TELKOM
NIKA
, Vol.12, No
.4, Dece
mbe
r
2014, pp. 95
0~9
6
2
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v12i4.530
950
Re
cei
v
ed Fe
brua
ry 23, 20
14; Re
vised
May 29, 20
14
; Accepte
d
Ju
ne 12, 201
4
Unambiguous Acquisition for Galileo E1 OS Signal
Based on Delay and Multiply
Deng Zh
ongl
iang*
1
, Xi Yu
e
2
, Jiao Jichao
3
, Yin Lu
4
Lab
orator
y of Intelli
ge
nt Com
m
unic
a
tion, Na
vigati
on a
nd Mi
cro/Nan
o
-S
ystems, Beiji
ng U
n
iversit
y
of Pos
t
s
and T
e
lecomm
unic
a
tions, Be
ij
ing
100
87
6, Bei
jing, P. R. Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: dengz
hl@
b
u
p
t.edu.cn
1
, xi
yu
e04
30@
gmai
l.com
2
, jiaojic
ha
o@gma
il.com
3
,
inlu
_ma
il@
163
.com
4
A
b
st
r
a
ct
Galile
o E
1
Op
en Serv
ice (O
S) sign
al
is trans
mi
tted w
i
th
the
mo
dul
atio
n of C
o
mpos
ite Bin
a
r
y
Offset Carrier (CBOC). CBOC has a
m
a
in drawback that is
t
he autocorrelation functi
on has multiple side-
peaks, w
h
ich
w
ill lea
d
to
ambig
uous
acq
u
is
ition. The
hi
gh
rate of d
a
ta b
i
t and s
e
co
nda
ry code
makes
i
t
very difficult to
increas
e cohe
rent integr
atio
n
ti
me. This pa
per w
ill pro
pos
e a new
sche
m
e b
a
se
d on the
del
ay-an
d
-
m
ult
i
ply c
onc
ept. A
nd
also
this sc
he
me c
o
mb
ine
s
the d
a
ta c
h
a
nne
l a
nd
pil
o
t
chan
nel. F
i
nal
l
y
,
the theor
etical
results w
ill b
e
give
n to prov
e that the new
sche
m
e w
ill
acco
mp
lish un
ambi
guo
us
acq
u
isiti
o
n
and a
l
so e
l
i
m
i
n
ate the infl
uenc
e of bit transitio
n.
Ke
y
w
ords
:
Galileo
E1 OS signal;
CBOC; unambiguous
acquisition;
delay-and-mu
ltiply
1. Introduc
tion
Europ
ean G
a
lileo Satellite Navigatio
n
System have been su
pportin
g
Gali
leo-o
n
ly
autonom
ou
s
positio
n fix for an ae
ro
naut
ical u
s
e
r
sin
c
e 2013 [1]. And there will
be more satel
lites
laun
che
d
in the nea
r future. The exploitation plan
is to provide early Galileo service
s
by ea
rly
2015
and
co
me to ha
nd-over exploita
tion pha
se
b
y
the end
of 2016. An
d
by 2020
Gali
leo
System will be of full operational ca
pab
ility. Theref
ore, Galileo System ca
n pla
y
a cruci
a
l ro
le
among
all of
the navig
ation
satellite
systems,
whi
c
h also in
clu
d
e
s
Chin
ese
Beidou, Ame
r
ica
n
GPS and Russian GLONASS [2].
CBOC ha
s b
een
cho
s
e
n
a
s
the final
ch
oice
of
Galile
o OS Servi
c
e
.
CBOC i
s
a
result of
multiplexing
BOC (6,1)
wi
th BOC (1,1) and the p
r
o
portion
of the forme
r
to the latter i
s
1
0
%.
Therefore, the maximum
degradation on the detection proba
bility when acqui
ri
ng CB
OC
signals
like
a BO
C
(1,1) i
s
l
e
ss t
han
0.8dB [3
]. With the
p
r
ope
rty of
sp
litting sp
ect
r
u
m
, CBO
C
ca
n
redu
ce the int
r
a-syste
m
interferen
ce an
d improve
co
de delay tra
c
king.
Nevertheless,
BOC-modul
ated signal will
le
ad to a m
a
in drawback that is the
autocorrelatio
n
functio
n
h
a
s m
u
ltiple
side-p
e
a
ks,
which
will p
r
o
bably result in po
ssi
ble fa
lse
acq
u
isitio
n. Several techni
que
s hav
e be
en pro
p
o
s
ed i
n
the literature.
