e
from
dive
rse fa
milies a
nd
occupy many
different habi
tats [3].
In the a
quati
c
enviro
n
me
nt, hea
ring
i
s
a
n
imp
o
rtant
sense fo
r
the survival of
an
animal.
Sound travel
s faster a
nd is much
less attenuated in water tha
n
in air, maki
ng it the perfect
mean
s for co
mmuni
cation
over long
dist
ances [7].
Th
e auditory
system is
want
ed to kno
w
t
he
fish ability to hearin
g so
u
nd for some
range of
freque
ncy. Fish detect sou
nd via otolithic
endo
rga
ns
of the inne
r ea
r, which re
sp
o
nd directly
to linear
accel
e
rations of the f
i
sh ind
u
ced b
y
particl
e motio
n
. Indirect
stimulation of the inner
e
ar b
y
pressu
re waves o
c
curs in some
spe
c
i
e
s
as
well. T
his i
ndire
ct
stimul
ation is en
ha
nce
d
in sp
eci
es
th
at
have spe
c
iali
zation
s con
ne
c
ting the
swim
bladder or some ot
her
gas-filled
cham
ber to t
he inner
ear (hearing speciali
sts),
but may
als
o
apply to fis
h
that lack
s
u
c
h
a spec
ializ
ation [5].
By listening t
o
the ba
ckground
noi
se i
n
an aq
uatic habitat, an
animal
can
g
e
t biotic
information
about the
p
osi
tion of
prey
or
pre
dato
r
s,
potential
ma
tes o
r
co
mpe
t
itors,
as well
as
abiotic info
rm
ation abo
ut currents, coa
s
tlines, torrent
s,
wind, etc
[8].
Ambient noise ultimately
determi
nes t
he detect
ability of all
stimuli impi
ngin
g
on
an
animal [9]. In dealing with
the evolution of hearing
cap
abilities, i
t
is cru
c
ial to know
ho
w an
animal
cop
e
s with the p
r
o
b
lem of diffe
rentiating
rel
e
vant
acou
stic event
s (sig
nals) from th
e
backg
rou
nd noise.
Thi
s
p
r
oble
m
can
n
ot
be
solved simply by
en
han
cing
the
auditory
se
nsitivity
sin
c
e
this wo
uld affect bot
h sign
als a
nd
noise d
etecti
on [10].
Auditory thre
shol
ds in
cre
ase
d almo
st linearly
with white noi
se
level in the hearin
g
spe
c
iali
st
s,
w
here
a
s
t
h
e
hearin
g g
ene
ralist
wa
s o
n
ly slig
htly affected by the
hi
gher
white no
ise
level applied
(sp
e
ctral level approx. 95 dB). The i
n
crea
se
wa
s linear for th
e most sen
s
i
t
ive
freque
nci
es
but not for th
e
upper
and
lowe
r en
ds o
f
the fish'
s
h
earin
g rang
e
s
. The
ma
ski
ng
effec
t
wa
s m
o
st p
r
o
noun
ced in
the
mo
st sen
s
itive freque
ncy
ran
g
e
, whi
c
h
may explain
why
we
observed
sig
nificant inte
ra
ction
s
bet
we
en
noise and freque
ncy,
yielding differe
nt
trend
s
of
n
oise
effec
t
s
at different freq
uen
ci
es [11].
Sound p
r
e
s
sure i
s
the a
dequ
ate mea
s
ure
of the
degree of a
uditory stimu
lation
in
pre
s
s
u
r
e
-
s
en
sit
i
v
e
f
i
she
s
su
ch a
s
ot
o
phy
sin
e
s
[1
2
]
in any aco
ustic fiel
d. For techni
cal
and
comp
arative rea
s
on
s,
the heari
ng th
re
shold
s
of Eu
ro
pean
Perch
a
r
e
also
given
in SPL
values,
althoug
h h
e
a
r
ing
gen
eralists dete
c
t p
a
rt
icle m
o
tion
of so
und
s. T
hi
s
i
s
a
c
cepta
b
l
e be
ca
use o
ur
study e
m
pha
sized th
e
effe
cts
of the
sa
me d
efined
b
ackgroun
d n
o
i
se
(noi
se
sp
ectra
are
give
n in
pre
s
sure
u
n
its) on sig
nal detectio
n
in
d
i
fferent
spe
c
i
es usi
ng
th
e same
expe
ri
mental setup
and
on relative threshold
shifts within a spe
c
ie
s rathe
r
than absolute thre
shol
ds. T
his
appro
a
ch
is
valid as lon
g
as the
di
spla
ceme
nt field i
s
p
r
op
ortion
al
to the p
r
e
s
su
re field, b
e
ca
use i
n
ma
ski
n
g
studie
s
the ra
tio
of the tone level to
the noise level at nearby frequ
enci
e
s is
most important [13].
