TELKOM
NIKA
, Vol. 13, No. 4, Dece
mb
er 201
5, pp. 1133
~1
144
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i4.2047
1133
Re
cei
v
ed Ma
y 21, 201
5; Revi
sed Septe
m
ber
8, 2015
; Accepte
d
Septem
ber 27,
2015
Fundamental Review to Ozone Gas Sensing Using
Optical Fibre Sensors
Michael Dav
i
d
1
*, Mohd Ha
niff Ibrahim
2
, Se
v
i
a Mahdaliz
a Idrus
3
, Ta
y
Ching En Marcus
4
1,2,
3,4
Light
w
a
ve
Commun
i
cati
o
n
Rese
arch Group, Inn
o
vative
Engin
eeri
ng R
e
searc
h
Alli
anc
e,
Dep
a
rtment of T
e
lecommunic
a
tion En
gi
neer
i
ng,
F
a
cult
y
of Electrical E
ngi
neer
ing,
Univers
i
ti T
e
knolo
g
i Mal
a
ysia,
8131
0 Skud
ai,
Johor, Mala
ys
i
a
1
Departme
n
t of
T
e
lecommu
nic
a
tion En
gi
neer
i
ng, Schoo
l of Engi
neer
in
g and
Engin
eeri
ng T
e
chn
o
lo
g
y
,
F
edera
l
Univ
er
sit
y
of T
e
chnol
og
y, Minn
a. Ni
geri
a
*Corres
p
o
ndi
n
g
author, em
ail
:
hanif@fke.ut
m.m
y
1
; mdavid
2@liv
e.utm.m
y
2
A
b
st
r
a
ct
T
he ma
nuscr
ip
t is a review
of
basic ess
entia
l
s
to
o
z
o
ne gas
sensin
g w
i
th optical
meth
ods.
Optical
meth
ods
are
e
m
p
l
oy
ed to
mo
nitor
optica
l
a
b
s
orptio
n, e
m
iss
i
on, r
e
flectanc
e a
nd sc
atterin
g
of
gas s
a
mpl
e
s
at specific w
a
vele
ngths of l
i
ght s
pectru
m
.
In the lig
ht o
f
their impor
ta
nce in
nu
mer
ous disc
ipl
i
n
e
s
in
ana
lytical sc
ie
nces, nec
essar
y
integra
l
inf
o
rmati
on th
at
serves both as
a
basis a
nd r
e
fer
ence
mat
e
ria
l
for
inten
d
in
g res
e
archers
an
d ot
hers i
n
the fi
el
d is i
nevit
abl
e. T
h
is revi
ew
p
r
ovid
es ins
i
g
h
t into n
e
cess
ar
y
essenti
a
ls to g
a
s sensi
ng w
i
th optic
al fibre
sensors.
O
z
o
n
e
gas is c
hose
n
as a refer
e
n
c
e gas. Si
mu
la
ti
o
n
results for o
z
one
gas a
b
so
rption cross s
e
ction i
n
the
ultravi
o
let (UV
)
regio
n
of th
e spectru
m
u
s
in
g
spectralc
a
lc.co
m
si
mu
latio
n
h
a
ve als
o
be
en i
n
clu
ded.
Ke
y
w
ords
: Ab
sorptio
n
spectr
oscopy, Beer-
La
mb
ert law
,
opt
ical fibr
e, opti
c
al metho
d
, o
z
one g
a
s, senso
r
s
Copy
right
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
In the field
of analytical
sci
en
ce
s, o
p
tica
l meth
o
d
s h
a
ve be
come very
rel
e
vant to
nume
r
ou
s
disciplin
es [1]. O
p
tical
metho
d
s
a
r
e
em
ploy
ed to
monito
r
optical
ab
so
rption, emi
s
sio
n
,
reflecta
nce a
nd scatterin
g
of gas sa
mples at
sp
ecific
wavele
ngths of ligh
t
spect
r
um [2].
Ne
wton’
s discovery of th
e sola
r spe
c
trum in 19
6
6
is con
s
ide
r
ed to be th
e begin
n
ing
of
spe
c
tro
s
copy
[3]. The
enti
r
e
sp
ectrome
t
ric m
e
thod
s
solely
rely
o
n
emi
s
sion
o
r
a
b
sorptio
n
of
electroma
gne
tic ra
diation [
4
]. Optical m
e
thod re
leva
nce to
scien
c
e a
nd oth
e
r disciplin
es
h
a
s
made it
ne
ce
ssary to
put t
ogethe
r in
on
e pie
c
e
e
s
se
ntial fund
ame
n
tals
whi
c
h
could
be
a rea
d
y
guide
for
all
use
r
s.
The
n
e
ce
ssity of a
revie
w
m
a
n
u
script
whi
c
h
is i
n
tend
ed t
o
be
a
refe
re
nce
material i
s
in
evitable. This review p
r
ovi
des in
sig
h
t into vital fundamentals to g
a
s sen
s
ing
with
o
p
t
ic
a
l
fibr
e
s
e
ns
or
s
.
It is c
o
mp
r
i
s
e
d of o
p
t
ic
al
se
n
s
or me
cha
n
ism [5], advant
age
s of o
p
tical
s
e
ns
ors
[6, 7], optic
al s
e
ns
or
c
l
ass
i
fic
a
t
i
on [8], opt
ica
l
gas cells
cl
assificatio
n
[9], Beer-Lam
b
e
rt
law [1
0] an
d
ozone
ga
s
and it
s
re
se
arch
chall
e
n
ges [11-13].
Ozo
ne i
s
a t
r
ace g
a
s in
the
atmosp
he
re [
14] and
is di
scovere
d
in
1839 [1
5]. O
z
on
e is a u
s
eful ga
s, but
it is a th
re
at to
human life [1
6-19]. O
z
on
e
gas relevan
c
e has b
een
p
r
eviou
s
ly em
pha
sised
by the autho
rs [1
3].
Significant vo
lume of re
se
arch a
c
tivities whi
c
h
are
not just limite
d
to detectio
n
and mo
nito
ring
are
devoted
to ozone
ga
s [20
-
28]. T
hese a
c
tiviti
es a
r
e
sum
m
a
rised i
n
Fig
u
re
1. Relevant
simulatio
n
so
ftware
(spe
ct
racalc.
c
om
)
wa
s u
s
e
d
to
obtain
sim
u
l
a
tion results for
ozone
g
a
s
absorptio
n cross se
ction.
2. Mechanis
m of Optical
Sensors
“An Opti
cal S
ensor
(OS) i
s
a photo
n
ic
system in whi
c
h a
n
inp
u
t si
gnal (Ui
)
, mo
dulate
s
certai
n cha
r
a
c
teri
stics (ab
s
orption,
di
sp
ersi
on, reflect
i
on, tran
smi
s
si
on, et
c)
of light in an
opti
c
al
system, such
that after detection at the re
ceiv
e
r
, it is also p
r
o
c
e
s
sed an
d con
d
itioned,
the
system
will deliver an
out
put electrical
signal (U
o), whi
c
h
will be an exact reproduction of
the
obje
c
t variabl
e. If any of the pro
c
e
s
se
s or part
s
of it use fibre o
p
tic tech
nolo
g
y, a subgroup
of
the optical sensor
kno
w
n
as
Optical
Fibre S
e
n
s
ors (OFS)
or
Fibre
-
Opti
c S
ensors (FOS
), is
c
r
eated" [29].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 113
3 – 1144
1134
Figure 1. Re
search Activities on O
z
o
ne
gas
The inte
ra
ctio
n of light
with
matter
ca
n b
e
in a
n
y on
e
of the follo
wi
ng
ways: a
b
sorption,
diffraction, d
i
spe
r
si
on, re
flectan
c
e, a
nd inte
rfe
r
e
n
ce [1]. Electrom
agn
etic radiation
s
are
absorb
ed
by
chemi
c
al co
mpoun
ds co
ntaining cova
l
ent bond
s. This is a
s
a result of different
mech
ani
sm
s who
s
e effect
s are see
n
through
out the electro
m
ag
neti
c spe
c
trum [5]. Absorption
of
light by a m
o
lecule at
a
given frequ
ency i
s
cau
s
ed by el
ect
r
on resona
nce at that giv
en
freque
ncy [5,
30]. Light
ab
sorption
by o
z
on
e ga
s i
n
u
l
tra violet (UV
)
region
(200
to 400
nm, 6.