The Sub
Ca
rrie
r
Pha
s
e
Can
c
ell
a
tion
(SCPC) met
hod g
ene
rat
e
s a
n
in ph
ase
and
quad
ratu
re sub-ca
rrie
r
si
g
nals, getting rid of the
sub
carrie
r. There
f
ore, this met
hod do
uble
s
the
numbe
r of co
rrel
a
tors be
ca
use it is ne
ce
ssary for two
cha
nnel
s wipi
ng off the carrier to gen
era
t
e
two ki
nds of sub carrier
signal [4]. Autocorr
elation Side-Peak
Cance
llation Technique
(ASPeCT)
method
comb
ines two ki
nd
s of auto
c
orrelation fun
c
tions to fo
rmul
ate a ne
w on
e. After that,
the
new autocorrelation function still has small side peaks [5].
The moderni
z
ed navigation satellit
e sy
stem has a characterist
i
c
that there is
not only
data chan
nel
like tradition
al GPS L1
si
gnal
s but al
so pilot chan
n
e
l witho
u
t da
ta modul
ation.
Several po
ssible join d
a
ta/pilot acq
u
isit
ion st
rat
egie
s
acco
m
panying th
e non-co
herent
combi
nation
techni
que
are an
alyze
d
.
But the
am
b
i
guou
s pro
b
l
e
m cau
s
ed
by
su
bcarrier
is
negle
c
ted through the a
r
ticle.
The rate of d
a
ta bit and seco
nda
ry cod
e
is equal wi
th the rate of spre
adin
g
code
s in
data
cha
nnel
and
pilot
ch
annel
for Gal
ileo E1
OS
si
gnal. It is very likely that
b
i
t tran
sition
will
occur if the coherent integ
r
ati
on time is longer tha
n
one pe
riod of
spre
adin
g
code, whi
c
h will
degrade
the
po
wer of t
he
coh
e
re
nt integrat
ion.
Do
uble Bl
o
c
k Ze
ro Pa
dding
Tran
sition
Insen
s
itive (DBZPTI) p
r
e
s
ent
s a n
e
w
method
ba
se
d on
Dou
b
le
Block Ze
ro
Padding
(DBZP).
This meth
od
is cap
able
of being in
sensitive to
bi
t transition d
u
ring o
ne pe
riod of cohe
rent
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Unam
bigu
ou
s Acqui
sition
for Galileo E1
OS Signal Base
d on Dela
y …. (Deng Z
hongli
ang
)
951
integratio
n time. But when it comes to
longer cohe
rent integratio
n time, the problem cau
s
e
d
by
bit transition
still exists [6].
In this paper, we will focus on a new
acquisition scheme ba
sed on the
delay-and-
multiply
co
ncept,
whi
c
h al
so com
b
ine
s
data chan
nel
and
pilot
ch
annel
both. A
t
first, the
sig
nal
module
will be introd
uce
d
, and the probl
em of Galileo E1 OS signal a
c
qui
sition wil
l
be
discu
s
sed. T
hen, the ne
w scheme
will
be propo
se
d.
Finally, the simulation results of dete
c
tion
probability wil
l
be given.
2. Signal Model
The Galile
o E1 OS signal
can be expressed a
s
11
1
1
1
()
(
(
)
(
)
(
)
(
)
)
2
EE
B
E
B
E
C
E
C
C
st
e
t
S
C
t
e
t
S
C
t
(1)
W
h
er
e
1
10
1
()
()
()
11
11
EB
a
b
SC
t
s
c
t
sc
t
(2)
1
10
1
()
()
()
11
11
EC
a
b
SC
t
s
c
t
sc
t
(3)
()
(
(
2
)
)
XX
s
c
t
s
gn
sin
R
t
(4)
X
is the kin
d
of sub
c
a
rri
er, in
cludi
ng BOC(1,1) noted a
s
a
and BOC(6,1
)
noted a
s
b
;
1
()
EB
et
inclu
d
e
s
the data stream a
nd prim
ary co
de of data ch
annel;
1
()
EC
et
inclu
d
e
s
the data stream a
nd prim
ary co
de of pilot ch
annel.