Ho
wev
er, tha
t
those hea
rin
g threshold
s
sho
uld not be
rega
rde
d as
absolute
values be
ca
use the
exact pro
p
o
r
tional facto
r
be
tween the two
so
und pa
ra
meters rem
ai
ns un
kn
own.
Basically, hydrop
hon
e wil
l
be u
s
ed a
s
impo
rtant
equipm
ent for this
proje
c
t. The
hydrophone
will be used for measur
e
the sound pressure level.
Besides that
, there is
some
method to ha
ndle the hydropho
ne to make
sure the data are a
c
cu
rate and rea
s
onabl
e and al
so
to make
sure this proj
ect g
o
ing on
su
ccessful.
A spe
c
trum
analyzer i
s
a
n
in
strum
ent
use
d
to
co
nvert a
sig
nal f
r
om th
e time
domai
n
(amplitu
de vs. frequen
cy). With an o
r
din
a
ry oscillo
sco
pe is a time
domain di
spl
ay looks like.
A
freque
ncy d
o
m
ain di
splay
is kn
own
a
s
a spe
c
tru
m
. Unle
ss
measuri
ng a
single ton
e, an
oscillo
scope
provide
s
little
in the way o
f
frequen
cy i
n
formatio
n; howeve
r
, a sp
ectru
m
analy
z
er
clea
rly reve
a
ls this information. An
Audio Spe
c
trum Analyzer, by definitio
n, is limited
to
pro
c
e
ssi
ng signal
s in the audio ban
d
.
The spe
c
ific frequ
en
cy limit is determined by the
cap
abilities sound card.
An Audio Spectru
m
Analyzer i
s
very u
s
eful for me
a
s
uri
ng the fu
ndame
n
tal freque
ncy
comp
one
nts
whi
c
h are co
ntained in a
n
audio si
gnal.
It can measure the fre
q
u
ency of sin
g
l
e
or
multiple tone
s and the freq
uen
cy differe
nce b
e
twe
en
them.
Evaluation Warning : The document was created with Spire.PDF for Python.
ยข
ISSN: 16
93-6
930
4
The p
r
og
ram
is conju
nctio
n
with the
sou
nd
card
on
p
ersonal
co
mp
uter (P
C). T
h
e Audio
sign
al plu
g in
to the Lin
e-I
n or mi
crop
h
one o
r
hyd
r
o
phon
e ja
ck
o
n the ba
ck of
the so
und
card.
SpectraPlus
perfo
rm an A
nalog
-to-
Digit
al (ADC)
con
v
ersio
n on th
e audio
sign
al. This digiti
zed
audio i
s
the
n
passe
d thro
u
gh a m
ath al
gorithm
kn
own as
a Fa
st F
ourie
r T
r
an
sf
orm
(FFT
) wh
ich
conve
r
ts th
e
sig
nal from
the time d
o
main
to
th
e freq
uen
cy
domai
n. Th
e screen
sh
ot of
SpectraPlus
can
be
sho
w
n i
n Fi
gure
1. Th
e
CP
U o
n
com
pu
t
er i
s
u
s
e
d
to pe
rform
this
transfo
rmatio
n.
Whe
n a .
W
A
V
file is o
pen
ed, the
sam
p
ling rate an
d
format a
r
e
ch
ange
d to m
atch th
e
rate at whi
c
h
the file was recorded - th
e Sampli
ng
Rate mu
st re
main co
nsta
n
t
within a sin
gle
.WAV file. When the .WA
V
file is close
d
, these
se
ttings
will reve
rt to their prev
ious valu
es.
The
curre
n
t sam
p
l
i
ng rate i
s
al
ways
displayed in t
he
status b
ar al
ong
the bottom of
the appli
c
ati
on.
List of sam
pling rate
can b
e listed a
s
sh
own in Ta
ble
1.
Figure 1. Screen
shot
of SpectraPlu
s
Table 1. Sam
p
ling rate
Sampli
ng R
a
te
(Hz)
Sampli
ng Prec
i
s
ion
(bits)
By
tes/Minutes
11,02
5
8
661,5
00
11,02
5
16
1,323,0
00
22,05
0
8
1,323,0
00
22,05
0
16
2,646,0
00
44,10
0
8
2,646,0
00
44,10
0
16
5,292,0
00
44,10
0
24
7,938,0
00
3. MEASUREMENT DESIGN
Breedi
ng fa
rm of fish
wa
s u
s
in
g b
r
a
c
kish
water which
si
ze
of
25mx100
m a
nd 2m
of
depth. Thi
s
b
r
eedi
ng fa
rm
use
d b
r
a
cki
sh wate
r.
