TELKOM
NIKA
, Vol.14, No
.1, March 2
0
1
6
, pp. 29~3
8
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i1.3298
29
Re
cei
v
ed O
c
t
ober 2
1
, 201
5; Revi
se
d Ja
nuar
y 8, 201
6
;
Accepte
d
Ja
nuary 22, 20
1
6
Power Quality Analysis of Integration Photovoltaic
Generator to Three Phase Grid under Variable Solar
Irradiance Level
Amirullah*
1,4
, Ontosen
o Penangs
ang
2
, Adi Soeprijanto
3
1,2,
3
Electrical E
ngi
neer
in
g Dep
a
rtment, Industrial T
e
chnol
og
y F
a
cult
y
,
Kampus Institu
t
T
e
knolog
i Se
pul
uh No
pem
b
e
r (IT
S
) Sukolil
o Surab
a
y
a Ind
ones
ia
Jl. Arief Rahm
an Hak
i
m Sura
ba
ya Ind
o
n
e
sia
6011
1 Ph/F
a
x
: +
62-31-5
94 7
3
02/+
62-3
1
-5
93
123
7
4
Electrical En
gi
neer
ing Stu
d
y
Program, Eng
i
neer
ing F
a
c
u
lty,
Univers
i
t
y
of Bha
y
a
ngk
ara Su
raba
ya
Jl. Ahmad Yan
i
114 Sura
ba
ya
Indon
esi
a
, Ph/F
ax: +
62-3
1
-82
856
02/+
62-
31-
828
56
01
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: amirull
a
h
1
4
@
mhs.ee.its.a
c
.id
1,4
, am9520
012
00
3@
ya
ho
o.com
1,4
zenno
_3
79@
yaho
o.com
2
, adi
sup@
ee.its.ac.id
3
A
b
st
r
a
ct
Objective of r
e
searc
h
is to analy
z
e th
e
influe
nce of
solar irra
dia
n
ce an
d inte
gratio
n of
photov
olta
ic (PV) gen
erator t
o
pow
er
q
ual
ity of three ph
a
s
e grid
on t
h
e
constant te
mperatur
e an
d l
oad,
base
d
on c
h
a
nges i
n
so
me
level
of integ
r
ation
of PV
gen
erator. Po
w
e
r quality as
pects studi
ed
ar
e
fluctuatio
n or c
han
gin
g
, an
d h
a
rmonics
of vol
t
age
a
nd c
u
rre
nt on e
i
g
h
t sce
nari
o
s PV g
e
n
e
rator co
nn
ecte
d
to three-
phas
e
grid,
usin
g p
a
ssive filter
circ
uit
mod
e
l
do
ub
le b
a
n
d
p
a
ss (
dou
ble
tun
ed).
Rese
arch s
h
o
w
s
that voltage a
n
d
current valu
es on
the PC
C bus before
use do
ubl
e tun
ed
passiv
e
filter on the
c
ond
itio
n
only co
nnect s
i
ngl
e ge
ner
ator
is still stable. How
e
ver,
if the PV gener
ato
r
connecte
d to the three pha
se
grid, a
m
o
unte
d
to more tha
n
one g
e
n
e
ratio
n
,
voltage an
d current gri
d
bec
omes uns
ta
ble
(fluctuation).
At
the lev
e
l of so
lar rad
i
ati
on re
ma
ins, the
gre
a
ter
nu
mber o
f
PV gener
ator
s conn
ected t
o
the gri
d
thre
e-
phas
e, then th
e valu
es of vol
t
age an
d curre
nt T
HD increa
ses. At the level of solar irra
dia
n
ce incr
eas
es,
avera
ge T
HD
of voltage a
n
d
current grid a
l
so incr
e
a
se
d. Avarage T
H
D
of volt
age an
d current gri
d
i
s
reduc
ed
after
dou
ble
tun
ed
p
a
ssive fi
lter i
n
s
t
alle
d. T
herefor
e, do
ubl
e tun
e
d
pass
i
ve fi
lter
abl
e to
i
m
pro
v
e
profil
e of voltag
e and curre
nt T
HD grid
as a re
sult of the integ
r
ation of
a nu
mber of PV pow
er gen
erators i
n
three-p
has
e gri
d
accord
ing IE
EE Standar
d 5
19-1
992.
Ke
y
w
ords
: Po
w
e
r Quality, Total Har
m
o
n
ic D
i
stortion, Phot
o
v
oltaic
Generat
o
r, Grid, Irradiance
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
One im
porta
nt asp
e
ct
of the integ
r
ati
on of
p
hotov
oltaic (PV)
g
enerator as part
of
distrib
u
ted g
e
neratio
n is th
e power q
ual
ity gener
ate
d
from their o
peratio
n for e
x
ample volta
ge
unbal
an
ce (fl
u
ctuatio
n), voltage a
nd
curre
n
t harm
onics. A stu
d
y to model
and
simula
te
resi
dential
g
r
id
con
n
e
c
te
d sol
a
r
phot
ovoltaic
syst
em ha
s b
e
e
n
discu
s
sed.
Mathemati
c
al
modelin
g a
n
d
sim
u
lation
of
PV ge
neratio
n sy
stem
s h
a
s b
een
cond
u
c
ted to
d
e
termine th
e I-V,
P-
I, P-V charact
e
risti
cs [1]. Rese
arch of d
e
s
ign
and im
pl
ementation
of PV-
based th
ree ph
ase four-
w
i
r
e
se
r
i
es
hyb
r
id
ac
tive
po
w
e
r
filte
r
for p
o
w
er
qualit
y improvem
e
n
t have be
en
con
d
u
c
ted.
This
pape
r p
r
op
oses a
PV ba
se
d thre
e ph
ase four wi
re
se
rie
s
hyb
r
id
a
c
tive po
we
r filter arra
nge
d
by
seri
es a
c
tive
power filter a
nd an
L
C
sh
unt pa
ssive filter. The
pro
posed m
odel
eliminate
s
b
o
th
the current
and voltage
harm
oni
cs a
nd com
pen
sates re
active
powe
r
, neutral cu
rrent, and
voltage interruption [2]. A study of powe
r
quality analys
is of ph
otovoltaic ge
neration integrated
in
use
r
grid.
