TELKOM
NIKA
, Vol.14, No
.4, Dece
mbe
r
2016, pp. 13
45~135
0
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v14i4.4742
1345
Re
cei
v
ed Au
gust 17, 20
16
; Revi
sed O
c
t
ober 1
2
, 201
6; Acce
pted
Octob
e
r 26, 2
016
Rectangular Patch Antenna Array for Radar Application
Yudi Yuli
y
u
s
Maulana*, Yu
y
u
Wah
y
u,
Fo
lin Okta
fia
n
i, Yussi Perdana Sapu
tr
a,
Arie Setia
w
a
n
Rese
arch Ce
nter for Electroni
cs and T
e
leco
mmunicati
on, Indo
nesi
an Insti
t
ute of Science
s
(LIPI),
Jl. Sangkur
ian
g
, Cisitu, Band
ung 4
0
1
35 Ind
ones
ia
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
y
u
di
ym@gm
a
il.com
A
b
st
r
a
ct
T
h
is pa
per d
e
a
l
s w
i
th the cha
r
acteri
z
a
ti
on of
Rectan
gul
ar P
a
tch Anten
na
Arrays nu
mer
i
c
a
lly a
n
d
exper
imenta
lly.
T
h
is ante
nna
i
s
desig
ne
d to
w
o
rk aroun
d frequ
ency of 9.
4
G
H
z
for ra
dar
app
licati
ons. In
the
desi
gn
proc
es
s, the C
o
mput
er Si
mu
lati
on
T
e
chno
logy
(C
ST
) simul
a
to
r softw
are is
utili
z
e
d
to
det
ermi
n
e
the valu
e of the ante
n
n
a
pa
rameters such
as gain,
rad
i
ation p
a
ttern, and vo
ltag
e stand
ing w
a
ve r
a
tio
(VSW
R). T
he
Rectan
gul
ar P
a
tch Ante
nn
a
Arrays re
ali
z
e
d
by
usin
g th
e 1
x
16
patch
ante
nna
array, w
h
i
l
e
th
e
patch a
n
ten
n
a
is impl
e
m
ent
ed us
ing
micr
ostrip li
nes
. T
he D
u
roi
d
/RT
5
880 s
ubstrate
w
i
th a diel
ec
tric
constant of 2.2
and a thickn
e
ss of
1.57mm
app
lie
d for imp
l
e
m
e
n
tation. T
he char
acteri
zation res
u
lts show
that the VSW
R of reali
z
e
d
ant
enn
a is
1.05
2, and the
gai
n is
15,26d
B w
h
ic
h is 1.4dB l
o
w
e
r than the d
e
s
i
gn
result, w
h
ile th
e radi
ation
pattern is un
idir
ecti
ona
l an
d ell
i
pti
c
al po
lari
z
a
t
i
o
n
.
Ke
y
w
ords
: An
tenna Arrays, c
haracter
i
z
a
tio
n
,
gain, mi
crostri
p
lin
es, Rectan
gul
ar Patch, VSW
R
Copy
right
©
2016 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Curre
n
tly, ra
dar i
s
one
of
the e
m
ergin
g
te
chnol
ogie
s
. Thi
s
te
ch
n
o
logy
can
re
place the
function of the huma
n
e
y
e to monitor obje
c
ts
a
t
long distan
ce
s. Ra
d
a
r i
s
a system
of
electroma
gne
tic waves th
at useful to d
e
tect, me
a
s
u
r
e
distan
ce
s a
n
d
create
a m
a
p of obj
ect
s
[
1
].
Today'
s
mod
e
rn ship
s are
equippe
d wit
h
the navigat
ion rad
a
r to d
e
tect other v
e
ssel
s, weat
her
encounte
r
ed
at the front
so that
it
ca
n avoid the
dang
ers that
exist in fro
n
t of the shi
p
. In
appli
c
ation
s
on ma
ritime
navigation
ra
dar, b
a
sed
o
n
the Inte
rna
t
ional Ma
riti
me O
r
ga
niza
tion
(IMO), m
a
riti
m radar should us
e
a frequency-band
(8 to 12 GH
z), where the
mobility of ships
requi
re
s
a very small
ante
n
na
size a
nd li
ght weigh
t. T
he hi
ghe
r the
work freq
uen
cy the
ra
dar
will
become light
er and
small
e
r antenn
a si
ze [2].