Tota
l of 6 pa
ddle
whe
e
ls at e
dge of
bre
edi
ng
farm in
o
r
de
r to
circulate
of wate
r
are
available
in t
h
is
breedin
g
farm. Th
e o
p
e
ration
s of th
ese
paddl
e whe
e
l
s
(what the p
addle
wheel
on or off) can
be manag
ed.
TELKOM
NIKA
Vol. 7, No. 1, April 2009 : 1 - 12
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOMNI
KA
ISSN:
1693-6930
โ
5
Sound of Pad
d
le Wh
eel on
Sea Bass Growth (Su
nard
i)
Before fish p
ut in the bre
e
ding farm,
so
und p
r
ofile ha
s bee
n mea
s
ured to i
nvest
igate the
relative ampli
t
ude at any p
o
int of measurem
ent.
The
points a
r
e combinatio
n n
ear a
nd far from
paddl
e whe
e
l
.
This
me
asu
r
eme
n
t
by using hydro
pho
ne at differen
t
depth (0m = wate
r su
rfa
c
e,
0.5m, 1m).
Two
cage
s
a
r
e
dedi
cated
for life fi
sh
h
abitat in thi
s
measurement
. Cag
e d
esi
g
ned
b
y
usin
g woo
d, drum, an
d ne
t for fish saving. The si
ze
of cage i
s
6m x 6m for both cag
es. Fi
rst
cag
e pl
aced
at nea
r f
r
om
pad
dle
wh
e
el (edge
cag
e)
and
the
o
t
her
ca
ge
pl
ace
d at
far f
r
om
paddl
e whe
e
l
(cente
r
cag
e). Sea ba
ss is fish
spe
c
ie
s whi
c
h u
s
e in this m
easure
m
ent for
bra
cki
sh
wat
er. Fish the
n
put in the edge cage,
ce
nter ca
ge, an
d out of cage
in the breedi
ng
farm whi
c
h to
tal fish are 1
00, 100, and
4000 respe
c
tively. The balance of popu
lation of fish in
the cag
e
and
out of cage i
s
measu
r
e
d
.
Sound p
r
ofile at each cage po
sition
then
measured at diffe
rent point b
y
using
hydrop
hon
e
for
po
sition ba
sed (ed
ge ca
ge,
ce
nter
ca
ge), time b
a
sed (m
orni
ng,
noon, eve
n
in
g),
and poi
nt ba
sed (A, B, C, D, E). Point A, B, C,
D are point
s whi
c
h four e
dge o
f
cage,
while
E is
cente
r
p
o
int
of cag
e
. Tim
e
se
rie
s
, spe
c
trum
freq
ue
ncy, and
ph
a
s
e at
every p
o
int then
ca
n
be
analysi
s
. Det
ail analysi
s
of soun
d profile
as sign
al parameters (PF, PA,
TP, THD,
THD+N, IMD,
SNR) in thi
s
measurement
deploye
d
by
usin
g Spe
c
traLab. All of
g
r
aph
ha
s b
e
e
n
depl
oyed b
y
usin
g Micro
s
oft Excel software.
(a) Breedi
ng farm
(b) Pad
dle wheel in op
erat
e
Figure 2. Bre
eding farm an
d paddl
e wh
e
e
l
Figure 3. Hyd
r
oph
one p
a
ckage for me
asurem
ent
Amplifier
H
y
dr
ophone S
w
it
ch
Connect to
H
y
dr
ophone
Evaluation Warning : The document was created with Spire.PDF for Python.
ยข
ISSN: 16
93-6
930
6
Breedi
ng fa
rm of fish by
usin
g b
r
a
cki
sh water which si
ze
of
25
mx100 m
an
d 2m
de
pth
as sho
w
n in Figure 2a, while paddl
e wheel in ope
ra
te can be sh
own in Fig
u
re 2b. Total of 6
paddl
e wheel
s at e
dge
of
bre
edin
g farm in o
r
de
r t
o ci
rculate of
wate
r a
r
e
a
v
ailable in
th
is
bree
ding farm. The opera
t
ions of these
paddle wh
eels (what the paddle wheel
on or off) can
be
manag
ed. T
w
o cage
s
are
dedi
cated
for life fish
ha
bitat in thi
s
m
e
a
s
ureme
n
t. Ca
ge d
e
si
gne
d
by
usin
g wood,
drum, a
nd n
e
t
for fish
savi
ng. The
si
ze
of cag
e
is
3 x 3m for b
o
th
cag
e
s. Fi
rst
cage
placed at n
e
ar fro
m
pa
dd
le wh
eel
(ed
ge cage
)
a
nd
the othe
r
ca
ge pla
c
e
d at
far from
pad
dle
whe
el (cente
r
cage
).
