TELKOM
NIKA
, Vol.9, No.1, April 2011,
pp. 47~5
4
ISSN: 1693-6
930
accredited by D
G
HE (DIKTI
), Decree No: 51/Dikti/Kep/2010
¢
47
Re
cei
v
ed Jan
uary
25
th
, 201
1; Revi
se
d Febru
a
ry 22
th
, 2011; Accept
ed April 4
th
, 2011
A Variable Switching Frequency with Boost Power
Factor Correction Converter
Mallisetti Rajesh Kumar*
1
, Duraisamy
Lenine
2
, Ch
Sai Babu
3
1,2
Department of Electrical a
n
d
Electron
ics Engg. RGMCET
, Nand
ya
l, Indi
a.
3
Departme
n
t of Electrical a
nd
Electron
ics
En
gg. JNT
Universit
y
, Kaki
nad
a, India.
e-mail: rajeshk
u
ma
r.puttur@gmail.com
*
1
, le
n
i
ne
_20
04
@
y
ah
oo.com
2
, chs_
eee
@
y
ah
oo.co
.in
3
Abs
t
rak
Makal
ah in
i meng
ha
dirka
n
koreksi faktor d
a
ya
(PF
C
) pha
se tung
gal d
e
n
gan su
atu tekn
ik kend
a
l
i
frekuens
i p
eny
aklar
an v
a
ria
b
e
l (VSF
). Pen
i
ngkata
n
b
e
b
a
n
non
li
nier s
e
p
e
rti pe
nye
a
rah
thyristor, catu
daya
mo
de
peny
akl
a
ran, p
e
n
g
e
m
udi
an kec
e
p
a
tan ya
ng
dap
at
diatur, d
a
n
pe
mban
gkit
arus h
a
r
m
o
n
i
k
me
nye
babk
an
berb
aga
i
mas
a
lah ter
had
ap
p
e
ran
g
kat la
in
yang k
e
titik k
opli
ng
bersa
ma. Ada b
e
b
e
ra
pa
kele
maha
n p
a
da i
m
ple
m
ent
asi ke
nd
ali P
F
C berb
a
sis
kend
ali PW
M
konve
n
si
ona
l
yang t
e
la
h
ada.
Sistemy
a
n
g
d
i
usulk
an dia
n
g
g
ap meng
gu
nak
an peny
el
es
ai
a
n
ko
mpak
untu
k
men
gatasi
se
bua
h ke
le
mah
a
n
den
ga
n me
ngk
onvers
i
sumbe
r
tegang
an ke
sumber arus
a
ksi cepat, yan
g
me
ng
uran
gi
har
mo
nisa p
a
d
a
arus fasa,
me
n
i
ngk
atkan efis
i
ensi
dan k
a
p
a
s
itas siste
m
te
nag
a listrik.
Ka
pasitor dan in
d
u
ktor
de
ng
an
ri
ak
tegan
ga
n
d
an arus mi
ni
ma
l
d
i
ranc
ang
untuk
me
nyer
ap
aru
s
mas
u
ka
n si
n
u
soi
dal
da
n u
n
t
uk meng
ura
n
g
i
distorsi
har
mo
nik tota
l (T
HD)
pa
da
arus
kel
uara
n
d
e
n
g
a
n
regu
lasi
teg
a
n
gan
kel
uar
an.
Prinsii
p
oper
as
i,
ana
lisis teor
itis
, hasil si
mu
lasi
pad
a bo
ost konverter satu fa
sa disa
jika
n
.