Figure 1 sh
o
w
s o
ne pe
rio
d
of the sub
-
carri
er fun
c
tion
for the
1
E
B
sign
al comp
one
nt
and on
e peri
o
d of the sub
-
carri
er fun
c
tion
for the
1
E
C
sign
al comp
one
nt.
a)
0
0.2
0.
4
0.
6
0.8
1
-1
.
5
-1
-0
.
5
0
0.5
1
1.5
t/
T
SC
E1
_
B
A
m
pl
i
t
ude
of
s
ubc
a
r
ri
e
r
S
u
b
C
ar
r
i
e
r
o
f
G
a
l
i
l
eo
E1
O
S
S
i
g
n
al
S
ub-E
1
B
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 4, Dece
mb
er 201
4: 950
– 962
952
b)
Figure 1. One
period of the
CBOC
sub
-
carri
er for
a
)
th
e E1-B sign
al
compo
nent a
nd b) the E1-C
sign
al com
p
o
nent
3. Problem In E1 Acquisi
tion
A traditional acq
u
isitio
n scheme is sho
w
n in Figu
re 2[7].The re
ce
iver will laun
ch a two-
dimen
s
ion
a
l search for on
e
s
atellite by generating
lo
cal signal
s wit
h
different Do
pplerf
r
eq
uen
cies
and code p
h
a
s
e
s
.
0
T
0
T
2
(
)
(,
)
D
QF
(,
)
D
SF
0
T
0
T
2
(
)
(,
)
D
I
F
Figure 2. Tra
d
itional a
c
qui
sition sch
e
me
Therefore, a
two dime
n
s
ion
a
l
(,
)
D
Sf
will be obtained. When one
of
(,
)
D
Sf
is
abovethresho
ld, the acqu
isition will b
e
fini
she
d
. The a
c
qui
sitionprocess m
u
st dete
c
t the
incomi
ng sig
nal
e
nergy and estimat
e
the sign
al Dop
p
ler
an
d
co
de delay
.
The dete
c
tion
c
r
iter
io
nc
an
be
e
x
p
r
es
se
d
a
s
22
(,
)
(
,
)
(,
)
D
DD
Sf
I
f
Q
f
(5)
W
h
er
e
(,
)
=
(
)
(
)
(
)
+
(
,
)
4
D
ec
o
h
I
D
C
I
fR
s
i
n
c
f
T
c
o
s
n
f
(6)
0
0.2
0.4
0.6
0.8
1
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
t/
T
SC
E1
_
C
A
m
pl
i
t
ude
of
s
ubc
a
r
r
i
e
r
S
u
b
C
a
r
r
i
e
r
o
f
G
a
lile
o
E
1
O
S
S
i
g
n
a
l
S
ub-
E
1
C
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Unam
bigu
ou
s Acqui
sition
for Galileo E1
OS Signal Base
d on Dela
y …. (Deng Z
hongli
ang
)
953
(,
)
=
(
)
(
)
(
)
+
(
,
)
4
D
ec
o
h
Q
D
C
Qf
R
s
i
n
c
f
T
s
i
n
n
f
(7)
(,
)
D
I
f
and
(,
)
D
Qf
are the correlator o
u
tp
uts with cert
ain co
de del
ay and Do
pp
ler
freque
ncy.
()
R
is the final co
rrelation fun
c
tion
e
f
is the differen
c
e b
e
twe
en the re
al Dop
p
l
e
r
freque
ncy a
n
d
the local Dopple
r
freq
ue
ncy
D
f
,
is the e
rro
r on th
e carri
erp
h
a
s
e,
(,
)
I
D
nf
and
(,
)
QD
nf
are the in-ph
a
se and
quad
ratu
re correlator o
u
tp
ut noise.