2
to 3.0 el
ectro
n
volt ((eV))
as
well
as in
the vi
sibl
e re
gion
(40
0
to
780
nm, 3.1 t
o
1.6eV
) of t
he
light sp
ectru
m
[5, 31] is
cau
s
e
d
by ex
citation of
val
ence ele
c
tro
n
s
in the
atom
s of mol
e
cule
s.
Light ab
so
rpti
on in mi
crowave regi
on
(0.
3
to 300
cm
,)
is du
e to a
ch
ange i
n
rotati
on of the b
o
n
d
s
in a
mole
cul
e
. Abso
rption
of light in
the
infra
r
ed
regi
on
(3 to
50
μ
m, 0.4 to
0.0
25 eV
) a
n
d
near
infrared (0.7
8
to 3
μ
m, 1.6 to 0.4 eV) occurs d
ue to the
vibration of the bon
d
s of a
molecul
e
[32
].
While
discu
s
sion
of this
pape
r is fo
cu
s on
ab
sorption spe
c
tro
s
copy, there a
r
e othe
r
cla
s
ses of opt
ical sen
s
ors such a
s
:
Refle
c
tion sp
ectro
s
copy [3
3, 34]
Lumine
s
cen
c
e intensity sp
ectro
s
copy [3
5]
Fluoresce
nce
lifetime
spect
r
osco
py [36]
Refrac
tive index s
p
ec
tros
copy [37]
Surface Plasmon re
so
nan
ce or e
lli
pso
m
etric spe
c
troscopy
[38]
The
classifications
are
m
eant to give
a cle
a
r pi
ctu
r
e and
are
n
o
t discu
s
sed
further.
Ozo
ne, the
gas
of interest in thi
s
article,
ab
sorbs lig
ht inte
nsity and
h
ence ab
so
rp
tion
spe
c
tro
s
copy
is dwell
ed up
on in other
se
ction
s
of this article.
Measurement
of radiatio
n
absorb
ed b
y
at
oms is
descri
bed
as atomic a
b
sorptio
n
spe
c
tro
s
copy
(3). The hi
st
ory of optical
sen
s
o
r
s
ca
n be tra
c
ed b
a
ck to
when
p
H
indi
cator
st
rips
were d
e
velop
ed by i
mmobi
lizing
p
H
-sen
sitive indi
cato
rs on
cellulo
se. The
ab
so
rption
spe
c
tru
m
of each
spe
c
i
e
s is u
n
iqu
e
and can be u
s
ed to ide
n
tify and quantif
y prese
n
ce of that speci
e
.
3. Merits of
Fibre Sensor
s
The autho
rs
have previo
u
s
ly [13] highlight
ed quite a
number of d
i
fferent meth
ods for
detectin
g
ozo
ne ga
s su
ch
as: cavity en
han
ced a
b
sorption sp
ectro
s
copy (CEAS
) [39, 40], ca
vity
ring do
wn
sp
ectro
s
copy [4
1], chemilumi
nesce
nce
[42
,
43], electro
c
hemi
c
al
con
c
entration cel
l
s
[44], photo-a
c
ou
stic
se
nsors [4
5, 46],
photo redu
ct
i
v
e [47], solid
state sen
s
ors [4
8] and
UV
absorption [49]. Authors of refe
rence [50] have shown the comp
atibility of
fibre sensors
with
optical
comm
unication sy
stems and the
i
r appli
c
atio
n
in electri
c
al n
o
isy system
s and explosi
o
n
Research
activities
on ozone
gas
Ozone gas
application
Agric
u
lture
Industry
Medical and
Phamaceutical
sciences
Environment
Ozone gas
generation
Ozone gas
hazards
and safety
Ozone gas
sensors
Cavity ringdown
spectroscopy
Cavity enhanced
absorption
spectroscopy
Chemiluminescen
c
e
Electrochemica
l
concentration cells
Photo acoustic
Photo Reductive
UV absorption
Solid state
sensors
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
9
30
Fundam
ental
Re
vie
w
to Ozone Ga
s Sen
s
ing
Usi
ng O
p
tical Fib
r
e Sensors
(Moh
d
Haniff Ibrahi
m
)
1135
pron
e
scena
ri
os. T
hey offe
r g
ood
re
si
stance to
co
rro
s
ion
p
r
one
e
n
vironm
ents
and
high
-voltage
and hi
gh
-te
m
perature
e
n
vironm
ents.
In Tabl
e 1,
we
co
mpa
r
e the p
e
rfo
r
mance of
o
p
tical
spe
c
tro
s
copy
with other
se
nsin
g method
s.
Table 1. Ga
s
sen
s
o
r
s
com
p
ari
s
on
Sensor T
y
pe
Merits
Demerits
Photo acoustic
Spectroscop
y
High
sensitivity
Response time is fast
Measurement is free from background
noise
Requires no reference as a result of
noise(51)
Selectivity
is po
or for ph
oto ac
oustic
sy
stem t
hat u
t
ilise
s
infrared
light
sources (52)
Photo reductive
gas sensor
Good
sensitivity
Short response ti
me
Inexpensive
Temperature
req
u
irement is high
Energ
y
dissipatio
n
is high (53, 54)
Electro-chemical
Sensors
The
y
are
po
rtabl
e
Exhibits high sensitivity
.
The
y
are ine
x
pe
nsive (55)
There
is the d
epletion of electrol
y
t
e
w
h
en used for sensing high
ozone
concentrations.
It requires fre
que
nt maintenance
(56, 57)
Metal oxide ozone
sensors
Broad ra
nge of a
pplication (58)
High temperat
ure requireme
nts of
detectors
w
h
ich translate into:
High energ
y
con
s
umption.
High
cost
Fabrication and s
i
ze lim
itations
(55, 56, 59
)
Solid State
Consumes less energ
y
Good
sensitivity
Fast response ti
me
Inexpensive
Light
weight
Characteristic activity
is high
Film sensor thickness requirement is
large when applied for ozone sensing
(56, 60, 61
)
Chemilumines-
cence.
Fast response ti
me
(43)
Requires to be calibrated w
i
thin
every
one hour (every
1 to 60 minutes) (43).
It is not absolute.
Optical
spectroscop
y
It is a rapid an
d direct means
of sensing
gases w
i
th goo
d
cross sensit
ivity
(57)
Require
no
cons
umables either for
calibration or ope
ration
Anti-electric magnetic interference
,
Excellent electrical insulativity
, an
d
Suitability
of
long-distance online
measurement
Gas sample mu
st be able in a distinct
manner to either absorb, emit, or
scatter transmitted light ra
y
s
at specific
region of the light
spectrum (7, 57
, 62);
Expensive
Large in size (6)
4. Sensor Cl
assifica
tion
Fibre o
p
tic
sensors can b
e
cl
a
ssifie
d
b
a
se
d on met
hod of fibre appli
c
ation in
sen
s
o
r
system a
nd
modulatio
n m
e
ch
ani
sm [8]. The cla
s
sification is illu
strated in Figu
re
2.
Figure 2. Optical sen
s
or
cla
ssifi
cation
Classif
i
cat
i
on
of Fibre Optic
Sensors
Method of
Fibre
Application
Extrins
i
c
Intrins
i
c
Modulation
Mechanism
Intens
ity
Phase
Polariz
a
tion
Wavelength
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 113
3 – 1144
1136
4.1. Classific
a
tion Based
on Fibre Ap
plication
Fibre o
p
tic se
nso
r
s a
r
e
cat
egori
s
e
d
into intrinsi
c an
d extrinsi
c types.