Ceta
cea
n hy
drop
hon
e wit
h the mo
del
C30
4 ha
s b
e
en u
s
e in thi
s
me
asu
r
em
ent. The
rang
e frequ
e
ncy of this model is 7 Hz to 250
kHz. T
he output fro
m
the hydrop
hone will a
na
l
yze
by usin
g Sp
ectraPl
us
sof
t
ware.
Hydro
phon
e pa
cka
ge for m
ea
s
urem
ent can
be sho
w
n i
n
Figure 3. Mini boat is very useful for mob
ility o
n
mea
s
urem
ent of soun
d profile, wa
ter
cha
r
a
c
teri
stics, and
che
m
i
c
al p
r
op
ertie
s
at ev
ery poin
t
measu
r
em
e
n
t. Sea bass
gro
w
th p
r
og
ress
at every posit
ion (ed
ge ca
ge, cente
r
ca
ge, out
of cage) ha
s be
en
measu
r
e
d by using wei
g
hing
for monthly. The sig
n
ifica
n
ce of weight in
three po
sitio
n
s then
can b
e
analysi
s
.
3.1. Amplitude Meas
ure
m
ent
The soun
d pressure level
or am
plitude
will
be m
ea
s
ured
at the a
r
ea
whi
c
h i
s
expecte
d
give a two extreme sou
nd profile. P
o
int measur
e
m
ent sele
cte
d at 9 points as
sho
w
n
in
Figure 4a. An
y points a
r
e
n
ear from p
a
d
d
le wheel
(2,
4, 7, 9), me
a
n
whil
e any p
o
i
nts a
r
e fa
r from
paddl
e whe
e
l
(1, 3, 6, 8). One poi
nt (5)
is pla
c
ed in th
e cente
r
of four pad
dle wh
eels.
(a) Amplitu
de
measu
r
em
en
t
(
b
)
So
un
d
pr
ofile
me
a
s
ur
eme
n
t
Figure 4. Points of mea
s
urement
TELKOM
NIKA
Vol. 7, No. 1, April 2009 : 1 - 12
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOMNI
KA
ISSN:
1693-6930
โ
7
Sound of Pad
d
le Wh
eel on
Sea Bass Growth (Su
nard
i)
These sound pressu
re lev
e
l will be measured by usi
ng Cetacean hydr
ophone with the
model C3
04. The output
from
the
hydro
phon
e will
a
n
alyze by
u
s
in
g
Spe
c
traPlu
s softwa
r
e. T
h
is
proje
c
t fo
cu
ses
on lo
we
r f
r
equ
en
cy onl
y which i
s
10
Hz until
50
Hz. T
his ra
ng
e of fre
que
ncy is
actually the
range
of low
freque
ncy fo
r gene
ral fi
sh.
The a
m
plitu
de record
ed
as lo
ng a
s
t
w
o
minutes for e
v
ery point
me
asu
r
em
ent. B
oat is ne
ede
d
to mo
bility of re
se
arche
r
i
n
the
breedi
n
g
farm in orde
r to cover fo
r al
l of area me
a
s
urem
e
n
ts. Amplitude reco
rded
at different depth, the
r
e
are at wate
r surface (0 m
)
, 0.5 m, and 1 m for any me
asu
r
em
ent po
ints.
3.2. Sound Profile Meas
u
rement
The so
und p
r
essu
re level
will be mea
s
ured at
the area
whi
c
h is expected gi
ve a two
extreme
sou
nd profile. These sound
pre
s
sure
level will be m
easure
d
by
usin
g Ceta
cea
n
hydrop
hon
e with the mod
el C30
4. The
rang
e freq
ue
ncy of this m
odel is 0.0
07
KHz to 25
0 KHz.
The o
u
tput from the
hydro
phon
e
w
ill an
alyze
by u
s
in
g Spe
c
traPlu
s
softwa
r
e. F
or thi
s
p
r
oj
ect
,
we
are only focu
s on lower fre
quen
cy whi
c
h
is 10 Hz u
n
til 50 Hz. Thi
s
range of freq
u
ency is a
c
tual
ly
the range of
low frequency for
general
fish. The SPL
will reco
rd
2 mi
nutes for every point
measurement
. Cage
s and
points for
sou
nd profile
m
e
asu
r
em
ent ca
n be sh
own in Figure 4b.