3.1 Ambiguo
us problem
CBOC
autocorrelation fun
c
tion can be
expre
s
sed a
s
: [8]:
22
(
'
'
)
(
1
,1
)
(
6
,
1
)
(
1
,1
)
/
(
6
,1
)
()
()
2
(
)
CB
OC
BOC
B
OC
BOC
B
OC
RV
R
W
R
V
W
R
(8)
22
(
'
'
)
(
1
,1
)
(
6
,
1
)
(
1
,1
)
/
(
6
,1
)
()
()
2
(
)
C
B
OC
BOC
B
OC
BOC
B
OC
RV
R
W
R
V
W
R
(9)
W
h
er
e
10
11
V
(10)
('
'
)
CB
O
C
R
is the a
u
to
correl
ation f
unctio
n
of
data chan
n
e
l and
('
'
)
CB
O
C
R
is the
autocorrelatio
n
fun
c
tion
of pilot
cha
nne
l. Two
ki
nd
s
of auto
c
o
rrel
a
tionfun
ction
s
a
r
e
sho
w
n
in
Figure 3. It can be
see
n
that there i
s
n
o
t only one p
eak a
n
y more
in the auto
c
o
rrel
a
tion fun
c
tion
of CBOC. Th
ere a
r
e two m
o
re si
de pe
aks.
Figure 3. Autoc
o
rrelation f
unc
tion of CBOC and BPSK
If the traditional scheme i
s
use
d
,
(,
)
D
Sf
will be obtained. Under t
he influence of noi
se,
the side
pea
ks
are
eithe
r
high
er o
r
l
o
we
r than
t
hat of auto-correl
ation fu
nction, an
d the
correl
ation ou
tputs are not
symme
tri
c
ab
out the cente
r
any mo
re.
Once the
sid
e
pea
k is
ab
ove
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
-0
.
5
0
0.
5
1
CBO
C
A
u
t
o
c
o
rre
l
a
t
i
on
F
unc
t
i
on
C
o
de
O
ffs
e
t
[c
hi
p]
Co
rre
l
a
t
i
on F
unc
t
i
o
n
CB
O
C
('
+'
)
CB
O
C
('
-'
)
BP
S
K
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 4, Dece
mb
er 201
4: 950
– 962
954
the threshold,
it will lead to a
false acqui
sition. After a false
ac
qui
si
tion, the code tracki
ng loop
will lock on the side peak.
3.2 Data tra
n
sition proble
m
Moderni
z
ed navigation sat
e
llite system
s has
not only
data channel
, which is m
o
dulated
with data, b
u
t
also pil
o
t chann
el, whi
c
h is mo
dulat
ed with
out d
a
ta and
with
se
con
dary
code.
Secon
d
a
r
y code, a
s
the n
a
me impli
e
s,
is a
se
co
n
d
code, which m
u
ltiplies th
e p
r
imary
cod
e
to
form a long
e
r
cod
e
, calle
d tiered cod
e
. The techn
i
que charact
e
risti
cs of th
e Galileo E1
OS
sign
al, GPS L1C si
gnal a
n
d
GPS L1C/A sign
al are giv
en in Table 1.
Table 1. Ch
aracteri
stics of
Galileo E1 O
S
signal, GP
S L1C and G
PS L1C/A
GNSS s
y
s
t
em
Galile
o
GPS
GPS
Signal T
y
pe
E1 OS
L1C
L1C/A
Spreading
modulation
CBO
C
(6,1,1/11
)
TMBO
C(6,1,4/
33
)
BPSK
Primar
y
code
frequenc
y
1.023MHz
1.023MHz
1.023MHz
Primar
y
code len
g
th
4092
10230
1023
Primar
y
code
per
iod
4ms
10ms
1ms
Signal component
Data
Pilot
Data
Pilot
Data
Data rate
250bps
-
100bps
-
50bps
Secondar
y
cod
e
rate
-
250bps
-
100bps
-
Secondar
y
cod
e
length
- 25
-
1800
-
As it is sho
w
n in Table 1,
the spre
adin
g
cod
e
s’ p
e
ri
ods h
a
ve the
same du
rati
on as a
data or seco
ndary code b
i
t, which ma
kes it difficult
to perform th
e acq
u
isition
using multip
le
perio
ds
of pri
m
ary code
s f
o
r Galil
eo E1
sign
al and
G
PS L1C
sign
al, whi
c
h is
di
fferent from
GPS
L1C/A
sign
al. For
GPS L1
C/A sig
nal, a
data bit tran
sition
can
o
c
cur every
20
ms, comp
are
d
to
4ms
for Galil
eo
E1 OS sig
nal and
10m
s for
GPS L1C signal. Thi
s
characteristi
c
will lead to short
integratio
n ti
me for
Galile
o E1 OS
sig
nal an
d
GPS
L1
C si
gnal
if the data
bit
transitio
n o
ccurs.