Ka
ta
k
unc
i
:
de
sain d
an p
e
m
o
del
an PF
C, kenda
li teg
ang
an
, T
HD, topologi
boost, VSF
A
b
st
r
a
ct
T
h
is pap
er pr
esents sin
g
le
phase Pow
e
r F
a
ct
or Correction (PF
C
) w
i
th propose
d
variabl
e
sw
itching freq
u
ency (VSF
) co
ntrol tech
ni
que
. T
he incre
a
si
n
g
of n
on l
i
n
ear
loa
d
s suc
h
as t
h
yristor rectifi
e
rs,
sw
itching-
mo
d
e
p
o
w
e
r sup
p
li
es, adj
ustab
l
e
spee
d dr
ives,
and
ge
ner
ate h
a
rmonic
curre
n
t
s causin
g v
a
ri
ou
s
prob
le
ms to
t
he
other
eq
ui
pment c
o
n
nec
ted to
th
e
po
int of c
o
mmo
n
co
upl
in
g. T
here
are
sev
e
r
a
l
disa
dvant
ages
in the ex
istin
g
PF
C control
imple
m
ent
ati
o
n bas
ed o
n
c
onve
n
tio
nal P
W
M control. T
h
i
s
system
cons
idered us
es a unif
ied overc
o
mes such a draw
back by conv
er
ting a voltage s
ource into a fast-
acting
curre
nt
source, w
h
ic
h
is red
u
ce
the
har
mo
nics i
n
t
he l
i
n
e
curr
ent
, increas
es th
e effici
ency
an
d
capac
ity of
po
w
e
r system.
The c
a
p
a
citor
a
nd
ind
u
ctor
w
i
t
h
vo
ltag
e a
n
d
current r
i
pp
le
w
i
th mi
ni
mu
m r
i
ppl
e
valu
es w
a
s de
sign
ed to a
b
so
rb sinus
oi
dal i
nput curre
nt a
nd to red
u
ce t
o
tal har
mon
i
c distortio
n
(T
HD) i
n
the inp
u
t curre
nt w
i
th output voltag
e
reg
u
lat
i
on. T
he pri
n
ci
pal of op
erati
o
n, theoretica
l
a
nalysis, si
mu
la
tion
results on a si
n
g
le p
has
e boos
t converter are
prese
n
ted.
Ke
y
w
ords
:
bo
ost topolo
g
y, control tech
ni
qu
e, des
ig
n an
d mo
de
lin
g of PF
C, T
HD, VSF
1. Introduc
tion
In rece
nt years, si
ngle
pha
se switch
-mo
de AC-DC po
we
r converte
rs ha
ve been
increasingly
used in the i
n
dustri
a
l, com
m
er
cial, residential, aer
ospace, and milit
ary
environm
ent
due to the ad
vantage
s of high efficien
cy and
smalle
r size an
d wei
g
ht. Howeve
r, the prolife
r
ati
o
n
of the
power conve
r
ters draw pul
sating
i
nput
cu
rre
nts from
the
utility
line; this not only results
in
poor i
nput
p
o
we
r facto
r
of the conve
r
ters but al
so
inject
s a
significa
nt am
ount of ha
rm
onic
curre
n
t into the utility line. Rega
rdin
g t
he po
wer fa
ctor co
rrectio
n
stage, the b
oost
conve
r
te
r is
widely u
s
ed b
e
ca
use of its advantag
es:
grou
nde
d tra
n
si
stor, sm
all
input indu
cto
r
, simpli
city high
efficien
cy an
d the b
o
o
s
t in
ducto
r i
s
in
serie
s
with the
ac
po
wer lin
e. This re
sult
s in th
e mini
mum
con
d
u
c
ted EMI at the line whe
n
the circui
t operate
s
i
n
contin
uou
s
con
d
u
c
tion m
ode.
In conve
n
tion
al tech
niqu
es, input voltag
e is a
s
sume
d
to be si
nu
soi
dal. But, this
voltage
is not a sin
u
soidal all time. Due to existi
ng of
nonlin
e
a
r load
s in th
e distrib
u
ted
system the in
put
voltage of
th
e rectifier ma
y be
disto
r
te
d an
d
not h
a
v
e a
sin
u
soi
d
al waveform.
So, the a
c
in
pu
t
curre
n
t co
ntrolled by the
controlle
r
will
have the
sam
e
wave
shap
e of the in
put
voltage
which is
not si
nu
soid
a
l
and
in
clud
e
s
h
a
rm
oni
cs.
The
boo
st
in
ducto
r
stores only a
pa
rt o
f
the tra
n
sfe
r
red
energy (be
c
a
u
se the main
s still sup
p
lie
s ene
rgy
duri
ng the indu
ctor dema
gneti
z
ation
)
and so
Evaluation Warning : The document was created with Spire.PDF for Python.