4.1.1. Intrinsic Optical Se
nsors
In an int
r
in
sic fibre
optic se
nso
r
, light i
s
rest
ri
cted withi
n
the optical
fibre and
mod
u
lation
of the light signal is
within
the fibre [8, 63]; it is illustra
ted in Figure 3.
Li
gh
t S
o
u
r
c
e
De
te
ct
o
r
S
amp
l
e
S
i
gna
l
F
i
b
r
e Op
t
i
c
C
a
bl
e
Figure 3. An Intrins
i
c
Fibre
Optic
Sens
or
4.1.2. Extrinsic Optical S
e
nsors
In an extrinsi
c se
nsor, inte
ractio
n betwe
en li
ght sign
a
l
(i.e. light signal modul
atio
n) and
the sample
to be
mea
s
u
r
ed ta
ke
s pla
c
e out
side th
e
optical fibre
cabl
e in
a ga
s
cell g
e
ne
ral
l
y
referred to a
cuvette [8, 64]. It
is illustrat
ed in Figure 4.
Figure 4. An Intrins
i
c
Fibre
Optic
Sens
or
4.2. Classific
a
tion Based
on Modulati
on Mecha
n
is
m
In the a
pplication of lig
ht
for sen
s
ing
i
n
fibr
e
o
p
t
ic
s
e
ns
or
s
,
d
i
ffe
r
e
n
t
c
h
ar
ac
ter
i
s
t
ics
o
f
light are m
o
dulated to a
c
hieve
sen
s
i
ng. The
s
e
chara
c
te
risti
c
s includ
e: intensity, pha
se,
polari
z
atio
n a
nd wavelen
g
th [8]. Ozo
ne
gas
mea
s
u
r
e
m
ent with
opt
ical a
b
sorption sp
ect
r
o
s
co
py
is dete
c
ted b
y
light intensity modulation.
Optical
gas cell
Sample
input
Light
detector
Sample
output
Light
source
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Fundam
ental
Re
vie
w
to Ozone Ga
s Sen
s
ing
Usi
ng O
p
tical Fib
r
e Sensors
(Moh
d
Haniff Ibrahi
m
)
1137
5. Basic Exp
e
rimental Se
tup for O
z
o
n
e
Detec
t
ion v
i
a Optical Absorp
tion Spectr
o
sco
p
y
A typical absorption spe
c
tro
s
copi
c experim
ental setup is mad
e
up of the
followin
g
comp
one
nts:
sou
r
ce of lig
ht radiatio
n, a mono
ch
ro
mator (exce
p
t
when li
ght source i
s
a la
ser).
Light sou
r
ces ca
n eithe
r
b
e
broad
ban
d
or
ch
rom
a
tic [65]. Light e
m
anating
fro
m
a b
r
oa
dba
nd
light sou
r
ce
must be
pro
p
agated th
rou
gh a collimati
ng len
s
to eli
m
inate scatte
ring effe
cts. L
i
ght
cou
p
ler,
wav
eguid
e
(fibre, fibre bun
dle,
plana
r wave
guide
), variab
le attenuato
r
, lense
s
(optical),
cuvette (a
bso
r
ption
cell or
gas
cell
), light detecti
on
uni
t (spe
ctro
met
e
r, photo
d
e
tector), amplifi
e
r,
se
con
dary filt
er, tran
sd
uce
r
, data a
c
q
u
isition uni
t, dat
a processin
g
unit, and
display unit [1, 6
6
].
Figure 5 is
a typical exp
e
rime
ntal set
up for
o
z
o
n
e
measureme
n
ts u
s
ing o
p
t
ical ab
so
rpti
on
s
p
ec
trosc
opy
. It
is
the typic
a
l extrins
i
c
s
e
tup.
H
R
4000
S
p
ect
r
o
me
t
e
r
Oz
o
n
e
Ge
n
e
ra
t
o
r
D
H
2
000
L
I
G
H
T
SO
UR
CE
A
c
o
mp
ut
er
w
i
t
h
O
cean
-
Vi
e
w
s
o
f
t
wa
re
O
z
on
e M
o
ni
t
o
r
Ga
s
C
e
l
l
C
o
ll
im
a
t
i
n
g
Le
ns
O
3
O
2
O
3
Figure 5. A basi
c
layout of an optical ab
so
rption spe
c
troscopy for o
z
on
e mea
s
u
r
ements
5.2. Classific
a
tion of G
as
Cells
The d
e
si
gn
of an o
p
tical
ga
s cell in
absorptio
n
spectrosco
py i
s
a
majo
r fa
ctor th
at
affects the o
v
erall system
perform
an
ce in t
he form of sensiti
v
ity and speed of resp
o
n
se.
Authors of
re
feren
c
e [9]
h
a
ve cla
s
sified
gas cells
ba
sed on
th
e
p
r
incipl
es of
lig
ht
tran
smi
ssi
on.
The
cla
ssifi
cation in
clud
e
s
tra
n
smissio
n
type, re
fle
c
tive type, sl
ow lig
ht an
d
refractive in
dex
perio
dic
cha
n
ge. More info
rmation o
n
this ca
n be obta
i
ned from referen
c
e [9].
6. Beer
-Lam
bert La
w
Abso
rption
spectrosco
py is t
he q
uantifi
c
ation
of the
energy
that
molecule
s ab
sorb an
d
and is tran
sla
t
ed to the bending and
stret
c
hin
g
of
the bond
s betwe
e
n
the atoms in the molecul
e
s
[67]. The
working
p
r
inci
ple
of ga
s
cell
s i
n
optical
g
a
s
sensor is ba
se
d on
the
Bee
r
- L
a
mbe
r
t la
w.
Acco
rdi
ng to
Beer a
nd
La
mbert, the
co
nce
n
trat
ion
of
a sample
ca
n be
determi
ned by
dete
c
ting
the inten
s
ity of the output l
i
ght. Beer-La
m
bert la
w
de
scribe
s the
re
lation of
the i
nput light an
d
the
output light that are affecte
d
by the measuri
ng ga
s.
Beer’
s
la
w: it
states that th
e fra
c
tion
of t
he in
cide
nt li
ght ab
so
rbe
d
is
pro
portio
n
a
l to the
number of the absorbin
g molecules in the light-path an
d will increase with increasing
c
o
nc
en
tr
a
t
io
n o
r
s
a
mp
le
th
ic
kn
es
s
[1
0
]
.
Lambe
rt’s l
a
w: it state
s
that the fraction
of m
ono
ch
romati
c light ab
so
rbed by a
homog
ene
ou
s me
dium
(sample
)
is i
n
d
epen
dent of
t
he inten
s
ity of the inci
de
nt light and
e
a
ch
su
ccessive u
n
it layer abso
r
bs a
n
equ
al frac
tio
n
of the light incid
ent on it [10].
The combin
a
t
ion of the two laws toget
her yiel
d
s
th
e Beer-Lam
b
e
rt law. If ra
diation of
intensity
I
0
(zero sample
concentratio
n
) is directe
d
a
t
a sample in
a path length
, radiation of
intensity
I
t
lea
v
es the sa
mp
le [68]. Beer-Lambe
rt law
sho
w
s the m
a
thematical e
x
pressio
n
of the
relation
bet
ween the
ab
sorbin
g
sampl
e
s
con
c
e
n
tra
t
ion (
c
) and absorb
a
n
c
e (
A
). It written as
follow:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 113
3 – 1144
1138
ε
(
1
)
Whe
r
e:
ε
= molar ab
sorption
coeffi
cient (m
2
mol
-1
)
c
= sample
concentratio
n
(mol m
-3
) and
= optical p
a
th length in (m
)
In an experim
ental scena
ri
o, measu
r
em
ents
are obtai
ned in the form of transmittance
T
defined a
s
:
(
2
)
The ratio
is
defined a
s
th
e transmittan
c
e
T
:
From e
quatio
n 2, abso
r
ba
n
c
e
A
ca
n also
be defined a
s
:
A
l
n
=
Optic
a
l dens
i
ty (
D
),optical depth (6
9)
or optical thickne
s
s (70
)
(3)
7. Absorp
tion of Light b
y
Ozone
Ozo
ne ga
s d
e
tection via
optical a
b
sorption
sp
ect
r
o
s
copy is ge
n
e
rally a
cce
pt
ed [71].