Whe
n
a bit tran
sition o
c
curs, it may lead to a hi
g
h
losse
s
, whi
c
h will result in the failure of
acq
u
isitio
n as sho
w
n in Fig
u
re 4.
Figure 4. Dat
a
transitio
n problem
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Unam
bigu
ou
s Acqui
sition
for Galileo E1
OS Signal Base
d on Dela
y …. (Deng Z
hongli
ang
)
955
3.3 Large nu
mber of Do
p
p
ler bins
As we can
se
e from
above
,
the final correlato
r
outp
u
t contai
ns a te
rm of
()
ec
o
h
si
n
c
f
T
.
Then the
co
rrelato
r
outp
u
t will un
dergo
a po
wer
l
o
ss if the difference bet
wee
n
local carrie
r
freque
ncy
an
d the Doppl
e
r
freq
uen
cy
of input
si
gn
als i
s
big. F
o
r G
a
lileo E
1
OS si
gnal,
the
coh
e
re
nt time is lon
g
e
r
than that of
GPS L1 C/A
whe
n
one
p
r
imary
cod
e
perio
d is
use
d
to
perform acquis
ition.It
is
s
h
own
in
Figure
5. When
the differenc
e bet
ween the Doppler frequenc
y
of input
sign
a
l
and l
o
cal ca
rrie
r
fre
que
ncy, the differe
nce
of po
we
r loss b
e
twe
e
n
Galile
o E1
OS
and GPS
L1
C/A sig
nal i
s
-3.22
d
B. Th
erefo
r
e, for t
he sake of
redu
cing th
e l
o
ss du
e to t
h
e
differen
c
e b
e
t
ween l
o
cal carri
er frequ
en
cy and th
e
Dopple
r
fre
que
ncy, sm
allerDop
pler
se
arch
step
will
be
chosen if
the
coh
e
re
nt inte
gration
ti
me
i
s
lo
nge
r.
Con
s
eq
uently, th
ere
will
be
m
o
re
Dop
p
ler bi
ns
and lon
ger
se
arching time f
o
r Do
pple
r
fre
quen
cy.
Figure 5. The
degra
dation
due to frequ
e
n
cy differen
c
e
4. Proposed
Techniqu
e
In
this pap
er,
a
n
e
w
techni
que will be propo
sed. The
scheme
of propo
sed
techn
i
que
i
s
s
h
ow
n
in
F
i
gu
r
e
6
.
CC
s
B
B
s
B
C
s
CB
s
Figure 6. Proposed a
c
qui
si
tion scheme
of Galileo E1 OS signal
-10
0
0
-800
-
600
-
400
-200
0
200
400
600
800
1000
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
f
e
|s
i
n
c(
T
coh
f
e
)|
G
P
S
L1C
/
A
Ga
l
i
l
e
o
E
1
OS
-3
.
2
2
d
B
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 4, Dece
mb
er 201
4: 950
– 962
956
The ban
d-pa
ss
sign
al at the output of
RF front end can be expressed a
s
1
()
()
(
2
(
)
)
(
)
EI
F
D
rt
s
t
c
o
s
f
f
t
n
t
(11)
whe
r
e
()
nt
is the zero
-mea
n, ad
ditive white G
aussia
n
noi
se
with varian
ce
。
22
2
2
0
{{
}
}
2
{
}
2
{
}
2
nI
Q
E
n
En
En
En
N
B
(12)
I
F
f
is the interm
e
d
iate frequ
en
cy and
D
f
is the Dop
p
ler frequ
ency.
Acco
rdi
ng to the schem
e,
1
1
11
1
1
()
(
)
(
(
)
(
2
(
))
()
)
((
)
(
2
(
)
(
)
)
(
)
)
1
()
(
)
(
2
(
)
)
2
()
(
)
(
2
(
)
)
(
)
()
(
2
(
)
()
)
()
(
)
EI
F
D
EI
F
D
EE
I
F
D
EI
F
D
EI
F
D
rt
rt
st
c
o
s
f
f
t
n
t
st
c
o
s
f
f
t
n
t
st
st
c
o
s
f
f
st
n
t
c
o
s
f
f
t
nt
s
t
c
o
s
f
f
t
nt
nt
(13)
As it is
sho
w
n above, the
r
e will fou
r
term in
the resul
t. Only the first term i
s
u
s
e
f
ul.Then,
the prop
erty of second a
nd third term
will be anal
yzed. Figu
re
7(a)
sho
w
s the zero-m
e
an
additive whit
e Gau
ssi
an
noise and Fi
gure 7
(
b
)
sh
ows the distribution of the
noise. The
n
the
noise will b
e
multiplied by
Pseud
o Rand
om Noi
s
e
(P
RN) code
s of
Galileo E1
O
S
signal. Fi
g
u
re
7(c)
sh
ows th
e p
r
odu
ct
of zero
-mea
n a
d
d
itive wh
ite
G
aussia
n
n
o
ise
and
PRN
co
des.