¢
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 9, No. 1, April 2011 : 47 – 54
48
the req
u
ired
indu
ctor i
s
smaller
com
p
aring
with
th
e other t
opol
ogie
s
[3]. Hystere
s
i
s
current
control
sche
me i
s
u
s
e
d
d
ue to it
s
better
perfo
rma
n
c
e i
n
o
b
tainin
g a
sin
u
soida
l
input
cu
rren
t. Its
advantag
es
are n
o
ne
ed
of comp
en
sation ra
mp
a
nd low
disto
r
ted input current waveforms.
Acco
rdi
ng to
this
cont
rol
techni
que, th
e switch
is turne
d
o
n
wh
en the i
ndu
ct
or
cu
rre
nt go
es
belo
w
the l
o
wer refere
nce and
is turn
ed off w
hen
the indu
cto
r
curre
n
t goe
s
above the
up
per
referen
c
e giv
i
ng ri
se to
a
variabl
e fre
quen
cy c
ontrol [4]. In this pape
r th
e h
y
stere
s
is current
control te
chn
i
que i
s
i
n
ve
stigated.
The
model
of
t
he
system
i
s
d
e
rived
an
d sim
u
lated
by
MATLAB/Simulink
.
2
.
The Proposed Sy
stem
2.1 Sy
stem
Configuration
2.1.1
Voltage Con
t
rol Loop
The
error i
s
e
s
timated
from
the
DC o
u
tp
ut voltage
me
asu
r
em
ent. T
he
DC outp
u
t voltage
control loop
maintain
s the
capa
citor vol
t
age at a set
referen
c
e val
ue usi
ng feed
back a
c
tion. The
error
at the DC outp
u
t is
re
gulat
ed by
a PI
controll
er (voltage
co
mp
ensator
or Int
egrato
r
) and
the
PI controlle
r output is ad
d
ed to the current contro
l lo
op to vary the duty ration to maintain the DC
output voltag
e.
2.1.2
Curre
nt Con
t
rol loop
The cu
rrent control techniq
ues
have g
a
i
ned impo
rtan
ce in ac to dc converte
rs u
s
ed for
high pe
rform
ance appli
c
at
ions [1]. Whe
r
e, the fa
st resp
on
se an
d
high accu
ra
cy are imp
o
rt
ant.
Variou
s
current co
ntrol
method
s hav
e bee
n prop
os
e
d
an
d cl
assified a
s
h
y
stere
s
is co
n
t
rol,
predi
ctive
co
ntrol, line
a
r control
and
tim
e
r
co
ntrolle
r
with
con
s
tant
switchi
ng f
r
e
quen
cy. Prin
ciple
of these meth
ods a
r
e b
r
iefl
y
describe
d
a
nd discu
s
sed
belo
w
.
2.1.3 Sy
stem
Des
c
ription
The topolo
g
y of Boost co
nverter i
s
sh
own in Figure 1a
.
(a)
Boost convert
e
r ope
rate
s a
t
continuo
us
con
d
u
c
tion m
ode.
(b)
The switchi
n
g
frequen
cy is
much hi
ghe
r than the line freque
ncy.
a. The topolo
g
y of Boost converte
r
b. Switch is
cl
osed
c.
S
w
it
ch i
s
o
pen
Figure 1. Basic Boost
Con
v
erter with u
n
c
ontrolled b
r
i
dge re
ctifier
Whe
n
‘S’ Cl
ose
d
: in thi
s
mode
of op
eration
the
switch
is i
n
o
n
state. In t
h
is m
ode
(Figu
r
e 1b
), the curre
n
t flows throu
g
h
switch
and
indu
ctor, so
the energy is sto
r
ed to the
indu
ctor. At the sam
e
time
, the capa
cito
r discha
rg
es
and supplie
s
curre
n
t to the load. Whe
n
‘S’
Open: in thi
s
mode of o
p
e
ration th
e switch i
s
in of
f state and
current flows t
h
rou
gh in
du
ctor
,
diode, the ca
pacito
r
togeth
e
r with the lo
ad, and retu
rn to main. Mode 2 is sho
w
n
in Figure 1
c
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
¢
A Variable S
w
itchi
ng Freq
uen
cy
with Boost Power F
a
ctor
… (Mall
i
setti Raje
sh
Kum
a
r)
49
2.2
Proposed Va
riable S
w
i
t
c
h
ing Freque
nc
y
Technique
Figure 2
sh
o
w
n th
e sch
e
m
atic di
agra
m
of t
he hysteresi
s
co
ntrol
ci
rcuit.