This m
e
thod
has
an in
herent advanta
g
e
to mea
s
u
r
e
ozo
ne a
b
solutely without
the req
u
irem
ent
for con
s
uma
b
les to
op
era
t
e or
calib
rat
e
[7]. Whe
r
e
a
s, o
z
on
e m
easure
m
ent
with the m
e
th
od of
chemil
umine
s
cen
c
e i
s
not
absolute, it has to
b
e
frequ
ently cal
i
brated.
Che
m
ilumine
scen
ce
techni
que
re
quire
s to
be
calib
rated
ev
ery 1 to
60
minutes [43].
Ozone
ab
so
rbs light
in
the
Hartley b
and
(200
–31
0 nm
) [72], the Hu
ggin
s
ban
d (3
10–3
75 nm
), the Cha
ppiu
s
band (375
–6
03
nm), and th
e Wulf band
(beyond 70
0 nm).
It ha
s pea
k abso
r
ption at 253
.65nm (
.
1.147
10
/molecule
) (73
)
and 6
0
3nm (
5
.
1
8
1
0
/m
o
l
ec
ule
) (64
)
.
7.1. The Abs
o
rption Cros
s Section of
Ozon
e
Erro
r free
me
asu
r
em
ent of
ozone
g
a
s i
s
d
epe
nde
nt
upon
o
z
on
e
gas ab
so
rptio
n
cro
s
s
se
ction [74].
Hen
c
e, lot
s
of resea
r
ch
efforts a
r
e d
e
voted to inv
e
stigate th
e
accurate valu
e o
f
ozo
ne
ab
sorption
cro
s
s
section
[64, 7
5
-78]. Sp
ectralcal
c
.com
si
mulator ha
s
been
u
s
ed i
n
this
review to
sh
o
w
the effe
ct o
f
temperatu
r
e
on ab
so
rptio
n
cross
se
ction in
the
Ha
rtley band. Fig
u
re
6 sho
w
s ab
sorption
cross
se
ction of o
z
one ga
s o
b
ta
i
ned by sim
u
l
a
tion with
sp
ectral
cal
c
.co
m
a
t
temperature
s
of 200 K and 300 K resp
ectively. Oz
o
ne gas a
b
sorption cross section at 253
.65
(actu
a
l
spe
c
t
r
al line
is
2
53.652
6 nm
) is
1
.
16
1
0
/molecule
and
1.14
10
/
molecule
at
temperatu
r
es of 200 K and 300 K re
spe
c
tively. Abso
rption cro
ss sectio
n de
cre
a
ses
with incre
a
se
in temperatu
r
e from
200
K to 300 K. The pe
rcenta
ge de
crea
se
is 0.95 % at
a
measurement
wavele
ngth of
253.6 nm. Malicet
et al
repo
rted
a d
e
c
re
ase of
1
% in ab
so
rpti
on
cro
s
s se
ction
for a temperature ri
se fro
m
218 K to 295 K [79]. Similarly, Serdyuch
en
ko
et
al
repo
rted
a sli
ght de
cre
a
se
in ab
sorptio
n
cross
se
ction with tem
p
eratu
r
e in
cre
a
se i
n
the
Ha
rtley
band [80]. Th
e result thus
obtaine
d is in
good ag
ree
m
ent with pre
v
ious works.
8.
Materials Compatibility
w
i
th
Oz
one
Not all materi
als are co
mp
atible with o
z
one ga
s. Ozo
ne ga
s com
p
atibility with common
material
s u
s
e
d
for ozone sensi
ng in literature is
com
p
ared in T
able
2.
The ratin
g
in the table depict
s ch
emi
c
al
effect of
ozon
e on the listed ma
terials. A
material
rate
d "A" (ex
c
ell
ent) im
plies
ozo
ne h
a
s n
o
effect; "B"
(goo
d) ozone
ha
s min
o
r
e
ffect.
Other
catego
ries n
o
t inclu
ded in the table are "C"
(f
air), which implies o
z
on
e e
ffect is mode
rate
and "D" m
e
a
n
s o
z
o
ne ha
s a
severe e
ffect on the
material. Th
e
rating a
s
d
e
f
ined by O
z
o
ne
solutio
n
s i
s
for ozo
ne ga
s concentratio
n
s greate
r
than
1000 p
p
m [81
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Fundam
ental
Re
vie
w
to Ozone Ga
s Sen
s
ing
Usi
ng O
p
tical Fib
r
e Sensors
(Moh
d
Haniff Ibrahi
m
)
1139
Figure 6. Spectral
cal
c
.co
m
simulatio
n
of oz
o
ne ab
so
rp
tion cro
s
s se
ction at 200K and 30
0K
Table 2. Materials
com
pati
b
ility with ozone (81)
Material
Rating
Example of appli
c
ations
Aluminium
B - Goo
d
(64)
Brass
B - G
o
o
d
(82)
Glass
A - Excellent
(53, 83)
PTFE (
T
eflon®)
A - Excellent
(30)
Silicone
A - Excellent
(84, 85)
Stainless steel -
304
B - Goo
d
/Excellent
(86)
Stainless steel -
316
A - Excellent
(86)
Viton®
A - Excellent
(87)
9. Rese
arch
Challeng
es
Re
cent re
se
a
r
ch a
c
tivities
on ozone ga
s se
ns
i
ng wit
h
optical ab
sorption
spe
c
t
r
osco
py
inclu
de sen
s
i
t
ivity enhan
cement thro
ug
h optical
p
a
th length an
d
ozon
e ga
s
absorptio
n cross
se
ction optim
ization [88] a
nd effect of noise r
edu
ctio
n on absorpti
on cros
s se
ct
ion of ozon
e gas
in the visi
ble
spe
c
tru
m
[89
]. Redefinitio
n of the
val
u
e of o
z
on
e g
a
s
ab
sorption
cross
se
ctio
n in
the UV for a
c
curate m
e
a
s
ureme
n
ts of
ozon
e
ga
s [90] and preservation
of linearity of Bear-
Lambe
rts la
w by me
asuri
n
g o
z
on
e
gas co
ncentrati
o
n
at an alternate sam
p
lin
g
wavelen
g
th
of
279.95
nm
[85, 91].
Ozo
ne g
a
s me
asurem
ent in
t
he visi
ble
sp
ectru
m
u
s
in
g
LED a
s
a li
ght
sou
r
ce at 60
5 nm [92] an
d se
nsitivity enha
ncem
ent
throug
h light
prop
agatio
n
at incide
nt an
gle
[93]. Temperature a
nd pre
s
sure
depe
n
den
ce of
ozo
ne ga
s ab
so
rption cro
ss
section in the
UV
and vi
sible
sp
ectru
m
s [80,
94]. Perfo
r
ma
nce
indi
cato
rs/metri
cs of
o
z
on
e
sen
s
o
r
s and
sen
s
o
r
s
in
gene
ral in
clu
de sele
ctivity, sen
s
it
ivity,
accuracy, re
solutio
n
, re
spon
se
time, fabrication cost,
dynamic
ran
g
e
, pre
c
isio
n a
nd linea
rity [58, 95-99]. Se
nso
r
re
quire
ments eithe
r
in perfo
rman
ce,
physi
cal, o
r
co
st, are ap
p
lication
dep
e
ndent [1
00
].
Re
sea
r
ch a
c
t
i
vities on
sen
s
ors i
n
g
ene
ral
and
ozone
sensors in
pa
rticula
r
, a
r
e
aimed to
wa
rds
meeting
rece
nt sen
s
in
g requi
reme
nts,
stren
g
theni
ng
and upg
radi
n
g
some o
r
all
of t
he aforem
entione
d para
m
et
ers [11, 12, 49].