One
of imp
o
rt
ant comp
one
nt on
sy
stem
rada
r
i
s
an
a
n
tenna
sy
ste
m
, if anal
ogo
us to
the
human b
ody, the antenna
systems a
s
an eye whi
c
h
is very vital. Due to the high p
r
ice of
importe
d of
a ra
dar set, Indon
esi
a
is
required to
d
e
velop
rada
r.
Therefore, in this
pap
er
will
discu
ss th
e
makin
g
of on
e of its comp
onent, that
is rada
r a
n
tenn
a usi
ng mi
cro
s
trip te
chn
o
lo
gy
and a
r
ray me
thods
with a
material
su
ch
as a
diele
c
tric sub
s
trate
Duroid / RT5
880, Comput
er
Simulation T
e
ch
nolo
g
y (CST
) si
mulat
o
r software was u
s
ed
on simulation p
r
o
c
e
ss. Mi
cro
s
t
r
ip
techn
o
logy is
use
d
so the a
n
tenna which
is im
plement
ed ha
s small
dimen
s
ion
s
, light weight an
d
easy in fa
bri
c
ation an
d lo
w co
st [3]. other tha
n
that, con
c
e
r
nin
g
th
e synthe
si
s o
f
apertu
re fiel
ds
suitabl
e for ra
dar [4].
De
sign, re
cta
ngula
r
sha
pe patch
is
u
s
ed
with
a mo
dified form u
s
in
g
a
slot a
s
a di
rectio
n
modifier of p
o
lari
zation
re
sulting
from
vertic
al to
ho
rizo
ntal [5]. T
he
De
signe
d
Ra
dar ante
n
n
a
con
s
i
s
ting of
1x16 patch microstri
p
an
tenna in
-arr
a
y
with uniform power di
st
ribution
(unif
o
rm
array), the wo
rkin
g freq
uen
cy of 9.4 GHz and a gain of
> 12 dB.
2.
Rec
t
ang
u
lar Microstrip
P
a
tch Antenn
a
Array
s
2.1.
A Short Ov
er
v
i
e
w
Of Th
e
Microstrip Antenn
a Arr
a
y
The initial st
age of this
activity is to desig
n a si
ngle pat
ch a
n
tenna
with hori
z
ontal
polari
z
atio
n to be expe
cte
d
according t
o
the rada
r a
n
tenna p
a
ra
meters. The
desi
gn is d
o
n
e
by
cal
c
ulatin
g the dimen
s
io
ns of the patch
antenna
i
n
accordan
ce
with the spe
c
ified op
eratin
g
freque
ncy. Fi
gure 1.
sho
w
s a patch ant
enna [6].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1345 – 135
0
1346
(
a
)
An
te
nn
a
de
s
i
gn
(b) Fiel
d mov
e
ment
Figure 1. Patch ante
nna di
mensi
o
n
F
igur
e 2. Antenna p
a
tch di
mensi
on version
This i
s
the p
o
sition of the
transmission
line to the
side
way
s
po
sition, so the
field is
flowing
ho
rizontally align
e
d
in th
e pat
ch. In
a
patch
anten
na d
e
sign
with the
con
d
ition of t
h
e
transmissio
n line as
sho
w
n
in Figure 2.
has a diffi
culty in merging
whe
n
doin
g
the array with
the
desi
r
ed a
r
ran
gement, arra
y design
can
be se
en in Fi
gure 3.
Figure 3. De
sign anten
na a
rray a
s
in version 1
Figure 4, the second p
o
si
tion is a mo
difica
tion of the tran
smi
s
sion line to the first
versio
n, by doing curvatu
r
e of the tran
smissi
on lin
e, so that it ca
n
feed from th
e bottom of the
vertical
po
sition. Figu
re
5,
this thi
r
d p
o
si
tion are d
o
ing
modification
to the p
a
th b
y
addin
g
slot
a
s
a field
dire
ct
ion mo
difier
whi
c
h flo
w
in
g from
the t
r
an
smi
ssi
on l
i
ne, so that
the pol
ari
z
ati
on
become ho
ri
zontal.