As see
n
,
the
control m
e
th
od h
a
s two
l
oop
s, the
cu
rre
nt cont
rol
loop
an
d th
e voltage
co
ntrol lo
op. T
w
o
sinu
soi
dal cu
rre
nt referen
c
es I
refp
sin
ω
t, I
refV
sin
ω
t are gene
rated o
ne for the p
e
a
k an
d othe
r
for
the valley of the indu
ctor
curre
n
t .Acco
rding to
thi
s
control techni
que the
switch is turned
o
n
whe
n
the in
d
u
ctor current
goe
s bel
ow t
he lo
wer refe
ren
c
e I
refV
si
n
ω
t and is turned off
when
the
indu
ctor current goes a
b
o
ve the upp
er refe
ren
c
e
I
refp
sin
ω
t giving rise to variable fre
que
nc
y
control
as sh
own
in
Figu
re
2. Also
with t
h
is
co
ntrol
te
chni
que
the
converte
r
wo
rks in
contin
uo
us
indu
ctor
cu
rrent mode
(CICM).T
he ind
u
c
tor
cu
rrent ri
pple i
s
δ
sin
ω
t, where
δ
is the pe
ak
cu
rrent
ripple. Si
nce
the ind
u
cto
r
curre
n
t switches at
a
mu
ch hig
her rate
then the
line
voltage, the li
ne
voltage i
o
assumed con
s
ta
nt in each in
d
u
ctor
cu
rre
nt swit
chin
g cycl
e.
Figure 2. Hystere
s
i
s
with
VSF control f
o
r sin
g
le
-pha
se bo
ost PFC converte
r.
Figure 3. Boost indu
ctor
curr
ent with hy
stere
s
i
s
co
ntrol.
The co
ntrol t
e
ch
niqu
e is d
e
sig
n
s
so tha
t
the inductor current follo
ws the
sha
p
e
of the
rectified
a
c
li
ne voltag
e. T
o
regulate
th
e loa
d
,
the
error am
plifier
sen
s
e
s
th
e v
a
riation
bet
ween
the output vo
ltage an
d the
fixed dc
refe
ren
c
e. Th
i
s
e
rro
r voltag
e i
s
multipli
ed
with the
se
nsed
rectifie
r line voltage to co
ntrol the indu
ct
or curr
ent am
plitude. The a
d
vant
age
s of the cont
rol are
doe
s ope
rate
over a la
rge
input ra
nge,
no nee
d of
comp
en
satio
n
ram
p
, conv
erting a volta
ge
Evaluation Warning : The document was created with Spire.PDF for Python.
¢
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 9, No. 1, April 2011 : 47 – 54
50
sou
r
ce into
a
fast-a
cting
current sou
r
ce
, the indu
ctor is e
a
sy to d
e
sig
n
, ope
rat
e
high
switch
ing
freque
ncy, a
n
d
low
disto
r
te
d input
cu
rre
nt wavefo
rms with fixed lo
ad. The
disa
dvantage
s of
the
control are th
e frequ
en
cy is con
s
tantly changi
ng,
the
circuit likes fi
xed load that
do not vary, the
freque
ncy go
es very high
for light load
high line, f
ilter is larg
er tha
n
stand
ard S
M
PS filter, a
nd
curre
n
t pea
ks are high
er th
an co
ntinuo
u
s
duty mode.
3.
Resear
ch
Method
The
hy
stere
s
is de
sign requireme
nts
maxi
mum
output wattage, lowest f
r
equ
en
cy
desi
r
ed, lo
we
st AC line voltage, high
est
AC
line voltage, and de
sired DC output
voltage.