Thi
s
p
ape
r
analy
z
e
s
im
pa
ct of
gri
d
-con
ne
cted p
hotovolta
ic p
o
wer plan
t on h
a
rm
oni
c in
the powe
r
qu
ality aspect o
f
distribution
netwo
rk
[3]. The we
akne
ss of three stu
d
ies a
r
e num
ber
of PV genera
t
or used only
a single PV gene
ration a
nd co
nne
cted
to single ph
ase g
r
id, so that
curre
n
t and
voltage h
a
rm
o
n
ics ge
ne
rate
d due
to the
pre
s
en
ce
of t
he inve
rter i
n
PV gene
rati
ng
system i
s
not very significa
nt.
Re
sea
r
ch to
asse
ss the i
m
pact
of inte
gration
of
a
numbe
r
of th
e PV ge
ne
ra
tor to
power
quality at different
solar i
r
radiatio
n leve
l an
d d
a
ily load
con
s
umption
ba
se
d on
ch
ange
s in
the level of PV integratio
n is already d
o
n
e
. The
di
sadv
antage i
s
a P
V
gene
rator t
hat is u
s
e
d
o
n
ly
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 1, March 2
016 : 29 – 38
30
to conn
ect to singl
e pha
se g
r
id and
harm
oni
c an
alysis i
s
only
performed
on the ha
rm
onic
voltage [4].
Re
sea
r
ch on
the effects of installa
tion
of PV generator to powe
r
quality in thre
e
pha
se in
du
strial an
d resi
dential di
stri
bution
n
e
two
r
k
ha
s be
en
discu
s
sed.
Ho
wever,
PV
gene
rato
r whi
c
h in
stalle
d i
s
still static
which i
s
ba
sed
on level
of solar i
r
radian
ce, temperature,
and current a
nd voltage ha
rmoni
c gen
erated by PV g
ener
ator
with a fixed value [5]. Objective of
resea
r
ch is to
analyze the i
n
fluen
ce of solar irradi
an
ce and integ
r
a
t
ion of PV generato
r
to po
wer
quality of three pha
se g
r
i
d
on the con
s
tant tempe
r
ature an
d loa
d
, base
d
on cha
nge
s in some
level of integration of PV g
enerator. Po
wer q
ualit
y aspe
cts
studie
d
are fluctu
ation or chan
gi
ng,
and ha
rmo
n
ics of voltage
and cu
rrent
on eight
scenari
o
s PV g
enerator
con
necte
d to three-
pha
se gri
d
. The re
st of this pap
er is o
r
gani
z
ed a
s
follow. Sectio
n 2 sho
w
s propo
sed mo
d
e
l of
singl
e an
d three
PV ge
nerato
r
syste
m
co
nne
cted
to three
-
p
h
a
se
gri
d
, po
wer qu
ality and
harm
oni
c, ph
otovoltaic sy
stem, mathe
m
atical
mo
de
l of PV cell
and pa
nel, a
nd sh
unt pa
ssive
filter. Section
3 descri
b
e
s
influence of
sola
r
irradia
n
ce a
nd inte
gration
of PV generator
to
voltage, cu
rre
n
t, voltage an
d cu
rrent Tot
a
l Ha
rmo
n
ic
Disto
r
tion (T
HD)
of
three pha
se
g
r
id on
the
con
s
tant tem
peratu
r
e an
d load, based o
n
chan
ge
s
in some level of
integration of
PV generato
r
.
In this
se
ctio
n, example
case
s
studie
d
are
pres
e
n
te
d and
the
re
sults a
r
e ve
rified
with tho
s
e
of
Matlab/Simuli
nk. Finally, the pape
r in co
nclu
ded in Se
ction 4.
2.
Proposed M
odel of PV Genera
tor Sy
s
t
em Con
n
ec
ted to Thre
e
Phase Grid
Figure 1 sh
o
w
s a m
odel o
f
a single PV power
syste
m
con
n
e
c
ted
three p
hase
grid [6].
The serie
s
of
DC/DC conv
erter
con
s
i
s
ts of a boos
t converte
r circuit that functions to raise the
voltage of the DC outp
u
t of the PV generator. DC out
put voltage of the boost co
nverter
circuit
is
then
conve
r
ted by the
DC/AC inve
rter into a th
re
e-pha
se A
C
vo
ltage to the
three
-
p
h
a
s
e g
r
id
.
Single PV ge
nerato
r
mo
de
l is then u
s
e
d
as a
refere
nce to
cre
a
te
a model for
many (multi)
PV
gene
rato
rs
co
nne
cted to the grid via a three
-
ph
as
e distribution tra
n
sformer
(Figu
r
e 1). The stu
d
y
use
d
thre
e group
s of mod
e
ls of PV ge
nerato
r
s wi
th
the active p
o
we
r of 100
kW
ea
ch. Be
side
s
con
n
e
c
ting
th
e
three-pha
se
g
r
id, the PV generator is
also conn
ect
ed to the three grou
ps of three
pha
se loa
d
wi
th active power 20 kW respectively.
The obje
c
tive
of resea
r
ch i
s
to analyze the influen
ce
of solar i
rra
di
ance and inte
gration
of photovoltai
c
(PV) g
ene
rator to po
we
r quality of
three pha
se
gri
d
on the con
s
tant temperat
ure
and lo
ad, ba
sed on
ch
ang
e
s
in
some l
e
vel of in
tegration of PV gen
erato
r
. Powe
r quality aspe
cts
studie
d
i
s
th
e
fluctuatio
n, a
nd h
a
rm
oni
cs of volt
ag
e a
n
d
current
on
eight
scena
ri
os PV
ge
nera
t
or
con
n
e
c
ted to
three ph
ase
grid (a
) befo
r
e and
(b)
after dou
ble tun
ed pa
ssive fil
t
er installe
d as
follow four
condition
s re
spectively: (i) irradi
an
ce
400 W/m
2
, (ii) irra
dian
ce
600 W/m
2
, (iii)
irra
dian
ce 80
0
W/m
2
, an
d
(iv) irradi
an
ce 100
0
W/m
2
on the
co
ndi
tion 1, 2, an
d
3 of mod
e
l
PV
gene
rato
r co
nne
cted to th
ree
pha
se
gri
d
. The m
odel
of pa
ssive
filter ci
rcuit is
a dou
ble
ban
d
pass
(do
uble
tuned
). The
circuit m
ode
l simul
a
tion
s co
ndu
cted t
o
dete
r
mine
the voltage
a
nd
curre
n
t curve
s
of three ph
ase g
r
id. The
r
e ar
e two scenari
o
s
simul
a
tions do
ne that before a
n
d
after the
dou
ble tune
d p
a
ssive
filter in
stalled.