Figu
re
7
(
d)
sho
w
s the di
stributio
n of the pro
d
u
c
t. Compa
r
ing
the
results befo
r
e and after th
e multiplicatio
n,
we can see that the multiplicat
ion by PRN codes will
not change the distribution of the noise.
The re
d line i
n
Figure 7(c)
and (d
)
sho
w
s the No
rmal
distrib
u
tion.
a)
b)
0
50
0
10
00
15
00
20
00
25
00
300
0
3
500
400
0
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
N
u
m
b
e
r
of s
a
m
p
l
e
poi
nt
s
A
m
pl
i
t
ude
of s
a
m
p
l
e
poi
nt
s
A
ddi
t
i
ve
w
h
i
t
e
G
a
us
s
i
a
n
noi
s
e
-2
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
2
0
5
10
15
20
25
30
35
40
45
50
A
ddi
t
i
ve
w
h
i
t
e
G
a
us
s
i
a
n
noi
s
e
N
u
m
b
e
r
of s
a
m
p
l
e
poi
nt
s
A
m
pl
i
t
ude
of s
a
m
p
l
e
poi
n
t
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Unam
bigu
ou
s Acqui
sition
for Galileo E1
OS Signal Base
d on Dela
y …. (Deng Z
hongli
ang
)
957
c
)
d)
Figure 7. Noi
s
e an
d the di
stributio
n
The fou
r
th term is the
pro
duct of two
zero
-mea
n co
mplex Gau
ssian dist
ributio
ns. The
prod
uct
of two inde
pen
den
t normally di
stributed va
riat
es
x
and
y
with ze
ro me
an
s an
d varia
n
ce
s
2
x
and
2
y
obeys a n
o
rmal p
r
od
uct
distributio
n [9].
2
2
2
2
0
2
2
()
()
(
)
22
y
x
y
x
xy
xy
xy
xy
u
K
ee
p
u
xy
u
d
xd
y
(14
)
whe
r
e
()
x
is the Dirac di
stri
buti
on and
0
()
Kx
the modified Besse
l
function of the se
co
nd ki
nd
and zero o
r
d
e
r, whi
c
h is o
ne of two sol
u
tions for the
differential eq
uation
2
22
2
0
dy
d
y
xx
x
y
dx
d
x
(15
)
The sol
u
tion i
s
0
2
00
c
os(
)
(
)
co
s(
si
n
h
(
))
1
x
x
t
K
x
x
t
dt
dt
t
(16)
The no
rmal p
r
odu
ct dist
rib
u
tion is prese
n
ted in Figu
re
8.
0
50
0
10
00
15
00
20
00
25
00
300
0
3
500
400
0
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
N
u
m
b
e
r
of s
a
m
p
l
e
po
i
n
t
s
A
m
pl
i
t
ude
of s
a
m
p
l
e
poi
nt
s
M
u
l
t
i
p
l
i
c
a
t
i
on of noi
s
e
a
nd P
R
N
c
ode
s
-2
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
2
0
5
10
15
20
25
30
35
40
45
50
N
u
m
b
e
r
of s
a
m
p
l
e
poi
nt
s
A
m
pl
i
t
ude
of s
a
m
p
l
e
poi
n
t
s
M
u
l
t
i
p
l
i
c
a
t
i
on of noi
s
e
a
nd
P
R
N
c
o
d
e
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 4, Dece
mb
er 201
4: 950
– 962
958
Figure 8. Normal pro
d
u
c
t distributio
n
The useful term
11
11
1
1
11
1
1
11
1
1
11
1
1
()
(
)
((
)(
)
(
)
(
)
4
(
)
()
(
)
()
(
)
()
(
)
()
()
(
)
()
(
)
)
EE
EB
EB
E
B
EB
EC
E
B
EC
E
B
EB
E
C
EB
E
C
E
C
EC
EC
EC
st
st
C
et
et
S
C
t
S
C
t
et
e
t
S
C
t
S
C
t
et
e
t
S
C
t
S
C
t
et
et
S
C
t
S
C
t
(17)
We
ca
n see t
hat the p
r
ima
r
y co
de
s in
d
a
ta chann
el
and pil
o
t cha
nnel
will b
e
multiplied
by the delay
of them. Figu
re 9
sho
w
s the auto
c
o
r
rel
a
tion of pri
m
ary co
de
s an
d the correlat
ion
betwe
en p
r
im
ary co
de
s an
d the del
ay of them. If
is chosen a
bove
one
cod
e
chip, the pro
d
u
c
t
of primary
codes
will rem
a
i
n
the autocor
relation property of primary codes.