3.3. Fish Gro
w
th
prog
res
s
Fish
in th
e e
d
ge
cag
e, fish
in the
ce
nter
ca
g
e
, an
d fish out
of
cag
e
are me
asure
d
for its
weig
ht. Weig
hing of 5 kg i
s
eno
ugh to
measur
e. The monthly me
asu
r
em
ent ha
s bee
n don
e.
Table 2. Rel
a
tive amplitude at frequen
cy and depth d
epen
den
ce
Fre
que
ncy
(Hz)
De
pth
(meter)
10
20
30
40
50
Point 1
0
-65.53
33
3
-71.44
08
3
-72.
84
83
3
-65.99
70
8
-61.44
33
3
0.5
-57.66
83
3
-61.79
08
3
-66.
49
00
0
-67.48
66
7
-63.92
08
3
1
-51.85
40
0
-55.23
20
0
-60.
22
00
0
-59.64
60
0
-59.09
40
0
Point 2
0
-75.53
90
9
-79.50
54
5
-82.
01
18
2
-81.17
45
5
-65.90
90
9
0.5
-64.07
07
7
-69.39
23
1
-72.
25
00
0
-73.88
53
8
-66.66
92
3
1
-68.37
50
0
-71.83
41
7
-75.
41
83
3
-76.95
66
7
-65.73
91
7
Point 3
0
-61.55
23
1
-65.08
61
5
-67.
90
30
8
-71.32
92
3
-59.75
84
6
0.5
-64.22
07
7
-68.24
46
2
-70.
09
23
1
-72.29
23
1
-64.22
92
3
1
-67.72
50
0
-71.61
25
0
-75.
81
25
0
-81.03
25
0
-65.07
25
0
Point 4
0
-59.12
72
7
-61.73
45
5
-67.
83
54
5
-70.25
18
2
-59.73
54
5
0.5
-58.94
23
1
-61.51
53
8
-66.
24
69
2
-69.14
07
7
-58.88
76
9
1
-69.31
72
7
-74.12
09
1
-76.
80
72
7
-78.61
27
3
-59.19
27
3
Point 5
0
-60.38
30
8
-67.08
92
3
-71.
12
61
5
-73.13
38
5
-62.61
76
9
0.5
-62.78
07
7
-64.35
38
5
-68.
99
61
5
-71.72
53
8
-63.61
53
8
1
-56.12
09
1
-59.96
54
5
-58.
80
27
3
-64.70
90
9
-62.05
00
0
Point 6
0
NA
NA
NA
NA
NA
0.5
-63.98
36
4
-66.52
27
3
-67.
10
54
5
-69.63
27
3
-62.14
00
0
1
-52.47
00
0
-59.27
54
5
-62.
74
81
8
-65.29
45
5
-61.30
18
2
Point 7
0
-62.14
00
0
-65.77
14
3
-71.
97
85
7
-73.24
42
9
-60.48
57
1
0.5
-57.29
42
9
-57.50
57
1
-64.
50
14
3
-70.06
57
1
-59.15
42
9
1
-46.56
10
0
-52.39
50
0
-57.
32
10
0
-58.04
10
0
-54.61
40
0
Point 8
0
-44.21
66
7
-47.47
83
3
-52.
55
91
7
-54.54
50
0
-53.19
75
0
0.5
-46.25
33
3
-49.93
41
7
-53.
82
66
7
-58.62
33
3
-56.15
91
7
1
-48.33
09
1
-46.51
18
2
-54.
19
63
6
-55.84
09
1
-56.52
45
5
Point 9
0
-45.00
00
0
-48.89
20
0
-53.
83
50
0
-54.50
90
0
-53.74
30
0
0.5
-54.99
36
4
-59.56
45
5
-66.
05
54
5
-65.57
18
2
-60.99
63
6
1
-44.34
88
9
-48.38
00
0
-57.
03
00
0
-57.93
88
9
-53.88
00
0
Evaluation Warning : The document was created with Spire.PDF for Python.
ยข
ISSN: 16
93-6
930
8
The data
f
r
om
the SpectraPlus will analyze
usi
ng
Microsoft Excel to obtain the number
of occu
rre
nces
of SPL a
nd thei
r ave
r
age valu
e.