Wh
e
r
e
i
n
e
a
c
h
co
ns
is
ting
o
f
fo
ur
sc
en
ar
io
s fo
r
a
total of eight
scena
rio
s
int
egratio
n of P
V
gene
ra
tors.
The next
sta
ge is to
determine the valu
e of
voltage an
d curre
n
t THD on ea
ch
scenari
o
g
r
id. The final
ste
p
is to
comp
are the val
u
e of
voltage, cu
rrent, voltage and current
THD
grid
on
point co
mmo
n cou
p
ling
(P
CC) bu
s refe
rs to
the IEEE
Sta
ndard 519-1992. This
standart is the basis for determ
i
ning level of power quality at
the eight sce
nario
s radiati
on levels an
d
integr
ation o
f
grid con
n
e
c
ted PV generator mod
e
l three
pha
se. Simul
a
tion and a
n
a
l
ysis of this re
sea
r
ch use M
a
tlab/Simulin
k.
Figure 1. Model of singl
e PV generato
r
sy
stem conn
ected to three
phase grid
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Powe
r Qualit
y Analysi
s
of Integration P
hotovolta
ic G
enerator to T
h
ree Ph
ase Grid…
(Am
i
rullah)
31
Figure 2. Pro
posed mod
e
l of three PV generator
syst
em con
n
e
c
te
d to three ph
ase g
r
id
2.1.
Po
w
e
r Quality
and Harmo
n
ic
Powe
r quality
mean
s the q
uality of voltage
and
cu
rre
n
t. Voltage and cu
rrent qu
ality is
determi
ned
b
a
se
d on th
e
value or the t
o
lera
nce lim
it
of the equi
p
m
ent u
s
ed. I
n
gen
eral,
cu
rre
n
t
and voltage
wave form
of the pure sin
u
s
oid
a
l wavefo
rm. One p
r
ob
lem that ari
s
e
s
is the
wave
of
curre
n
t and
voltage is n
o
t sinu
soid
al
or defe
c
ts
cau
s
e
d
by the eme
r
ge
n
c
e of ha
rmo
n
ics
gene
rated by
the powe
r
system [7]. The term us
ed to
describ
e deviations ha
rmo
n
ics sinu
soi
d
al
wave a
s
so
cia
t
ed with th
e current an
d vo
ltage of
different amplitu
d
e
and f
r
equ
en
cy. Cha
nge
s
in
curre
n
t an
d
voltage
wave
forms cau
s
e
d
by h
a
rm
on
ics will
disru
p
t the el
ectri
c
al
distri
butio
n
system a
nd
lowe
r the qu
ality
of the
system p
o
we
r. Figure
1 sho
w
s the si
gnal waveform
distortio
n
d
u
e
to harmoni
cs. Ha
rmo
n
ic
distorti
o
n
exp
l
ained th
rou
g
h
seve
ral
key
paramete
r
s t
o
descri
be the effects of harmonics
on p
o
we
r syste
m
compo
nent
s. The first paramete
r
is T
o
tal
Harmoni
c
Distortion (T
HD). THD i
s
the
ratio of
the
rms value
of harm
oni
c co
mpone
nts to
the
rms val
ue of t
he fund
ament
al co
mpon
ent
and i
s
co
mm
only expre
ssed in p
e
rcent
(%). Thi
s
ind
e
x
is used to me
asu
r
e d
e
viations p
e
ri
odic
waveform
s
containin
g
harmonics of a p
e
rfect
sine
wave
[7]. On a perfec
t
s
i
ne wave T
HD value is z
e
ro perc
ent. THD
V
value i
s
expre
s
sed i
n
Equation 1.
a =
w
a
v
e
at the fundame
n
tal fr
equ
enc
y, b.1 =
3r
d harmo
nic
w
a
ve, b.2 =
w
a
ve harmo
nics 5
t
h,
c. = Distorted
Wave
Figure 3. Dist
orted
Wave resulte
d
by Ha
rmoni
cs.
%
100
1
2
2
U
U
THD
k
n
n
V
(1)
De
scription: U
n
= h
a
r
m
on
ic
c
o
mp
o
nen
t; U
1
= the
fundam
ental
com
pon
ent; K = maxim
u
m
harm
oni
c co
mpone
nts.
The second
para
m
eter i
s
the Individual
Harm
oni
c Di
stortion
(IHD) is the ratio of rm
s
value of indi
vidual harmo
nics to rm
s value of the fu
ndame
n
tal co
mpone
nt. The third pa
ram
e
ter
is the Total Dema
nd Di
st
ortion (T
DD)
or THD
I
is a
m
ount of cu
rre
nt harm
oni
c disto
r
tion a
n
d
defined in the
following e
q
u
a
tion [7]:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 1, March 2
016 : 29 – 38
32
%
100
2
2
L
k
n
n
I
I
I
THD
(2)
Whe
r
e I
L
i
s
t
he maxim
u
m
load
current
(for 15
o
r
3
0
minute
s
) at t
he fun
dame
n
t
al frequ
en
cy at
the
PCC, cal
c
ulate
d
from the
ave
r
age
curre
n
t
of
th
e
maximum
lo
ad of
12
mon
t
hs e
a
rli
e
r. T
H
D
value of the
maximum all
o
wa
ble for e
a
ch
cou
n
try i
s
differe
nt de
pendi
ng on t
he sta
nda
rd
use
d
.
THD
standards most o
ften used in electri
c
power
syste
m is the
IEEE Standard 519-1992
[8].