3.1
Design o
f
Dut
y
C
y
cle an
d Transis
t
or
turn
-On
off
p
o
on
p
t
t
Sin
V
V
t
t
Sin
V
)
(
)
(
ω
ω
−
=
(1)
Therefore,
o
p
V
t
Sin
V
t
d
ω
−
=
∴
1
)
(
(2)
whe
r
e,
π
π
ω
100
2
=
=
line
f
,
%
100
×
=
Δ
M
I
δ
t
Cot
I
L
V
L
t
P
p
P
F
on
ω
ω
δ
−
=
3.2 Inductor
Des
i
gn
The sele
ction
of induct
o
r a
nd the
capa
ci
tor
in the Bo
ost topol
ogy plays a m
a
jor role i
n
the output re
spon
se. The in
ducto
r (L
) is g
i
ven in eqn (3
),
W
V
t
L
rms
on
×
×
×
Δ
=
2
min
2
η
(3)
1
2
min
−
×
=
rms
dcOutput
V
V
R
(4)
whe
r
e,
)
1
(
R
f
R
t
s
on
+
=
Δ
or
min
2
2
rms
on
V
W
L
t
×
×
×
=
Δ
η
Whe
r
e
V
rm
s
m
in
is the so
urce
voltage,
η
is the efficien
cy of the system
;
W
is output
power
an
d
∆
t
on
is rate of cha
nge of on-tim
e
.
3.3 Capa
citor
Design
The ca
pa
citor (C) i
s
given
as eq
n (5
),
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
Δ
=
o
p
o
o
V
V
V
I
C
ω
ω
π
2
(5)
Whe
r
e
ω
i
s
t
he freq
uen
cy,
Vp
is the Pe
ak
sou
r
ce vol
t
age,
I
o
is the
output curren
t and
∆
V
o
is the
pea
k to pea
k ripple o
u
tput voltage.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
¢
A Variable S
w
itchi
ng Freq
uen
cy
with Boost Power F
a
ctor
… (Mall
i
setti Raje
sh
Kum
a
r)
51
3.4
Determinatio
n of the obje
c
tiv
e
function
The signifi
ca
nt
su
bject of the
Hy
stere
s
i
s
control PF
C meth
od i
s
how t
o
dete
r
mine the
obje
c
tive fun
c
tion. In thi
s
pape
r, Total
Harmoni
c
Di
stortion
(T
HD) of the i
nput
curre
n
t is cho
s
en
as th
e o
b
je
ctive functio
n
[6
]. The obj
ecti
ve of t
he
Hysteresi
s
co
ntro
l PFC
algo
rith
m is to
a
c
hie
v
e
a hig
h
po
we
r
factor. T
he i
d
eal
situation i
s
u
n
ity
po
wer factor.
The
p
o
we
r fa
ctor d
e
fines a
s
giv
en
in eqn (7
).
Power Fac
t
or =
φ
Cos
I
V
I
V
rms
rms
rms
rms
)
1
(
(6)
Therefore,
φ
cos
1
rms
I
I
r
PowerFacto
=
(7)
whe
r
e,
⎟
⎠
⎞
⎜
⎝
⎛
+
=
2
2
12
1
2
1
δ
M
rms
I
I
In the re
ctifie
r casca
ded
b
y
a PFC
circuit, the disp
l
a
cem
ent fa
ctor i
s
on
e. So if the disto
r
tion
factor
app
roa
c
he
s o
ne. Un
ity powe
r
fact
or i
s
re
alized.
The
relation
betwe
en T
H
D an
d di
storti
on
factor i
s
given in eqn (8
) a
nd (9
).
Total harm
oni
c disto
r
tion
1
1
100
(%)
2
−
×
=
d
k
THD
(8)
whe
r
e,
rms
rms
d
I
I
k
1
=
Therefore di
stortion Fa
ctor,
2
)
(
1
1
)
(
THD
DF
Factor
Distortion
+
=
(9)
If the THD of
line
cu
rrent
is mi
nimum,
the di
stortio
n
facto
r
i
s
m
a
ximum an
d t
he p
o
wer factor
become maxi
mum too. Zero THD m
ean
s unity power factor.