At least 1
0
re
ading
s from
every poi
nt
of
measurement
are takin
g
to obtain the average valu
e with 5 se
con
ds time interv
al. To make t
he
data mo
re u
s
eful, the n
u
m
ber
of
occu
rre
nces
of SPL is ta
king
fr
om two
extreme different
of
sou
nd profile.
4. RESULTS
AN
D DISC
U
SSION
4.1. Relativ
e
Amplitude
Average
of
relative am
plitude
(dB) o
n
fre
que
ncy
and
d
epth depe
nden
ce
listed at
Table
2. Rela
tive amplitud
e at vari
ou
s f
r
equ
en
ci
e
s
(10, 20, 3
0
, 4
0
, 50
Hz)
an
d vario
u
s de
pths
(0, 0.5, 1 met
e
r) th
en can
be analy
z
ed i
n
to seve
ral p
o
int of mea
s
u
r
eme
n
t. No reco
rd d
a
ta in
the
measurement
point 6 at wa
ter
su
rface (d
epth = 0 met
er) b
ecau
s
e the pro
blem of
equipme
nt.
De
cre
asi
ng trend of
relativ
e amplitu
de o
c
cur
with in
creasi
ng frequ
e
n
cy at frequ
e
n
cy 10
until 40 Hz, a
m
plitude will
decrea
s
e 5 d
B
for incre
ase 10 Hz of fre
quen
cy. This
trend o
c
curre
d in
the all of dept
h (0, 0.5, 1 meter) a
nd in t
he all of
mea
s
ureme
n
t poi
nt (point 1 un
til 9). Otherwi
se,
at frequ
en
cy
50
Hz,
amplit
ude i
n
the
all
of de
pth
an
d poi
nt of m
easure
m
ent i
ncrea
se th
an
at
40 Hz.
The differen
c
es for
avera
g
e
of relative a
m
plitude at m
easure
m
ent p
o
int whi
c
h n
e
a
r from
paddl
e wheel
(poi
nt 2, 4,
7, 9)
with av
erag
e of
relat
i
ve amplitud
e
at mea
s
u
r
e
m
ent poi
nt which
far from pa
d
d
le wh
eel (p
oint 1, 3, 6, 8) ca
n be
grap
hed.
Differen
c
e
s
divi
ded into d
e
p
t
h
depe
nden
ce
(0, 0.5,
1 m
e
ter) fo
r
all of
freq
uen
cy (
10, 20,
30,
4
0
, 50
Hz).
Note that
relati
ve
amplitude
whi
c
h at dB u
n
it must be
co
nverted to
n
o
rm
al value u
s
ing
antilog, then
the avera
ge o
f
total reconve
r
t to dB unit to get the ave
r
age
of
avera
ge of amplitu
de. This
co
nversi
on m
ust
be
done b
e
cau
s
e data at dB unit can n
o
t to be avera
ge
dire
ctly.
Average of a
m
plitude for
measurement
points
whi
c
h
near from pa
ddle wh
eel at
depth 0
and 0.5
mete
r le
ss th
an m
easure
m
ent
points
whi
c
h
far from
pad
d
l
e wh
eel fo
r
all of freq
uen
cy.
Otherwise,
at
depth
1 met
e
r only which
have no co
n
s
is
te
nce valu
e of a
mplitud
e. In othe
r fa
cts,
variou
s de
pths h
a
ve no
significa
ntly correlati
on wit
h
amplitud
e.
The
g
r
ap
hs can be sho
w
n
in
Figure 5.
-7
0
-6
5
-6
0
-5
5
-5
0
-4
5
-4
0
10
20
30
40
50
F
r
e
q
ue
nc
y
(
H
z
)
A
v
erag
e o
f
am
p
l
i
t
u
d
e
(d
B
)
Near
f
r
om
p
addle
whee
l
F
ar
f
r
om
p
addle
whee
l
-7
0
-6
5
-6
0
-5
5
-5
0
-4
5
-4
0
1
0
20
30
4
0
50
F
r
e
q
ue
nc
y
(H
z
)
A
v
e
r
ag
e o
f
am
p
l
i
t
u
d
e
(d
B
)
Ne
ar
f
r
om
p
add
le
w
h
e
e
l
F
ar
f
r
om
pad
dle wh
eel
(a) Depth =
0
m
(b) Depth =
0
.