There are two crite
r
ia that
are used in
the anal
ysis of harmoni
c distortion th
at limits voltage
distortio
n
and
current di
stortion limits.
2.2.
Photov
oltaic Sy
stem
The
wo
rki
ng
prin
ciple
of P
V
panel
is when
su
nlight
rea
c
he
s th
e
surfa
c
e
of th
e solar
panel, then th
e photon
s wit
h
a ce
rtain en
ergy level
will
be absorbed
, thus freein
g
electron
s fro
m
their atomi
c
bond
s a
nd th
e flow
of ele
c
tri
c
current.
The
sola
r p
a
nels
gen
erat
e the
curre
n
t that
varies de
pen
ding o
n
the
voltage of it. Cu
rre
nt-v
olt
age cha
r
a
c
te
ristics sh
ow the
rel
a
tion
ship.
Whe
n
the v
o
ltage of th
e
sol
a
r
pan
el
is e
qual
to
ze
ro,
sho
r
t
circuit
cu
rre
n
t
(I
SC
), whi
c
h
is
prop
ortio
nal to the amo
unt
of sola
r ra
dia
t
ion on the
so
lar pa
nel can
be mea
s
u
r
ed.
I
SC
v
a
lue rise
s
with in
cre
a
si
ng tempe
r
atu
r
e, althou
gh t
he sta
nda
rd t
e
mpe
r
ature reco
rde
d
for t
he short
circuit
cur
r
e
n
t
is 25
0
C. If
the current sol
a
r p
a
nel is equ
al to zero, the solar pa
nel is
descri
bed a
s
an
open ci
rcuit. The voltage o
n
open ci
rcuit or open
-ci
r
cuit voltage (V
OC
), dependin
g
on the amo
unt
of sol
a
r
ra
di
ation. Thi
s
d
epen
den
ce i
s
lo
garit
h
m
ic,
and
de
cline
more rapidl
y with in
crea
se
d
temperature
s
exce
edin
g
t
he
spe
ed i
n
crea
se
in I
sc
.
The m
a
ximu
m po
we
r of
sola
r p
anel
s
and
sola
r
pa
nel
e
fficiency will decrea
s
e wit
h
increa
si
n
g
temperature.
Solar p
anel
s,
increa
sing
the
temperature of
25
0
C re
sul
t
ed in a decrease of abou
t 10%
powe
r
. Figure 4
sho
w
s the
cu
rve
of
the PV panel karakte
r
i
s
tisk [9].
(a)
I-V Curve on fi
xe
d
temperatur
e an
d irradi
anc
e
chan
ge
(b)
I-V curve on fixed irra
dia
n
ce
and temp
eratur
e chan
ge
(c
)
P-V curve on temper
ature
chan
ge
Figure 4. Cha
r
acte
ri
stic Cu
rve of Panel PV (Tipe MSX-60)
2.3.
Mathem
atica
l
Model of PV Cell and Panel
PV cell equivalent circuit shown in Figure 5 [6
] consi
s
ts of a powe
r
sup
p
ly and a diode
.
Curre
n
t photo
(I
ph
) dependi
ng on solar
ra
diation (G
), a
nd tempe
r
atu
r
e (T
) enviro
n
ment.
Figure 5. Equivalent Circuit
of PV Cell
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Powe
r Qualit
y Analysi
s
of Integration P
hotovolta
ic G
enerator to T
h
ree Ph
ase Grid…
(Am
i
rullah)
33
The condition
s de
scribe
d in the Equatio
n 3. I
ph
(Tref) is the photo
strea
m
at a nomina
l
temperature T
ref
. On the o
t
her ha
nd, Eq
uation 4 give
s t
he form
ula
of photo current at a nomi
nal
temperature K
0
is a co
nst
ant that is ex
pre
s
sed in E
quation 5. G
re
f
and I
sc
respectively no
minal
radiatio
n pro
v
ided by the
factory sho
r
t-circuit
cu
rre
n
t. This eq
u
a
tion refe
rs to Figu
re 2 f
o
r a
singl
e PV cell
[6].
)
(
1
)
(
0
ref
ref
ph
ph
T
T
K
T
I
I
(3)
)
(
)
(
ref
sc
ref
ref
ph
T
I
G
G
T
I
(4)
ref
ref
sc
sc
T
T
T
I
T
I
K
)
(
)
(
0
(
5
)
Takin
g
into
accou
n
t that the enviro
n
m
ent
tempe
r
ature i
s
set at a ce
rtain
nominal
value, then the next PV flo
w
only dep
en
ds on
sola
r irradia
c
e expre
s
sed in Equat
ion 6.
)
(
)
(
ref
sc
ref
ref
ph
ph
T
I
G
G
T
I
I
(6)
Cha
r
a
c
teri
stics of diode cu
rre
nt (I
D
) is expresse
d in Equation 7,
whe
r
e the value of saturat
i
o
n
cur
r
e
n
t
I
O
is a diode, wh
ere
V
T
rep
r
e
s
ent
s the therm
a
l voltage.
1
T
D
V
V
o
D
e
I
I
(7)
Whe
r
e;
)
(
s
cell
cell
D
R
I
V
V
Furthe
rmo
r
e,
by u
s
ing
the
Kirchoff La
w, shu
n
t curre
n
t I
sh
is d
e
fin
ed in
the foll
owin
g
equatio
n:
sh
D
sh
R
V
I
(8)
By calcul
ating Equation 3
and 8, and
applying
cu
rrent Kirch
o
ff's Law, I-V ch
ara
c
teri
stics
PV
sho
w
n in Equ
a
tion 9.
sh
D
ph
cell
I
I
I
I
sh
D
V
V
o
ph
cell
R
V
e
I
I
I
T
D
1
(9)
2.4.
Shunt Passi
v
e
Filter
P
a
ssiv
e
f
ilt
er
con
s
i
s
t
s
of
p
a
s
s
iv
e ele
m
e
n
t
s
su
ch a
s
r
e
si
st
or
s,
c
a
p
a
cit
o
r
s
and
in
duct
o
rs.