4.
Simulation Resul
t
s an
d Discus
s
io
n
The
switchi
n
g fre
que
ncy i
s
(20
-
40
)
kHz. This give
s t
he g
a
te
pulse
wavefo
rm
s
a
s
sho
w
n
in Fig
u
re
4,
whi
c
h
cont
rols the
bo
ost
conve
r
te
r
circuit. Si
mulation i
s
pe
rform
e
d
by
MATLAB/Simulink to verify the propo
se
d control tech
nique. Figu
re
5 is the input
(line)
curre
n
t of
the PFC B
o
o
s
t ci
rcuit un
d
e
r 4.5
k
w loa
d
(full loa
d
) wi
th 155V i
nput
voltage. Th
e
su
pply curre
n
t
and volta
ge
waveforms of
a
singl
e ph
a
s
e
circuit
are
sh
own in
fro
m
Figu
re
6 to
9. It sh
ows t
hat
the supply vo
ltage an
d
cu
rrent a
r
e i
n
p
hase
with
ea
ch
other an
d
ha
s a
po
wer factor cl
oser to
unity.
Figure 4. Gate pulses
Evaluation Warning : The document was created with Spire.PDF for Python.
¢
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 9, No. 1, April 2011 : 47 – 54
52
Figure5. Line
curre
n
t wavef
o
rm
s.
Figure 6. Line
Voltage and
Line current
waveform at line voltage is
155V.
Figure 7. Line
Voltage and
Line current
waveform at line voltage is
130V.
Figure 8. Line
Voltage and
Line current
waveform at line voltage is
110V.
Figure 9. Line
Voltage and
Line current
waveform at line voltage is
90V.
Figure 10 to
sho
w
s the
output voltag
e of the
r
e
cti
f
ier ci
rc
uit. In this pa
pe
r o
b
se
rv
ed
power fa
ctor
at different in
put
line volta
ge (90V-155
V) a
s
sho
w
n
in Figu
re
11.
The T
H
D of t
he
curre
n
t is le
ss than 5%
which i
s
sho
w
n in t
he Figu
re 12. Th
e h
y
stere
s
is va
ri
able switchin
g
freque
ncy
PF
C
cont
rol
strategy can
a
c
hieve ve
ry
hi
gh p
o
wer factor. It is sho
w
n th
at, with
90
-
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
¢
A Variable S
w
itchi
ng Freq
uen
cy
with Boost Power F
a
ctor
… (Mall
i
setti Raje
sh
Kum
a
r)
53
155V inp
u
t voltage, the p
o
we
r facto
r
i
s
un
der
full l
oad is
sh
own
in Figure 11.
Figure13
sh
ows
the line cu
rrent virus di
st
ortion fa
ctor
it is al
ways
clo
s
er to u
n
i
t
y. Output voltage of bo
ost
conve
r
ter
across re
si
stor
o
f
53 ohm
s ha
ving the vo
lta
ge of 39
5.8V and i
s
op
erati
ng at a alm
o
st
con
s
tant d.c.
voltage.
Figure 10. Output voltage waveform.
Figure 11. Lin
e
Voltage viru
s Powe
r facto
r
Figure 12. Lin
e
curre
n
t virus Total ha
rmo
n
ic
dis
t
ortion (THD %)
Figure 13. Lin
e
curre
n
t virus Di
stortion fa
ctor
(DF
)
Table.1. Sum
m
ary of perfo
rman
ce eval
u
a
tion.