5
m
-7
0
-6
5
-6
0
-5
5
-5
0
-4
5
-4
0
10
20
30
40
50
F
r
e
que
nc
y
(
H
z
)
A
ver
ag
e o
f
a
m
p
l
i
t
u
d
e
(d
B
)
N
ear
f
r
om
paddl
e w
heel
F
ar
f
r
om
paddl
e w
heel
(c
) De
pth = m
Figure 5. Average a
m
plitud
e at near/far f
r
om
pa
ddle
wheel at depth
= 0, 0.5, and 1 m
TELKOM
NIKA
Vol. 7, No. 1, April 2009 : 1 - 12
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOMNI
KA
ISSN:
1693-6930
โ
9
Sound of Pad
d
le Wh
eel on
Sea Bass Growth (Su
nard
i)
4.2. Sound profile
Sound p
r
ofile
analyzed re
gardi
ng time
seri
es,
spe
c
trum freq
uen
cy, and p
h
a
s
e. Data
analysi
s
ha
s bee
n d
one
based
on ti
me-cag
e-p
o
si
tion, whi
c
h
i
s
b
a
sed
on
time of me
a
s
ure
(morning,
no
on, evenin
g),
posit
io
n of
cage in t
he b
r
eedin
g
fa
rm (edge ca
ge,
center ca
ge), and
positio
n of po
int measure
ment (A, B, C, D, E)
. The
s
e data
ca
n be extra
c
ted
5 points fo
r e
ach
morni
ng-edg
e cag
e
, morning-ce
nter
cage, noo
n-e
d
ge ca
ge, no
on-cente
r
ca
ge, evening
-edge
cag
e, an
d e
v
ening-ce
nter ca
ge. A
s
a
n exampl
e,
Figure 6
can
be
sh
own t
he time
se
ri
es,
spe
c
tru
m
, an
d pha
se at evening
-cente
r
cag
e
-p
oint B.
(a) Tim
e
se
ri
es
(b) Spe
c
tr
um
(c
) Pha
s
e
Figure 6. Time Serie
s
, spe
c
trum, an
d ph
ase at eveni
n
g
, cente
r
cag
e
, point B
Table 3. Setting analy
z
er f
o
r so
und p
r
ofi
l
e measurem
ent
Pa
rame
ter
Mornin
g
Noon
Ev
ening
Windo
w
Han
n
in
g
Han
n
in
g
Han
n
in
g
F
F
T
(pts)
409
6
102
4
409
6
Bit
16 bit mon
o
16 bit mon
o
16 bit mon
o
F
s
(Hz)
12,00
0
12,00
0
12,00
0
Method
Post process
Post process
Post process
The an
alysi
s
data ha
s b
ee
n don
e u
s
ing
SpectraLa
b
softwa
r
e
whi
c
h setting
anal
yzer a
s
sho
w
n in T
ab
l
e 3. Signal p
aram
eter o
n PF (Hz),
PA (% fs), TP (% fs),
THD (%), THD+N (%),
IMD (%),
an
d SNR (dB
)
taken f
r
om
measurement
based o
n
time-p
ositio
n. Analysis of e
v
ery
sign
al param
eter divided i
nto edge
cag
e and
cente
r
cag
e
. At every cage, the si
gnal pa
ram
e
te
r
value will be
comp
ared bet
wee
n times o
f
measu
r
e (m
ornin
g, noon,
evening
).
PF at eve
n
in
g time i
s
l
o
west a
n
d
rel
a
tively stable
at
14.65
Hz fo
r b
o
th e
dge
s (e
dge,
cente
r
) and
for all
mea
s
u
r
eme
n
t point
s (A, B,
C, D, E). PF at
noon
al
way
s
hig
h
e
r
tha
n
at
evening tim
e
, whi
c
h i
s
29.
30
Hz, fo
r all
both
cag
e
a
nd for all m
e
asu
r
em
ent p
o
ints
(A, B, C, D,
E). PF at mo
rning
rel
a
tive the same
wi
th PF
at eve
n
ing, except
at point B o
n
edge
cage
a
n
d
point C on
ce
nter ca
ge whi
c
h have hi
gh
er value of PF.
Evaluation Warning : The document was created with Spire.PDF for Python.
ยข
ISSN: 16
93-6
930
10
TELKOM
NIKA
Vol. 7, No. 1, April 2009 : 1 - 12
PA at noon time is hig
h
e
s
t and relatively stable at
0-1 % fs fo
r both ed
ge
s (edg
e,
cente
r) an
d for all mea
s
urement point
s (A, B, C,
D, E). PF at evening alway
s
less than at noo
n,
that is
abo
ut
negative
30-4
0
% fs, fo
r
all both
ca
ge
a
nd fo
r all
me
asu
r
em
ent p
o
ints
(A, B, C, D,
E). PA at mo
rning al
way
s
lowe
r than at
eveni
ng with
PA about negative 70-8
0
% fs, except at
point C an
d D on edge
cag
e
whi
c
h have
highe
r value than at evenin
g
.