This filter i
s
perm
ane
nt and on
ce in
st
alled
they be
come
part of
the netwo
rk and ne
ed to
be
redesigned to obtain differ
ent filter f
r
equencies. Passive filter
i
s
still considered the best i
n
the
netwo
rk
syste
m
of three-ph
ase fou
r
-wi
r
e.
The majo
ri
ty of them are lo
w-p
a
ss
filter t
hat is tuned t
o
the de
si
red
freque
ncy. S
hunt filter u
s
ing
p
a
ssive comp
one
nts and offer be
tter
ha
rmo
n
i
cs
redu
ction, e
s
peci
a
lly in the
harm
oni
c 3,
5, and 7.
So
me mod
e
ls i
n
clud
e a p
a
ssi
v
e filter are
b
and
pass filter
(si
ngle ata
u
do
uble tun
ed),
high p
a
ss f
ilters (first, se
cond, thir
d-o
r
d
e
r o
r
C-type
), an
d
comp
osite filter [10]. Figure 6
sho
w
s model
s of filter [11].
Figure 6. Models of Passi
v
e Filter
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 1, March 2
016 : 29 – 38
34
3.
Resul
t
dan Discussion
Table 1
sho
w
s the
simu
lation pa
ram
e
ters
of the
three mo
de
ls of PV generato
r
s
con
n
e
c
ted to
the three
pha
se
grid.
Tabl
e 2
and
3 re
spectively sho
w
s
the nomi
n
al
of
p
h
a
s
e a
nd
averag
e THD
V
grid as well
as pha
se a
n
d
average T
H
D
I
grid on three model
s of integratio
n of PV
gene
rato
rs a
nd four different levels of irra
dian
ce
con
necte
d to grid
.
Tabel 1. Simulation Para
meter
Equipment Parameters
Value
PV Gener
ator
1, 2, and 3
Three p
hase grid
Load 1, 2, 3
Lo
w
voltage line
1,2, dan 3
Length of Lo
w V
o
ltage
Distribution Line
DC Link Kapasitor
PWM Gener
ator
For each PV
Ge
nerator
Double Tune
d Filter
Passive
Power
Temper
ature
Irradiance
MVA short-circuit
Voltage (phase-p
hase)
Freque
nc
y
Active Pow
e
r
Voltage
Freque
nc
y
Resistance
Induktance
Capasitance
Line 1, 2, and 3
Capacitor
Freque
nc
y
Sampling time
Reactive Pow
e
r
Voltage (phase-p
hase)
Sistem frequency
Tuning freq
uenc
y
Qualit
y
F
a
ctor (
Q
)
100 kW
40
0
C
400, 600, 80
0, d
an 1000 W/m
2
100 MVA
380 volt
50 Hz
20 kW
380 Volt
50 Hz
R = 0,1273
Ohm/
km
L = 93,37 mH/km
C = 1,274
μ
F/k
m
1 km
2000
μ
F
4 kHz
5 x 10
-6
d
e
tik
50 MVAR
380 V
50 Hz
f
1
= 11 x
50 Hz, f
2
= 13 x 5
0
Hz
16
Table 2. No
m
i
nal of pha
se
and avera
ge
voltage harm
onic (THD
V
) g
r
id
No.
Irradiance
(W
/m
2
)
PV Integration
Phase Voltage (
V
)
THD
V
THD
V
Avarage (
%
)
A B
C
A
B
C
Before using Do
uble Tuned Pass
ive Fiter
1 400
PV
1
220
220
220 0.54
0.51 0.49
0.52
PV
1
+ PV
2
212
212
212 0.91
0.88 0.98
0.93
PV
1
+ PV
2
+ PV
3
212
212
212 2.68
2.58 2.63
2.62
2 600
PV
1
220
220
220 0.78
0.73 0.65
0.72
PV
1
+ PV
2
212
212
212 1.13
1.22 1.39
1.25
PV
1
+ PV
2
+ PV
3
212
212
212 3.71
3.62 3.54
3.62
3 800
PV
1
220
220
220 0.91
0.86 0.85
0.88
PV
1
+ PV
2
212
212
212 1.46
1.54 1.48
1.49
PV
1
+ PV
2
+ PV
3
212
212
212 4.11
4.17 4.05
4.11
4 1000
PV
1
220
220
220 0.87
0.83 0.78
0.83
PV
1
+ PV
2
212
212
212 1.46
1.54 1.59
1.53
PV
1
+ PV
2
+ PV
3
212
212
212 3.95
3.92 3.84
3.91
After using Doubl
e Tuned Passive Fiter
1 400
PV
1
220
220
220 0.04
0.03 0.03
0.03
PV
1
+ PV
2
220
220
220 0.03
0.03 0.05
0.04
PV
1
+ PV
2
+ PV
3
220
220
220 0.09
0.10 0.09
0.09
2 600
PV
1
220
220
220 0.05
0.04 0.04
0.04
PV
1
+ PV
2
220
220
220 0.05
0.05 0.08
0.06
PV
1
+ PV
2
+ PV
3
220
220
220 0.19
0.11 0.14
0.15
3 800
PV
1
220
220
220 0.06
0.05 0.06
0.06
PV
1
+ PV
2
220
220
220 0.06
0.06 0.10
0.08
PV
1
+ PV
2
+ PV
3
220
220
220 0.23
0.14 0.18
0.19
4 1000
PV
1
220
220
220 0.05
0.05 0.07
0.06
PV
1
+ PV
2
220
220
220 0.06
0.06 0.09
0.07
PV
1
+ PV
2
+ PV
3
220
220
220 0.22
0.13 0.18
0.18
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Powe
r Qualit
y Analysi
s
of Integration P
hotovolta
ic G
enerator to T
h
ree Ph
ase Grid…
(Am
i
rullah)
35
Table 3. No
m
i
nal of pha
se
and average
curre
n
t harm
onic (THD
I
) g
r
id on three
model
s of
integratio
n of PV generato
r
s co
nne
cted t
o
the three p
hase grid
No.