10. Conclu
sions
The review
p
aper
su
mma
rise
s ne
ce
ssa
r
y informatio
n. It is a re
a
d
y referen
c
e
material
for n
e
w re
se
a
r
ch
ers i
n
the
field of a
b
sorption
spe
c
tro
s
copy fo
r o
z
o
ne
sen
s
o
r
ap
plicatio
n. Issu
es
discu
s
sed in
clud
e ba
si
c
operating p
r
i
n
cipl
es
of op
tical sen
s
ors and its me
chani
sm. Opti
cal
sen
s
o
r
s a
s
well as opti
c
al
gas
cell
s
we
re cla
s
sifi
ed. Specific
prop
erties
of o
z
on
e ga
s
were al
so
highlighte
d
. Re
cent re
se
arch activitie
s
hav
e be
en
enume
r
ated
. Spetralcal
c.
com si
mulati
on
software was used
to demonstrate
possi
b
ility of obtaining prelimin
ary results
before experim
ent
s
are cond
ucte
d.
24
0
26
0
28
0
30
0
32
0
34
0
36
0
10
-24
10
-22
10
-20
10
-18
10
-16
w
a
v
e
l
e
n
g
th
(
n
m
)
A
b
s
o
r
p
t
i
o
n
cr
o
s
s se
ct
i
o
n
(
l
o
g
10
cm
2
/
m
o
l
ec
ul
e)
30
0 K
20
0 K
Ha
r
t
l
e
y
Ba
n
d
Hu
g
g
i
n
s
Ba
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 113
3 – 1144
1140
Ackn
o
w
l
e
dg
ements
The a
u
tho
r
s
woul
d like to t
han
k
Universi
ti Tekn
ologi
Malaysia
(UT
M
) for spon
soring
this
publi
c
ation u
nder
Re
sea
r
ch Unive
r
sity Grant
(RUG
) Schem
e, gra
n
t no: 05J60
and 04
H3
5. The
Ministry of Hi
gher Ed
ucation (MOE
) M
a
laysia
i
s
ackno
w
le
dged f
o
r provisio
n of Fundam
en
tal
Re
sea
r
ch Grant Sche
me
(FRGS) g
r
an
t no: 4F317
and 4F
565.
The Ni
geri
a
n
Educatio
n T
r
ust
Fund
(ETF
) i
s
al
so
ackno
w
led
ged fo
r t
he finan
cial
suppo
rt giving
inform
of Te
rtiary Edu
c
ati
on
Tru
s
t Fund (T
ET-Fun
d).
Referen
ces
[1]
Otto
SW.
F
i
bre Optic Ch
e
m
i
c
al Se
nsors a
nd Bi
ose
n
sors
Volu
me I
. CR
C Press Boc
a
Raton A
n
n
Boston Lo
nd
on
. 1991: 2 & 26.
[2]
Dep
a
rtment
of Chem
istr
y
.
Beer-L
amb
e
r
t
La
w
.
T
he Univ
ersit
y
of Adel
ai
de
Australi
a
http://
w
w
w
c
h
e
m
istr
y
a
del
ai
de
edu
au/e
x
ter
nal
/soc-rel/conte
n
t/beersla
w
h
t
m Accessed
o
n
li
ne on
12t
h
F
ebruar
y, 20
13
.
[3]
Ebdo
n L, Evan
s EH.
An introd
uction to a
nalyt
ical ato
m
ic spe
c
trometry
. Joh
n
W
ile
y
& S
ons
. 1998.
[4]
F
i
field
F
,
Keal
e
y
D. A
nal
ytic
al C
hem
istr
y
:
prin
ci
pl
es a
n
d
practice. B
l
ack
w
e
l
l
Sci
ence,
Ltd.: Mald
en
,
MA; F
i
fth Edition. 2000: 2
70.
[5]
Mulroo
ne
y J, Clifford
J,
F
i
tzpatrick C,
Ch
a
m
bers
P,
Le
w
i
s E, ed
itors. D
e
tection
of c
a
r
bon
di
o
x
i
d
e
emissio
n
s from
a la
nd tra
n
sp
o
r
t vehicl
e us
ing
a mid-
infrar
ed
optica
l
fib
e
r ba
sed se
nsor. O
p
tics East
200
6; 200
6:
Internati
ona
l Soci
ety for Optics and Photo
n
ics
.
[6]
Gaddar
i A, Berger F
,
Amjoud M, Sanchez
J,
Lahcini M, Rhouta B, et al. A novel
w
a
y
for the
s
y
nt
hesis
of ti
n di
o
x
i
de s
o
l
–ge
l d
e
rive
d t
h
in fi
lms: Ap
p
licatio
n to
O
3 d
e
tectio
n at
ambi
ent
temperatur
e.
Sensors a
nd Act
uators B: Che
m
ic
al
. 20
13; 17
6: 811-7.
[7]
Gomez A, Rosen E. F
a
st re
spons
e cavit
y
enh
anc
ed ozo
ne mon
i
tor.
Atmos
p
h
e
ric Me
asure
m
ent
T
e
chni
ques
. 2
013; 6(2).
[8]
Yu M. F
i
b
e
r
Optic Sens
or
T
e
chnol
og
y.
S
ens
ors
and
Actuators
La
bor
ator
y, De
p
a
rtment
of
Mecha
n
ica
l
Eng
i
neer
ing,
Univ
ersit
y
of Ma
r
y
l
a
n
d
, USA
https://
w
w
w
g
o
ogl
ecom/#q=
F
i
ber+
O
ptic
+
S
en
sor+
T
e
chnolog
y+
Mia
o
+
Y
u. 20
08.
[9]
Z
hao Y, B
a
i
L,
Z
han
g YN,
Ho
u W
,
W
ang
Q. Revie
w
On
Structures A
nd Pr
incip
l
es
Of Gas Cel
l
s I
n
T
he Absorptio
n
Spectrum
–B
ased Optic
a
l F
i
ber Gas Se
ns
or S
y
stems.
In
strume
ntatio
n Scienc
e
&
T
e
chno
logy
. 2
012; 40(
5): 385
-401.
[10]
Sing
h D, De
shw
a
l B, Kumar VS.
T
he absor
ption l
a
w
s
and
meas
ure
m
ent
of absorptio
n intens
ity.
Co
mpre
he
nsiv
e Engi
ne
erin
g Che
m
istry
. IK Internati
o
n
a
l Pu
blish
i
n
g
Hous
e
,
Ne
w
D
e
l
h
i. 20
08: 259.
[11]
F
ang J,
Park
SC, Schl
ag
L,
Staud
en
T
,
Pezo
l
d
t J, Jac
o
bs HO. L
o
ca
liz
ed
Col
l
ecti
on
of Airb
orne
Anal
ytes: A T
r
ansp
o
rt Drive
n
Appro
a
ch to
Improv
e th
e R
e
spo
n
se T
i
me
of Existin
g
Gas Sens
or
Designs.
Adva
nced F
uncti
on
al Materi
als
. 20
14.
[12]
Coli
ndr
es SC,
Aguir K, C
e
rva
n
tes Sod
i
F
,
Vargas
LV, Sal
a
zar JAM, F
e
b
l
es VG. Ozone
Sensi
n
g
Based o
n
Pal
l
a
d
ium D
e
corate
d Carb
on Na
no
tubes.
Sens
ors
. 2014; 14(
4): 6806-
18.
[13]
David M, Ibrahim MH, Idr
u
s
SM, Azmi AI, Ngajikin NH,
Marcus
T
C
E, e
t
a
l
. Prog
re
ss i
n
Ozon
e
Sensors Perfor
mance: A Revi
e
w
.
J
u
rna
l
T
e
knol
ogi
. 2
015; 7
3
(6).
[14]
Jansse
n C, Si
mone
D, Gu
in
e
t
M. Preparati
o
n an
d acc
u
rate
measur
ement
of pure
ozo
ne.
Review
of
Scientific Instru
me
nts
. 2011; 8
2
(3): 034
10
2.
[15]
Von
So
nnta
g
C, Von Gunte
n
U.
Ch
e
m
istry of O
z
o
ne i
n
W
a
ter and W
a
stew
ater T
r
eatme
nt
. IWA
Publ
ishi
ng. 20
12.