Table
4
. Sign
al para
m
eter
at mornin
g for edge
cag
e
Para
mete
r
Point
A
Point
B
Point C
Point D
Point E
Mornin
g, ed
ge
cage
PF
(Hz)
14.65
38.
09
14.65
14.65
14.65
PA (% fs)
-47.30
-72.
79
-12.98
-18.26
-73.44
T
P
(% fs)
-38.41
-59.
91
-5.33
-10.35
-66.91
T
HD (%)
206.6
7
149.4
5
131.7
8
138.0
1
199.8
2
T
HD+
N (%)
144.1
8
87.70
126.0
0
204.2
0
171.2
5
IMD (%)
171.9
5
215.6
8
243.5
3
300.7
2
205.4
0
SNR (dB)
-3.18
1.14
-2.01
-2.01
-4.67
Mornin
g, cente
r
cage
PF
(Hz)
23.44
14.
65
35.16
20.51
20.51
PA (% fs)
-72.18
-41.
71
-76.74
-77.81
-78.10
T
P
(% fs)
-63.28
-39.
46
-65.50
-64.92
-64.72
T
HD (%)
158.3
2
78.31
232.4
2
354.9
4
346.4
0
T
HD+
N (%)
109.9
0
11.57
159.1
4
167.9
7
176.9
6
IMD (%)
229.2
5
189.2
7
213.9
8
187.3
6
210.4
1
SNR (dB)
-0.82
18.73
-4.03
-4.51
-4.96
Noo
n
, edg
e ca
ge
PF
(Hz)
35.16
29.
30
29.30
41.02
29.30
PA (% fs)
0.04
0.67
0.07
0.26
0.00
T
P
(% fs)
0.09
1.78
0.63
0.55
0.01
T
HD (%)
100.3
4
104.3
4
96.91
81.32
195.2
0
T
HD+
N (%)
60.23
202.1
7
146.1
7
139.3
8
120.1
6
IMD (%)
174.9
0
82.
59
96.86
99.14
199.9
0
SNR (dB)
4.40
-6.11
-3.30
-2.89
-1.60
Noo
n
, center cage
PF
(Hz)
29.30
70.
31
29.30
29.30
29.30
PA (% fs)
0.15
0.07
0.00
0.01
0.07
T
P
(% fs)
1.12
0.26
0.02
0.05
0.33
T
HD (%)
124.0
3
283.8
4
176.4
8
90.92
87.91
T
HD+
N (%)
264.2
9
182.8
4
130.7
7
90.24
46.37
IMD (%)
133.2
6
165.6
5
213.6
3
223.1
6
268.0
5
SNR (dB)
-8.44
-5
.24
-2.33
0.89
6.68
Eveni
ng, ed
ge
cage
PF
(Hz)
14.65
14.
65
14.65
14.65
17.58
PA (% fs)
-39.50
-31.
02
-42.23
-34.78
-42.48
T
P
(% fs)
-26.88
-25.
13
-33.91
-31.28
-37.21
T
HD (%)
78.06
44.20
197.1
8
76.10
60.42
T
HD+
N (%)
58.51
278.2
6
51.32
90.68
124.0
1
IMD (%)
188.5
0
271.6
2
196.9
8
254.8
6
233.0
4
SNR (dB)
4.65
-8.
89
5.80
0.85
-1.87
Eveni
ng, cente
r
cage
PF
(Hz)
17.58
14.
65
14.65
14.65
14.65
PA (% fs)
-38.42
-29.
64
-35.94
-38.45
-32.32
T
P
(% fs)
-28.80
-28.
57
-33.27
-33.47
-21.72
T
HD (%)
106.8
0
40.26
61.63
69.59
176.0
2
T
HD+
N (%)
52.50
9.58
10.36
82.43
140.8
2
IMD (%)
189.8
2
196.6
6
235.0
3
193.4
9
295.2
4
SNR (dB)
5.60
20.
37
19.69
1.68
-2.97
TP at noon time is hig
h
e
s
t and relative
ly stable at less than 0
-
2
% fs for both edge
s
(edg
e, cente
r
) and for all
measurement
points (A, B,
C, D, E). TP
at evening al
ways le
ss than at
Evaluation Warning : The document was created with Spire.PDF for Python.