Irradiance
(W
/m
2
)
PV Integration
Phase Curre
nt (
A
)
THD
I
THD
I
Avarage (
%
)
A B
C
A
B
C
Before using Passive
Double Tuned
1 400
PV
1
6.8
6.8
6.8
0.07
0.08
0.06
0.07
PV
1
+ PV
2
6.8
6.8
6.8
0.24
0.24
0.35
0.28
PV
1
+ PV
2
+ PV
3
6.8
8.6
6.8
2.10
1.27
1.69
1.69
2 600
PV
1
6.8
6.8
6.8
0.10
0.12
0.10
0.11
PV
1
+ PV
2
6.8
6.8
6.8
0.35
0.24
0.39
0.33
PV
1
+ PV
2
+ PV
3
7.1
9.2
7.1
2.24
1.48
1.83
1.86
3 800
PV
1
6.8
6.8
6.8
0.13
0.13
0.13
0.13
PV
1
+ PV
2
6.8
6.8
6.8
0.44
0.30
0.40
0.38
PV
1
+ PV
2
+ PV
3
7.1
9.2
7.1
2.28
1.56
1.93
1.93
4 1000
PV
1
6.8
6.8
6.8
0.12
0.13
0.14
0.13
PV
1
+ PV
2
6.8
6.8
6.8
0.39
0.32
0.41
0.38
PV
1
+ PV
2
+ PV
3
7.1
9.2
7.1
2.31
1.61
1.85
1.93
After Using Filter Pasif
Double Tu
ned
1 400
PV
1
6.8
6.8
6.8
0.01
0.00
0.00
0.00
PV
1
+ PV
2
6.8
6.8
6.8
0.01
0.01
0.01
0.01
PV
1
+ PV
2
+ PV
3
7.5
7.5
7.5
0.03
0.02
0.03
0.03
2 600
PV
1
6.8
6.8
6.8
0.01
0.01
0.01
0.01
PV
1
+ PV
2
6.8
6.8
6.8
0.01
0.01
0.01
0.01
PV
1
+ PV
2
+ PV
3
7.5
7.5
7.5
0.04
0.03
0.04
0.04
3 800
PV
1
6.8
6.8
6.8
0.01
0.01
0.01
0.01
PV
1
+ PV
2
6.8
6.8
6.8
0.01
0.02
0.02
0.02
PV
1
+ PV
2
+ PV
3
7.5
7.5
7.5
0.05
0.04
0.06
0.05
4 1000
PV
1
6.8
6.8
6.8
0.01
0.01
0.01
0.01
PV
1
+ PV
2
6.8
6.8
6.8
0.01
0.02
0.02
0.02
PV
1
+ PV
2
+ PV
3
7.5
7.5
7.5
0.07
0.04
0.05
0.05
Figure 7 sho
w
s the curve
of grid voltage on
two mod
e
ls of integrat
ion of PV generato
r
s
con
n
e
c
ted to the grid three
-
pha
se
(solar
radiatio
n of 1000 W / m2)
on the PCC b
u
s.
(i) Before Usi
ng Filter Passive
D
o
ub
le
T
u
ned
(ii) After Usi
n
g Filter Passi
v
e
D
o
ub
le
T
u
ned
(a) PV1+
PV2+
P
V3
(i) Before Usi
ng Filter Passive
Doubl
e
Tuned
(ii) After Using Filter Passi
v
e
D
o
ub
le
T
u
ned
Figure 7. Simulation re
sult
s grid voltag
e
on int
egratio
n of two mod
e
ls of three
-
p
hase grid
con
n
e
c
ted PV under
sola
r irradi
an
ce le
vel of 1000 W/m2
Figure 8
sh
o
w
s the
spe
c
trum of T
H
D
V
g
r
id at
pha
se
A in two
mod
e
ls of i
n
teg
r
at
ion of PV
gene
rato
r co
nne
cted to gri
d
unde
r sol
a
r
irra
dian
ce lev
e
l of 1000 W/
m2 on the PCC bu
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
9
30
TELKOM
NIKA
Vol. 14, No. 1, March 2
016 : 29 – 38
36
(a)
PV1
(i) Before Filter Passive
Double Tu
ned
(ii) After Using Filter Passi
v
e
D
o
ub
le
T
u
ned
(b)
PV1+
PV2+
P
V3
(i) Before Filter Passive
Double Tu
ned
(ii ) After Usi
n
g Filter Passi
v
e
D
o
ub
le
T
u
ned
Figure 8. Harmonic
spe
c
trum of phase A grid
voltage
on two mode
ls of integrati
on of PV
con
n
e
c
ted grid unde
r sol
a
r irradi
ation of 1000
W/m2
Figure 9 sho
w
s curve of a
v
erage T
H
D
V
on three mo
dels of integration of gene
ration PV
and four level
s
of sola
r irra
dian
ce conn
e
c
ted to the three-p
h
a
s
e g
r
id
on PCC bu
s.
Figure 9. Avarage h
a
rm
oni
c of voltage g
r
id in thre
e model
s of integ
r
ation PV con
necte
d to thre
e
pha
se gri
d
un
der sola
r irra
dian
ce level o
f
400 to 1000
W/m2
Table 2
sho
w
s that the val
ue of the gri
d
voltage befo
r
e use
dou
ble
tuned pa
ssive filter
on the con
d
ition only con
n
e
ct one ge
ne
rator (PV1
) re
maine
d
stab
le (220 Volt).