Input voltage
(v
ol
t)
Power
Fac
t
or (P
F)
Total harmo
nic
distortion (THD
%)
Distortion
factor (D
F)
Output p
o
w
er
(w
att)
Input po
w
e
r
(w
att)
Efficiency
(%)
90 0.9130
9.60
0.995
3006.6
3230.1
93.0
110 0.9240
7.06
0.997
4638.6
5133.0
90.3
130 0.9243
5.33
0.998
5477.0
5954.0
92.0
155 0.9243
4.14
0.999
5800.0
6045.0
93.1
5. Conclusi
on
A propo
se
d variabl
e switching fre
que
n
c
y (Hy
s
teresi
s)
cont
rol for ac-dc
co
nve
r
ter PF
C
method
ba
se
d on th
e Boo
s
t topolo
g
y. The adva
n
tage
of Hyste
r
e
s
is variabl
e swit
chin
g fre
quen
cy
techni
que i
s
no ne
ed of
ramp
co
mp
ensation, lo
w di
stortion
input current
wavefo
rm.
The
disa
dvantag
e
s
in the
existi
ng PFC
co
ntrol impl
em
ent
ation ba
se
d o
n
co
nvention
a
l PWM
cont
rol.
Evaluation Warning : The document was created with Spire.PDF for Python.
¢
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 9, No. 1, April 2011 : 47 – 54
54
T
h
is
s
y
s
t
e
m
c
o
ns
ide
r
ed
us
es
a
un
ifie
d o
v
ercome
s su
ch a
dra
w
back by
conv
erting a volta
ge
sou
r
c
e
int
o
a
f
a
st
-
a
ct
ing
c
u
rr
ent
sou
r
c
e
by
u
s
ing
thi
s
p
r
op
osed v
a
riabl
e
swit
ching frequ
en
cy
(Hyste
re
si
s)
control te
chn
i
que, all the
duty cycl
e
s
required to
a
c
hieve
clo
s
e
r
to unity po
wer
factor
with th
e switchi
ng freque
ncy of
(20 -
40)
kHz.
The
d
e
si
gn equatio
ns
fo
r
sele
cting out
put
cap
a
cita
nce and po
we
r fa
ctor h
a
ve be
en prese
n
ted
.
Simulation result
s sh
ows
that the prop
osal
strategy
wo
rks well a
nd n
ear
unity po
wer facto
r
ca
n be
achieve
d
over
wid
e
i
nput voltage
and
load
cu
rre
nt
variation
ran
ge. Th
e T
H
D i
s
we
ll d
e
c
re
ased
with
pro
p
o
s
ed
h
y
stere
s
is vari
able
swit
chin
g freq
uen
cy techni
que.
Ackn
o
w
l
e
dg
ement
I express my sin
c
ere than
ks to RGM
C
ET for
providin
g us goo
d lab
facilities. A heart full
and sin
c
e
r
e
gratitude to my beloved supe
rvisor
professo
r Ch. Sai Babu Garu for
their
tremen
dou
s
motivation an
d moral
sup
p
o
rt.
Referen
ces
[1]
Stihi O, Boon-
T
e
ck O. A Singl
e-Phas
e C
ontrol
l
ed-
Curre
nt PW
M Rectifier.
IEEE Transactions
on
Power Electronics
. 1988; 3(4):
453-4
59.
[2]
Barreto LHSC,
Coelho EAA,
Farias VJ, de
Freita
s LC, Joao-BV Jr. T
he bang-
bang hy
s
t
eresis
current
w
a
ves
hap
in
g control
tec
h
n
i
que use
d
to implem
ent
a
hig
h
p
o
w
e
r fa
ctor po
w
e
r su
ppl
y. IEEE
T
r
ansactions o
n
Po
w
e
r El
ectronics. 20
04; 19
(1): 160-1
68.
[3]
Enjeti PN, Martinez R.
A hig
h
perfor
m
a
n
ce
singl
e phas
e AC to DC rectifier w
i
th input pow
er facto
r
correction
. Eig
h
th An
nu
al A
p
plie
d P
o
w
e
r
E
l
ectron
ics C
o
n
f
erence
an
d E
x
p
o
siti
on (APE
C). T
e
xas.
199
3: 190-
195.
[4]
Prodic
A, Mak
s
imovic
D. De
ad-Zon
e
D
i
gita
l Co
ntrol
l
ers
f
o
r
Improv
ed D
y
n
a
mic Res
p
o
n
se of
L
o
w
Harmon
i
c Rect
ifiers.
IEEE Transactions on P
o
wer Electronics
. 2006; 21(
1)
: 173-18
1.