[16]
Rubi
n MB. T
he h
i
stor
y of
oz
one. T
he Sc
hö
nbe
in per
iod, 1
839
–1
868. Bul
l
Hist
C
hem. 2
001; 26(
1):
40-5
6
.
[17]
Brimblec
omb
e
P. Interest in air pol
luti
on a
m
ong e
a
rl
y F
e
llo
w
s
of the R
o
yal Soc
i
et
y
.
Notes an
d
records of the
Ro
yal S
o
ciet
y
of Lond
on. 19
7
8
; 32(2): 12
3-9
.
[18]
Rosco
e HK, Clemitsh
a
w
K
C
. Measurem
ent
tec
hniq
ues in
gas-ph
a
se tropos
ph
eric ch
emistr
y
:
A
selectiv
e vie
w
of the past, pre
s
ent, and futur
e
.
Science
. 1
9
97; 276(
53
15): 106
5-72.
[19]
Udh
a
y
akum
ar
G, Rashmi M,
Patel K,
Rame
sh
G, Sures
h
A. Supp
l
y
Po
wer F
a
ctor Impr
oveme
n
t i
n
Ozone Gener
a
t
or S
y
stem Usi
ng Active
Po
w
e
r F
a
ctor Correction C
onvert
e
r.
Internation
a
l
Journ
a
l of
Pow
e
r Electron
ics and Dr
ive S
ystems (IJPED
S)
. 2015; 6(2).
[20]
David M, Marcus T
C
E, Yaacob M, Salim
MR, Hussin N, Ibrahim MH, et al. A N
e
w
Ozone
Conc
entratio
n
Reg
u
lator.
T
E
L
K
OMNIKA Indones
ian J
ourn
a
l of Electrica
l
Engi
neer
in
g
. 2015; 13(
2).
[21]
F
a
cta M, Sala
m Z
,
Buntat Z
.
A Ne
w
T
y
pe
of
Planar C
ham
b
e
r for High F
r
e
que
nc
y
Oz
one
Generator
Sy
s
t
e
m
.
Adva
n
c
ed Materi
als
Rese
arch
. 20
1
4
; 896: 72
6-9.
[22]
F
a
cta M, Sutikno T
,
Salam Z
.
T
he Applic
atio
n
of F
P
GA in PW
M Controll
e
d
Reso
na
nt Co
nverter for
an Ozo
ne Ge
nerator.
Inter
n
ation
a
l J
ourn
a
l
of Pow
e
r El
e
c
tronics a
nd
Drive Syste
m
s
(IJPEDS)
.
201
3; 3(3): 336
-43.
[23]
Cole J, Su S, Blake
l
e
y
R,
Ko
onath P, Hec
h
t A. Radiol
ytic
yield
of ozon
e i
n
air for lo
w
do
se neutro
n
and x-ra
y/g
a
m
m
a-ra
y
r
adi
atio
n.
Radi
atio
n Physics an
d Ch
emistry
. 2015;
106: 95-
8.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Fundam
ental
Re
vie
w
to Ozone Ga
s Sen
s
ing
Usi
ng O
p
tical Fib
r
e Sensors
(Moh
d
Haniff Ibrahi
m
)
1141
[24]
Kumhar
n
W
,
Sudh
ibra
bh
a S.
Stud
y
of o
z
one
a
nd s
u
lf
ur d
i
o
x
i
d
e
usi
ng T
hail
a
n
d
b
a
sed
Bre
w
e
r
Spectrop
hotom
eters.
Advanc
e
s
in Space R
e
s
earch
. 20
14; 5
3
(5): 802-
9.
[25]
Li YL. E
x
per
im
ental Inv
e
stigat
ion o
n
Ozon
e Mass
T
r
ansfer
Coeffici
ent Enh
ance
d
b
y
El
ectric F
i
eld i
n
Liq
u
id Ph
ase.
Advanc
ed Mat
e
rials R
e
se
arc
h
. 2014; 8
64: 2
139-
44.
[26]
Costag
lio
la MA
, Murena F
,
Prati MV. Exhaus
t em
issio
n
s of
volatil
e
or
ga
nic
compo
unds
of
po
w
e
red
t
w
o-
w
h
e
e
l
e
rs:
Effect of cold
start and
ve
hicl
e
sp
eed.
Contri
butio
n t
o
gre
e
n
h
o
u
se
effect an
d
troposp
heric o
z
one formati
on
.
Science of the T
o
tal Enviro
n
m
e
n
t
. 2014; 4
6
8
: 1043-
9.
[27]
Lefoh
n AS, Em
er
y
C, Sha
d
w
i
c
k
D, W
e
rnli H,
Jung J, Oltman
s SJ. Estimates of backgr
o
u
n
d
surfac
e
ozon
e co
nce
n
t
rations
in th
e Un
ited
States
b
a
sed
o
n
mod
e
l-d
e
rive
d so
urce
app
ortionm
ent.
Atmos
pher
ic Enviro
nment
. 20
14; 84: 27
5-88.
[28]
Guo W
Q, Yin
RL, Z
hou
XJ, Du JS, Cao H
O,
Yang SS,
et.al. Sulfamet
ho
xaz
o
le
degr
adati
on b
y
ultraso
und/
ozo
ne o
x
i
datio
n p
r
ocess in
w
a
t
e
r: Kinetics, mecha
n
isms, an
d path
w
a
y
s.
Ultrasonics
sonoc
he
mistry
.
2015; 2
2
: 182-
7.
[29]
Lóp
ez-Hi
g
u
e
ra
JM. Optical sensors: Ed. Univ
ersid
ad de C
a
n
t
abria; 19
98.
[30]
O'
Keeffe S, Dool
y G, F
i
tzpat
rick C, Le
w
i
s
E,
editors. Optical fi
bre se
ns
or for the me
a
s
ureme
n
t of
ozon
e.
Journ
a
l
of Physics: Conferenc
e Seri
e
s
. 2005: IOP Publis
hi
ng.
[3
1
]
Arsh
a
k
K, H
i
ckey
G, Fo
rd
e
E, H
a
rri
s J, e
d
i
to
rs. D
e
vel
o
p
m
e
n
t
o
f
n
o
v
el
ro
o
m
te
mp
e
r
a
t
u
r
e
o
z
one
sensors
for h
ealth
an
d s
a
fet
y
ap
plic
atio
n
s
.
Electron
ics
T
e
chnolo
g
y
,
30th Inter
nati
o
nal
Spri
ng
Semin
a
r on; 20
07:
IEEE
.
[32]
Deg
ner M, Da
maschke N, E
w
a
l
d H, L
e
w
i
s
E,
editors. Hig
h resol
u
tion L
E
D-spectrosc
o
p
y
for sens
or
app
licati
o
n
in
harsh
env
iro
n
m
ent: A se
ns
or s
y
st
em bas
ed on
LED-
lig
ht
sourc
e
s an
d
stan
dar
d
photo
d
i
ode rec
e
iver is sh
o
w
n
as an e
x
amp
l
e of this
senso
r
concept for i
n
-situ gas me
a
s
ureme
n
ts
do
w
n
to th
e p
pb ra
ng
e. 20
1
0
IEEE Intern
atio
n
a
l Instrum
entatio
n a
n
d
Measur
ement T
e
chnolog
y
Confer
ence, I
2
MT
C 2010, M
a
y 3,
201
0
-
Ma
y
6, 201
0; 201
0;
Aust
i
n
,
T
X
, United
sta
t
es: IEEE
Comp
uter Soci
et
y
.
[33]
Re
yn
olds
CS.
Meas
urin
g
bl
ack h
o
le
sp
in
usi
n
g
x-ra
y r
e
flectio
n
s
pect
r
oscop
y
.
T
he Ph
ysics
of
Accretion o
n
to
Black Ho
les: Sprin
ger; 20
15. p. 277-9
4
.