Howeve
r, if the
PV generato
r
conne
cted
to the gri
d
three
-
p
h
a
s
e,
amounte
d to
more th
an
one g
ene
rati
on
(PV1+PV2 a
nd PV1+PV2
+PV3), gr
id v
o
ltage at PCC bus d
e
crea
se to 212 Vol
t
or 3.36%. After
usin
g do
uble
tuned p
a
ssiv
e filter, gri
d
v
o
ltage of PV
gene
rato
r int
egratio
n at
all levels
(PV1,
PV2
+ PV1, and PV1+PV2+P
V3) value be
come
s sta
b
le
(2
20 Volt). Without do
ub
le tuned pa
ssive
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Powe
r Qualit
y Analysi
s
of Integration P
hotovolta
ic G
enerator to T
h
ree Ph
ase Grid…
(Am
i
rullah)
37
filter, the larg
est THD ave
r
age of gri
d
voltage
is
gen
erated
on the
conditio
n
of all PV genera
t
ors
con
n
e
c
ted to the three p
h
a
s
e g
r
id (PV1
+ PV2 + PV3
) and the irra
dian
ce level
of 800 W/m2
at
4.11%. The
smalle
st valu
e of ave
r
ag
e
grid
volt
age
THD is prod
uce
d
on
the
con
d
ition of
only
singl
e PV ge
nerato
r
s con
necte
d to the
grid th
ree
-
p
hase (PV1
) a
nd the radiati
on level of 4
00
W/m2
at 0.52
%. On the
co
ndition
of u
s
i
ng d
oubl
e tu
ned
pa
ssive
filter, the l
a
rg
est T
H
D ave
r
age
of grid voltag
e is ge
nerate
d
on the con
d
ition
of all PV generators
con
n
e
c
ted to
the three p
h
a
s
e
grid
(PV1
+
PV2 + PV3)
and the i
r
radi
ance level
of 800 W/m2
at 0.19%.
The smallest avera
ge
of grid voltag
e THD pro
d
u
c
ed o
n
the co
ndition
of the
PV generators co
nne
cted t
o
the grid th
ree
-
pha
se
(PV1)
and th
e
radia
t
ion level
of 4
00
W / m
2
of
0.03%. Fig
u
re 7
and
8
sh
ows that
at t
he
level of solar irra
dian
ce
remain
s, the
great
e
r
n
u
m
ber
of PV g
enerators
co
nne
cted to t
h
ree
-
pha
se
grid, t
hen th
e g
r
eat
er the
value
of the volta
g
e
THD. Fig
u
re
9 al
so
sho
w
s that the l
e
vel of
sola
r irradia
c
e increa
se
s, THD
avera
g
e
of voltage
grid will also in
cre
a
se. THD
averag
e of grid
voltage is re
d
u
ce
d after do
uble tune
d pa
ssive filter in
stalled.
Table 3 shows that the current value of grid
befo
r
e u
s
e dou
ble tun
ed passive filter on
the co
ndition
only con
n
e
c
t one an
d two
gene
rato
rs
(PV1 and PV1+PV1)
wa
s
stable
(6.8 V
o
lt).
Ho
wever, if
the PV generato
r
conn
ected to the
three p
h
a
s
e grid i
s
th
ree g
ene
rato
rs
(PV1+PV2
+P
V3), the cu
rrent grid in Bu
s PC
C app
ea
rs u
nbala
n
ce
d cu
rre
nts be
tween 6.8 u
p
to
9.2 Ampere. After usin
g d
ouble tu
ned
passive filt
er,
grid
cu
rre
nt value on th
e
con
d
ition o
n
l
y
con
n
e
c
t one
and t
w
o g
ene
rators
(PV1 a
nd PV1
+ PV2
)
wa
s
stable
(6.8 Amp
e
re).
Ho
weve
r, if
all
PV generato
r
s co
nne
cted to the three p
hase grid (P
V
1
+ PV2 + PV3), the curre
n
t grid PCC b
u
s
increa
se to 7.
5 Ampere or
10.29%. With
out doubl
e
tuned pa
ssive filter, the large
s
t avera
ge T
H
D
curre
n
t gri
d
i
s
ge
ne
rated
by the conditi
on of th
ree P
V
gene
rato
rs con
n
e
c
ted t
o
the g
r
id th
ree-
pha
se
(PV1+PV2+PV3)
a
nd the i
r
radi
ance leve
l
of 800
W/m2
at 1.93%. Th
e sm
alle
st T
H
D
avarag
e of grid cu
rrent is p
r
odu
ce
d by o
n
ly single PV
gene
rators
conne
cted to t
h
ree
pha
se
g
r
id
(PV1)
and irradianc
e
level of 400 W/m2 at
0.07%. On the condition of us
ing double tuned
passive filter,
the large
s
t
of THD ave
r
age g
r
id voltage is
gene
rated of all PV generato
r
s
con
n
e
c
ted to three ph
ase grid (PV1
+ PV2 +
PV3) and irradi
ance level of 800
W/m2 of 0.05%.
The sm
alle
st averag
e THD of grid
cu
rrent is
p
r
o
d
u
c
ed o
n
the condition of th
e PV generators
con
n
e
c
ted to the grid three
-
pha
se
(PV1) and the radi
a
t
ion level of 400 W/m2 at 0
.
00%.
4. Conclu
sion
The nomi
nal
of voltage an
d cu
rre
nt on
the
PCC b
u
s of three ph
a
s
e g
r
id befo
r
e use
doubl
e tune
d
pa
ssive filte
r
on the
condi
tion only
co
n
nect
sin
g
le g
enerator (PV
1
) i
s
still stab
le.
Ho
wever, if the PV gene
rator conn
ect
ed to the
three ph
ase gri
d
, amounte
d
to more th
an
one
gene
ration
(PV1+PV2 an
d PV1+PV2
+ PV3), voltage an
d cu
rrent gri
d
be
come
s u
n
sta
b
le
(fluctuatio
n).
At the level
of sola
r
radi
ation
remain
s, the g
r
e
a
te
r nu
mbe
r
of
PV gene
rat
o
rs
con
n
e
c
ted to
the three
pha
se g
r
id, then
the nomin
al o
f
voltage and
curre
n
t THD also i
n
crea
se.
At the level
of
sola
r i
r
radian
ce
in
creases,
avera
ge T
H
D of
voltage a
nd
curre
n
t g
r
id
also
increa
sed. Av
arag
e T
H
D of
voltage a
nd
curre
n
t gri
d
i
s
redu
ce
d after d
oubl
e tun
ed pa
ssive fil
t
er
installe
d in t
h
ree
ph
ase
grid. T
herefo
r
e d
oubl
e
tu
ned
pa
ssive
filter able
to
improve
profile of
voltage and
current THD g
r
id, as a resul
t
of the
integration of a nu
mber of PV powe
r
gen
erat
ors
in three-phase grid accordi
ng with IEEE Standard 519-1992.