a)
b)
Figure 9. Correlation of p
r
i
m
ary co
de
s
-2
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
2
0
50
10
0
15
0
20
0
25
0
30
0
N
u
m
b
e
r
of
s
a
m
p
l
e
poi
nt
s
A
m
pl
i
t
ude
of s
a
m
p
l
e
po
i
n
t
s
N
o
rm
a
l
P
r
oduc
t
D
i
s
t
ri
but
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Unam
bigu
ou
s Acqui
sition
for Galileo E1
OS Signal Base
d on Dela
y …. (Deng Z
hongli
ang
)
959
Through del
ay-and-multipl
y, the
subcarrier
will be
wiped off al
so.
T
here are t
w
o
kinds
of
prod
uct. On
e
is that of the sub
c
a
rri
er
and del
ay
of it. The other is that of the sub
c
a
rri
er
and
delay
of
the other kind of
sub
c
a
rri
er.
Figure 10
sh
ows the a
u
to
correl
ation a
nd correlatio
n of
sub
c
a
rri
er
s.
Figure 10. Autocorrel
ation
and correlatio
n of sub
c
arrie
r
s
Figure 10 shows that the auto
correlation function and
cros
s-correlat
ion function
will both
have a p
e
a
k if the
right
is ch
ose
n
. It is noted tha
t
is ch
os
en
t
o
sat
i
sf
y
(2
(
)
)
1
IF
D
cos
f
f
. Furth
e
rmo
r
e, if
I
FD
f
f
, ju
s
t
c
ons
id
er
(2
)
1
IF
cos
f
. In thisway,
the effect of Dop
p
ler frequ
ency is
remo
ved. Finally,
is
c
h
osen to satis
f
y
0
n+
0.5
,
1
2
,0
,
1
,
2
,
3
2
IF
n
k
k
f
(18)
5. Performan
ce Analy
s
is
After the coh
e
rent integ
r
ati
on, four term
s will be o
b
tai
ned:
0
()
(
2
(
)
)
4
BB
BB
I
F
D
s
c
s
n
n
s
n
n
C
sR
c
o
s
f
f
n
n
n
(19)
0
()
(
2
(
)
)
4
CC
CC
I
F
D
s
c
s
n
n
s
n
n
C
sR
c
o
s
f
f
n
n
n
(20)
0
()
(
2
(
)
)
4
BC
BC
IF
D
s
c
s
n
n
s
n
n
C
sR
c
o
s
f
f
n
n
n
(21)
0
()
(
2
(
)
)
4
CB
CB
I
F
D
s
c
s
n
n
s
n
n
C
sR
c
o
s
f
f
n
n
n
(22)
As it is discu
s
sed a
bove,
s
n
n
an
d
ns
n
is the prod
uct of sign
al and noi
se, which i
s
still the
zero-m
ean a
dditive white
Gau
ssi
an noi
se with vari
an
ce
0
0.
1
0.2
0.3
0.
4
0.5
0.6
0.7
0.8
0.9
1
0
0.2
0.4
0.6
0.8
1
1.2
Code
O
f
f
s
e
t
[c
hi
p]
N
o
r
m
a
liz
e
d
C
o
r
r
e
la
tio
n
F
u
n
c
tio
n
S
ubc
a
r
ri
e
r
Corr
e
l
a
t
i
on F
unc
t
i
on
Cros
s
CF
Au
t
o
C
F
Evaluation Warning : The document was created with Spire.PDF for Python.