[34]
Garcia JA, Dau
s
er T
,
Steiner
JF, McClintock
JE, Keck ML, Wilms J. On Estimating th
e H
i
gh-E
nerg
y
Cutoff in the
X-ra
y
S
pect
r
a of Black Holes
vi
a Re
flection Sp
ectroscop
y
. ar
Xi
v preprint
arXiv:15
05
036
16. 201
5.
[35]
Caval
li E, Angi
uli F, Belletti
A, Boutina
ud P. Lumi
nesce
nce
spectr
osco
p
y
o
f
YVO 4: Ln 3+, Bi 3+
(Ln
3+
=
Eu 3+
, Sm 3+
, Dy
3+
) ph
osph
ors.
Optical Materials
. 20
14; 36(1
0
): 164
2-8.
[36]
Cod
a
S, T
hompson
AJ, Ke
nn
ed
y GT
, Roch
e KL
, A
y
a
r
u
L,
Bans
i DS,
et
al. F
l
u
o
resce
n
c
e lif
etime
spectrosco
p
y
of
tissue autofl
uoresc
ence
in
norma
l
a
nd
dis
ease
d
co
lon
m
easur
ed
e
x
viv
o
usi
ng
a
fiber-o
ptic prob
e.
Bio
m
ed
ical optics
expr
ess
. 2014; 5(2): 5
1
5
-38.
[37]
Z
a
rzana
KJ, C
app
a C
D
, T
o
lbert MA. Sensiti
v
it
y
of
Aeros
o
l Refractive
I
nde
x Retriev
a
ls Us
ing
Optic
a
l
Spectrosco
p
y
.
Aeroso
l Scienc
e and T
e
ch
no
l
ogy
. 201
4; 48(
11): 113
3-4
4
.
[38]
Del Ross
o T
,
Sánchez J, Carval
ho R, P
and
oli O, Cremon
a M. Accurate an
d simultan
eou
s
measur
ement
of thickn
ess a
n
d
refractive
in
d
e
x of t
herm
a
ll
y
evap
orate
d
thi
n
org
a
n
i
c films
b
y
surface
plasm
on reso
n
ance sp
ectrosc
o
p
y
.
Optics express
. 201
4; 2
2
(16): 18
91
4-2
3
.
[39]
Darb
y SB, S
m
ith PD, Ven
abl
es DS. Ca
vit
y
-e
nh
ance
d
absor
ption
usi
ng a
n
atom
ic
line
sourc
e
:
app
licati
on to d
eep-
UV measu
r
ements.
Analy
s
t
. 2012; 137(
1
0
): 2318-
21.
[40]
Gomez A, Rosen E. F
a
st re
spons
e cavit
y
enh
anc
ed ozo
ne mon
i
tor.
Atmos
p
h
e
ric Me
asure
m
ent
T
e
chni
ques D
i
scussio
n
s
. 201
2; 5(5): 722
3-4
1
.
[41]
W
a
shenfe
l
d
e
r
R, W
agn
er N,
Dub
e
W
,
Bro
w
n S.
Me
asure
m
ent of
atmos
pher
ic oz
on
e b
y
c
a
vit
y
ri
ng-
do
w
n
s
pectros
cop
y
.
Enviro
n
m
e
n
tal sci
ence
& technolo
g
y
. 201
1; 45(7): 29
38-4
4
.
[42]
Ermel M, Os
w
a
ld R, Ma
yer J
C
, Moravek A,
Song G, Beck M, et al. Preparation meth
ods
to optimize
the performa
n
c
e of sensor discs for fast
chemil
umi
nesc
ence oz
one a
nal
y
z
ers.
En
viro
nm
en
ta
l
Scienc
e an
d T
e
chn
o
lo
gy
. 201
3; 47(4): 19
30-
6.
[43]
Z
ahn A, W
epp
ner J, W
i
dman
n H,
Schl
ote-H
o
lu
bek K, Burg
er B, K
ühn
er T
,
et al. A fast and pr
eci
s
e
chemil
umi
nesc
ence ozon
e detector
for edd
y fl
u
x
an
d airb
orn
e
a
pplic
atio
n.
A
t
m
o
sp
he
r
i
c
Measur
e
m
ent T
e
chni
ques
. 2
012; 5(2): 3
63-
75.
[44]
Eastman JA, S
t
edman
DH. A
fast respo
n
se
s
ensor f
o
r oz
o
ne
edd
y-c
o
rrel
a
tion
flu
x
m
e
a
s
ureme
n
ts
.
Atmos
pher
ic Enviro
nment (19
67)
. 197
7; 11(1
2
): 1209-
11.
[45]
Bottger S, K
o
hring M, Wi
ller
U, Schade W.
Off-beam quartz-enh
anced photoacoustic
s
p
ectroscopy
w
i
t
h
LEDs.
Ap
plie
d Physics B
:
Lasers and O
p
tics
. 2013; 1
1
3
(2): 227-
32.
[46]
Gonda
l MA, D
a
stage
er A, Y
a
mani
Z
H
. Las
e
r-induc
ed
p
hot
oaco
u
stic d
e
te
ction
of oz
one
at 26
6
nm
usin
g reso
na
nt cells
of differe
nt
config
urati
o
n. Journ
a
l
of E
n
viro
nm
enta
l
S
c
ienc
e a
nd H
e
alth - Part A
T
o
xic/Hazar
d
o
u
s Substanc
es
and Envir
onm
ental En
gi
neer
i
ng. 200
9; 44(1
3
): 1457-
64.
[47]
Chie
n F
SS, W
ang C
R
, Cha
n
YL, Lin H
L
, Ch
en MH, W
u
RJ
. F
a
st-respons
e ozo
ne se
nso
r
w
i
t
h
Z
n
O
nan
orods
gro
w
n b
y
chem
ical
vapor d
e
p
o
siti
on.
Sens
ors a
nd Actuators,
B: Che
m
ica
l
. 2
010; 1
44(1):
120-
5.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No
. 4, Decem
b
e
r
2015 : 113
3 – 1144
1142
[48]
Mastelar
o VR,
Z
í
lio SC, d
a
S
i
lva LF
, P
e
liss
a
ri
PI, Bern
ardi
MI, Guerin J,
et al. Ozo
ne
g
a
s se
nsor
base
d
on
na
n
o
cr
y
s
ta
lli
ne
Sr
T
i
<
sub>
1-x<
/sub>
F
e
<
su
b
>
x<
/sub>
O<
sub>
3<
/sub>
thin
films.
Sensors a
nd A
c
tuators
B: Chemical. 2
013.
[49]
Gao R, Bal
l
ar
d J, W
a
tts L,
T
hornberr
y
T
,
Cicior
a
S, McLau
ghl
in R,
et al. A comp
ac
t, fast UV
photom
eter for measur
ement of ozone from resear
ch aircr
a
ft.
Atmosp
her
ic M
easur
e
m
ent
T
e
chni
ques
. 2
012; 5(9): 2
201
-10.
[50]
Dieme
er M, T
r
ommel E. F
i
b
e
r-optic
micro
ben
d
se
nsors:
sens
itivit
y as
a fu
nctio
n
of
distorti
on
w
a
velength.
Optics letters
. 19
84; 9(6): 26
0-2
.
[51]
Kohri
ng M, W
iller U, Bottg
er
S, Pohlkotter
A, Schade W
.
Fiber-co
upl
ed
ozon
e sens
or
base
d
on
tunin
g
fork-e
nh
ance
d
i
n
terfero
m
etric ph
otoac
oustic sp
ectros
cop
y
.
IEEE Journal on Selected Topics
in Quantu
m
El
ectronics
. 20
12
; 18(5): 156
6-7
2
.
[52]
Mao
X, Z
h
o
u
X, Z
h
a
i
L, Y
u
Q. Dissolv
ed
Gas-in-Oil A
n
al
ysis
in T
r
ans
formers Base
d
on
Near-
Infrared Phot
o
a
coustic Sp
ectroscop
y
.
Intern
ation
a
l Jo
urna
l of T
hermophys
i
cs
. 2014: 1-7.
[53]
Wu RJ, Chiu
YC, Wu CH, Su YJ. Applicat
io
n of Au/
T
iO 2–W
O 3 material
in v
i
sibl
e li
ght
photor
ed
uctive
ozone se
nsors
.