Ackn
o
w
l
e
dg
ements
Authors
wo
uld li
ke to
ackno
w
le
dg
e
to Mini
stry of Re
sea
r
ch, Technol
og
y, and
Higher Education, Republ
ic of
Indonesi
a, for financi
a
l support
by BPP-DN Scholarships
to
pursue Dokt
oral Pro
g
ram in El
ectrical
Enginee
ring ITS
Surabaya
.
Referen
ces
[1]
L Siv
a
C
hait
a
n
y
a
Kum
a
r, K P
adma. M
a
tlab/
Simuli
nk B
a
se
d Mo
del
lin
g
an
d Sim
u
lati
on
of
Resi
de
ntia
l
Grid Co
nn
ecte
d Sol
a
r Ph
oto
v
oltaic S
y
st
em.
Internatio
nal
Journ
a
l
of E
ngi
neer
in
g Re
search
an
d
T
e
chno
logy (IJ
E
RT
)
. 2014; 3(
3).
[2]
M Vija
ya
kum
a
r, S Vija
ya
n. D
e
sig
n
a
nd Imp
l
em
entati
on
of
PV-Based
T
h
ree-Ph
ase F
o
ur
-W
ire Seri
es
H
y
brid
Active
Po
w
e
r F
i
lter fo
r Po
w
e
r Qu
alit
y Impr
oveme
n
t.
Internatio
nal Journ
a
l
“Sa
d
h
ana
”.
20
14;
39(4): 85
9-8
7
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 1, March 2
016 : 29 – 38
38
[3]
Z
hou
Cha
ng,
Shi T
ao. Po
w
e
r Qualit
y A
n
a
l
ysis of
P
hotovo
l
taic Gen
e
ratio
n
In
tegr
atio
n I
n
tegrati
on
in
User Grid.
Internatio
nal Jo
urn
a
l of Co
mp
uter
and EE (IJCEE).
2013; 5(2).
[4]
SV S
w
arn
a
K
u
mar
y
,
V Ara
ngar
aja
n
Ama
n
Mau
ng T
h
a
n
Oo, GM Shafiu
lla
h, Ale
x
Stojcevsk
i
.
Mode
lli
ng an
d Pow
e
r
Qual
ity Analys
is
of Gri
d
-Co
nnecte
d S
o
lar P
V
Syste
m
. Austra
li
an
Univers
i
tie
s
Po
w
e
r En
gin
e
e
r
ing C
onfere
n
c
e
s, AUPEC 20
14. Curtin U
n
iv
ersit
y
Pert
h, AU. 2014.
[5]
Amirull
ah, Ont
o
sen
o
Pen
a
n
g
san
g
, Adi S
oepr
ija
nto.
Effect of Installa
tion of Ph
oto
v
oltaic (PV)
Generati
on to
Pow
e
r Qual
i
t
y in Ind
u
stri
al a
nd
Resi
d
entia
l Cust
o
m
ers Distri
butio
n Netw
ork.
Internatio
na
l Semin
a
r Intelli
ge
nt
T
e
chnol
og
y
and
Its Applic
a
t
ion (ISIT
I
A)
IT
S Suraba
ya.
2
015.
[6]
AS Abu Has
i
m
,
Z
Ibrahim, MH Nizam T
a
lib,
SN
Mat Isa, J Mat Lazi, N Mohd Yak
op.
Photovo
l
tai
c
S
y
stem C
o
n
n
e
cted to T
h
ree Phas
e Grid
Con
nect
ed
S
y
stem Inc
o
rp
oratin
g W
i
th
Active F
ilter.
Australi
an Jour
nal of Basic a
n
d
Appl
ied Sc
ie
nces
. 201
2; 6(
7): 345-3
58.
[7]
Arrilag
a
, Jos, Watson, Nevil
l
e
. Po
w
e
r S
y
ste
m
Harmonics.
Chicest
e
r: Joh
n
Wille
y a
nd S
ons. 200
3.
[8]
T
homas M Blo
m
ing PE, D
ani
el J Car
nov
ale
PE.
Applic
ation of IEEE Stand
ar 519-1992 Har
m
onic
Li
mits
. T
he 2005 IEEE IAS P
u
lp a
nd Pa
per Industr
y
Co
nf. in Appl
eton
.
WI.
[9]
Francisco
M
González-Longatt.
Model of
Photovo
l
taic
Modu
le i
n
Ma
tlab™
. 2DO
CONGRESO
IBEROAMERICANO DE
E
S
T
UDIAN
T
E
S
DE INGENI
ERÍA ELÉCT
R
ICA, ELECT
R
ÓNICA Y
COMPUT
ACIÓN (II CIBELEC 200
5). 200
5.
[10]
Moun
a T
a
li, Abde
llatif Ob
ba
di, Abd
e
lkrim
Elfa
jri, Yo
usse
f Errami. Pas
s
ive Filter f
o
r Harmo
nic
s
Migitati
on In S
t
anda
lo
ne PV
S
y
stem for
No
n Li
nier
Lo
ad.
Lab
oratory: E
l
ectron
i
cs, Instrumentation
and E
ner
gy T
e
am: Ex
plo
i
tatio
n
an
d Proc
essi
ng of R
e
n
e
w
able E
nergy,
Fa
cult
y
of Scie
nc
e Univ
ersit
y
Cho
uai
b Do
ukalli D
e
p
a
rtmen
t
of Phy
s
ics R
out
e Ben Ma
a
c
hou, 24
00
0 El-Jadi
da, Maro
cco, IRSEC
201
4.
[11]
Seema
P D
i
w
an, Dr
HP I
n
a
m
dar, Dr
AP
Vaid
ya.
Simu
l
a
tion
Stud
ies
of Shu
n
t Pass
ive H
a
rmo
ni
c
Filters: Si
x Pu
lse R
e
ctifier
L
oad
– P
o
w
e
r
F
a
ctor
Impro
v
ement and
Harmon
i
c
C
o
n
t
rol.
ACEE
E
Internatio
na
l Journ
a
l on E
l
ect
r
ical a
nd Pow
e
r Engin
eeri
n
g
.
201
1; 2(1).
Evaluation Warning : The document was created with Spire.PDF for Python.