[5]
Kana
an
HY, S
auri
o
l G, Al-
H
a
dda
d K. Sm
all-
sign
al m
o
d
e
lli
n
g
a
nd
li
near
c
ontrol
of
a h
i
g
h
effici
enc
y
dua
l bo
ost sing
le-p
hase p
o
w
e
r factor correction circu
i
t.
IET Power
Electronics
. 2009; 2(6):
665-6
74.
[6]
Qiu DY, Yip SC, Chun
g HSH
.
Single C
u
rre
nt Sensor Co
n
t
rol for Singl
e-
Phase Active
Po
w
e
r F
a
cto
r
Correctio
n.
IEEE Transactions on Power Electronics
. 20
02
; 17(5): 623-6
3
2
.
[7]
Yoshi
da T
,
Shiizuka O. An I
m
provem
ent T
e
chn
i
qu
e for the Efficie
n
c
y
of High-F
r
e
q
u
enc
y S
w
itc
h
-
Mode R
e
ctifier
s
.
IEEE
Transactions on Power Electronics
. 2
000; 15(
6): 111
8-11
23.
[8]
Lia
ng T
J
, Yang LS, Che
n
JF
. Anal
ysis an
d
desi
gn of a sin
g
le-
phas
e AC
/
DC step-d
o
w
n
converter for
univ
e
rsal i
n
p
u
t voltag
e.
IET El
ectr. Power Appl
. 200
7; 1(5): 778-
784.
[9]
Pand
e
y
A, Si
n
gh B. C
o
mpar
a
t
ive eva
l
u
a
tion
of
sing
le-
phas
e
unit
y
po
w
e
r fa
ctor ac-dc
boo
st converter
T
opologi
es.
IE (I) Journal. EL
. 2003: 8(2): 10
2-10
9.
[10]
Z
hou
C, Ri
dle
y
RB, Le
e F
C
. Desig
n
and
ana
l
y
sis
of H
ysteresis B
oost
po
w
e
r factor
Correcti
o
n
Circuits. 21st A
nnu
al IEEE Po
w
e
r Electro
n
ics
S
pecia
lists Co
nferenc
e. Bl
ac
ksburg. 19
90.
800-
807.
[11]
Li Q, Lee FC, Wang C.
Ligh
t Load Efficienc
y
Impr
ovement fo
r
PFC. IEEE Energy Conversi
on
Congress and
Ex
position ( ECCE).
Blacksburg. 200
9: 3755-3760.
[12]
Lin B
R
, Yan
g
T
Y
. Single-
ph
a
s
e ha
lf-brid
g
e
rectifier
w
i
t
h
po
w
e
r factor
correction.
IEE P
r
ocee
din
g
s-
Electric Pow
e
r Appl
icatio
ns.
2
004; 15
1(4): 44
3-45
0.
[13]
Moha
n N, U
n
d
e
la
nd T
M
, Rob
b
ins W
P
. Po
w
e
r Electr
on
ics: C
onverters, A
ppl
icatio
ns a
nd
de
sign. T
h
ird
Editio
n. Ne
w
Y
o
rk: John W
ile
y & Sons. 20
03
.
[14]
Rashi
d
MH. Po
w
e
r Electro
n
ics
:
Circuits, Devi
ces an
d App
lic
ations.
T
h
ird Editio
n. Ne
w
D
e
l
h
i: Prentic
e
Hall of Ind
i
a Pri
v
ate Limite
d. 2005.
[15]
Sing
h MD,
Kh
anch
a
n
dan
i K
B
. Po
w
e
r
El
ec
tronics. Se
c
o
n
d
Ed
ition.
Ne
w De
lhi:
T
a
ta McGra
w
-
Hil
l.
Publ
ishi
ng C
o
mpan
y L
i
mited.
2007.
[16]
Ogata K. Mod
e
rn C
ontrol
En
gi
n
eeri
ng. 4th
editi
on. N
e
w
Delh
i: Pr
entic
e
Hal
l
of. Indi
a
Private Ltd
.
200
2.
Evaluation Warning : The document was created with Spire.PDF for Python.