Thin Solid Fil
m
s
. 20
15; 57
4: 156-6
1
.
[54]
Che
n
MH, Lu
CS, W
u
RJ. Novel Pt/T
iO2-W
O
3 materials irrad
i
ate
d
b
y
vis
i
bl
e li
ght
used in a
photor
ed
uctive
ozo
ne s
ens
or.
Jour
nal
of th
e
T
a
iw
an Instit
u
t
e of C
h
e
m
ic
al
Eng
i
ne
ers
. 2014; 45(3):
104
3-8.
[55]
W
ang Z
,
Qiu
X, T
ang R, Oile
r J, Z
hu J, H
uan
g H, et al., editors. Ozon
e senosr us
ing
Z
n
O based
film bu
lk
aco
u
stic res
onato
r
. 201
1 1
6
th
Inte
rnati
o
n
a
l
Soli
d-State
S
ensors, Actu
ators a
n
d
Micros
ystems
Confer
ence,
T
R
ANSDU
C
ER
S'
11, Jun
e
5,
2
011
- Ju
ne
9,
2
011;
20
11; B
e
ij
ing,
Chi
na:
IEEE Computer Societ
y
.
[56]
W
ang CY, Bec
k
er R, Passo
w
T
,
Pletschen W
,
Köhl
er K, Cimall
a
V, et al
. Photon stim
ula
t
ed sens
o
r
base
d
on in
di
u
m
oxi
de n
ano
p
a
rticles I:
w
i
de
-c
once
n
tration-
rang
e ozon
e
monitori
ng i
n
a
i
r.
Sensors
and Actuat
ors B: Chemica
l
. 2011; 15
2(2): 23
5-40.
[57]
Dakin JP, C
h
a
m
bers P. Revi
e
w
of meth
ods
of opt
ical
gas
detectio
n
b
y
d
i
rect optica
l
sp
ectroscop
y
,
w
i
t
h
emp
hasis
on corre
latio
n
spectrosco
p
y
.
Optical Ch
e
m
ic
al Sens
ors: Spring
er
. 200
6: 457-7
7
.
[58]
Da Si
lva LF
, C
a
tto AC, Avan
si Jr W
,
Caval
c
ant
e LS, A
ndr
es J, Aguir
K, et al. A n
o
vel
ozon
e g
a
s
sensor b
a
se
d on on
e dim
ensi
ona
l (1D)
α
-Ag 2 W
O
4 nanostructures. Nan
o
scale. 20
14.
[59]
Yu JH, Y
ang
H
J
, Mo HS, Kim
T
S
, Jeong T
S
, Youn
CJ, et
al. Se
nsin
g me
chan
ism a
nd
b
ehav
ior
of
sputtered Z
n
C
d
O ozon
e se
ns
ors en
ha
nced
b
y
ph
otons for
room- temp
era
t
ure op
erati
on.
Journ
a
l of
Electron
ic Materials
. 2
013; 4
2
(4): 720-
5.
[60]
T
h
irumalair
a
ja
n S, Mast
elar
o VR, Esc
a
n
h
oel
a Jr
CA. I
n
-De
p
th U
n
d
e
r
standi
ng
of t
he
Rel
a
tio
n
bet
w
e
en
CuAl
O2 Particle
Si
ze an
d Mor
p
h
o
lo
g
y
for Ozon
e Gas Se
nsor
Detectio
n at a
Nan
o
scal
e
Leve
l
.
ACS
ap
plie
d materi
als &
interfaces
. 2
014; 6(2
3
): 217
39-4
9
.
[61]
Korotcenk
ov G, Cho B.
Ozone meas
u
r
ing:
W
hat can limit ap
pli
c
ation of Sn
O 2-based
cond
uctometric
gas sensors
?
Sensors a
nd A
c
tuators B: Chemical
. 2
012; 1
61(1): 28-
44.
[62]
Cham
bers P.
A stud
y of
a corre
lati
on
spec
trosco
p
y
gas d
e
tectio
n metho
d
: U
n
iversit
y
of
Southam
pton; 200
5.
[63]
T
r
acey PM. Int
r
insic fi
ber-
opti
c
sens
ors.
IEE
E
T
r
ansacti
ons
on
Ind
u
stry A
pplic
atio
ns
. 1991; 27(1):
96-8.
[64]
O’Keeffe S, F
i
tzpatrick C, L
e
w
i
s E. A
n
o
p
tical fi
bre
ba
sed u
l
tra vi
ol
e
t
and v
i
sib
l
e
absor
ptio
n
spectrosco
p
y
s
y
stem for
oz
one c
onc
entra
tion mo
nitori
ng
.
Sensors a
n
d
Actuators B: Che
m
ic
al
.
200
7; 125(
2): 372-8.
[65]
F
e
in H,
Liu
SY
. Chemic
al s
e
n
s
ing t
e
ch
n
i
q
u
e
s
empl
o
y
i
ng liq
uid-c
o
re optica
l
fibers.
Google Patents
.
200
0.
[66]
O'
Keeffe S, F
i
tzpatrick C,
Le
w
i
s E. Ozo
ne
meas
ur
ement
i
n
visi
bl
e re
gi
o
n
: an
o
p
tical
fi
bre s
ensor
sy
s
t
e
m
.
Electr
onics L
e
tters
. 2005; 41(
24): 13
17-9.
[67]
Hardim
an R,
Mckee D, Ki
mme
rle K. Qu
alitativ
e Com
p
ariso
n
of Cavi
t
y
Ri
ng-D
o
w
n
vs. Direct
Measur
ement Absorpti
on
S
p
ectroscop
y
of Determi
n
i
n
g
p
pb Mo
isture
Le
vels i
n
UHP
Gases.
Gases
and T
e
ch
no
log
y
. 2004; 3(3).
[68]
Den
n
e
y
RC.
Di
ctionary of spe
c
troscopy
. W
ill
e
y
2nd Ed
itio
n. 1982: 1
19-2
0
.
[69]
En Marcus
T
C
, David M, Y
a
a
c
ob M, Sa
lim
MR
, Ibrahim M
H
, Nga
jiki
n
N
H
,
et al. Abs
o
rpt
i
on
Cross
Section Simu
l
a
tion: a
Prel
i
m
inar
y
Stu
d
y
of
Ult
ravi
olet
Absorpti
on S
p
ectroscop
y
f
o
r
Ozone Gas
Measur
ement.
Ju
rn
al
Te
kn
o
l
og
i
. 201
3; 64(3).
[70]
Larse
n ML, C
l
a
rk AS. On th
e li
nk b
e
t
w
e
e
n
particl
e siz
e
and
dev
iatio
n
s
from the Be
er
–Lam
bert–
Boug
uer
la
w
f
o
r d
i
rect trans
mission.
Jour
n
a
l
of Qua
n
titati
ve Sp
ectrosco
py a
n
d
Ra
diati
v
e T
r
ansfer
.
201
4; 133: 64
6
-
51.
[71]
Köhri
ng M, W
i
l
l
er U, B
ö
ttger
S, Pohlk
ö
tte
r
A, Schad
e W
.
F
i
ber-Co
u
p
l
ed
Ozone S
ensor
Base
d o
n
T
uning F
o
rk-E
nha
nce
d
Interf
erometric
Pho
t
oacoustic
Sp
ectroscop
y
.
IE
EE Jour
na
l of
Sel
e
cte
d
T
opics in Qua
n
t
um El
ectronic
s
. 2012; 18(
5): 156
6-72.
[72]
Murata I, Sato
K, Okano S,
T
o
mika
w
a
Y.
Measur
ements
of stratosph
e
r
i
c ozo
ne
w
i
th
a ba
ll
oon-
born
e
optic
al o
z
one se
nsor.
Internati
o
n
a
l Jo
urna
l of Re
mot
e
Sensi
n
g
. 20
0
9
; 30(15-
16): 3
961-
6.
Evaluation Warning : The document was created with Spire.PDF for Python.