Figure 4. De
sign anten
na a
rray ante
nna
as in
ver
s
ion 2
Figure 5. Antenna p
a
tch di
mensi
on version 2
From the th
ree version of
the antenna
bef
ore whi
c
h
gene
rate
s hori
z
ontal
p
o
l
a
rization
antenn
a, the third version
have the mo
st good of
ret
u
rn lo
ss, gain
and in re
du
cing the level
of
difficulty in the pro
c
e
ss of realization.
2.2. Design
of Re
cta
ngul
ar Patch
Antenna Arra
y
s
In orde
r to o
b
t
ain the optim
al anten
na de
sign,
some
chara
c
te
rizatio
n
we
re d
one
su
ch a
s
cha
ngin
g
the feed chan
ne
l length, cha
nge
s in
the dimen
s
ion
s
o
f
the patch and the distan
ce
betwe
en the
patch ante
n
na. By doin
g
som
e
si
mul
a
tions usi
ng
a software
si
mulator CST
sub
s
e
que
ntly obtaine
d a
more
optimal
desi
gn
re
su
lts su
ch
as
voltage sta
n
d
ing
wave
ratio
(VSWR), gain
and radi
ation
pattern
s.
Figure 6. sh
o
w
the ante
n
n
a
desi
gn p
a
ramete
r, ante
nna mate
rial
s used i
n
this
desi
gn is
the diel
ect
r
ic
sub
s
trate
Duroid /
RT5
880
with
a
diele
c
tric co
nsta
nt of
2.2 and
a
thick
sub
s
trat
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
ctang
ular
Patch Antenn
a Arra
y for Radar
Ap
plication (Yudi Yuli
yu
s Maula
n
a
)
1347
1.57 mm. A
c
cording
to th
e spe
c
ificatio
ns
of the
de
sired anten
na, the
op
er
atin
g
frequ
en
cy is
9.4
GHz
with im
peda
nce of
5
0
Oh
m a
nd
has a
retu
rn
loss
≤
-10
d
B
, then the
d
i
mensi
o
n
s
of
the
patch ant
enn
a, feeding lin
e, groun
d pla
ne and
the d
i
stan
ce between the patch antenna
were
cal
c
ulate
d
. Optimization re
sults
can be
see
n
in
Tabl
e 1. As shown in Figure 7
,
the design
of
recta
ngul
ar p
a
tch A
n
tenn
a
Arrays
built
usin
g 1
6
pi
e
c
e
s
Re
ctang
ular Micro
s
tri
p
pat
ch
ante
nna
that equipp
ed
with an additi
onal sl
ot each patch a
n
ten
na.
Table 1. Microstrip A
rray A
n
tenna
De
sig
n
Dimen
s
io
ns using
Duroid
/Rt5880 Sub
s
trate with
Diele
c
tri
c
Co
nstant (
Ε
r) of 2.2 and Thi
c
kness of 1.57
mm
Parameter
Value (mm)
S
y
mbol
Distance betwee
n
antenna
24.0
Dz
Length Fe
edline 1
17.0
Lm
Length Fe
edline 2
4.9
La
Length Fe
eding
7.0
Lp
Length Patch
9.6
Lpa
Length substrate
381.82
Ls
Length uppe
r stu
b
7.0
Lsa
Length bottom st
ub
2.5
Lsb
Thickness substr
ate
1.57
Ts
Width Feedline 1
5.0
Wm
Width Feedline 2
2.0
Wa
Width Feeding
5.0
Wp
Width patch
28.5
Wpa
Width substrat
63.58
Ws
Width upper stub
0.8
Wsa
Width bottom stub
0.8
Wsb
Length Line 1
8.58
Lj
Length Line 2
10
Ll
(a) Anten
na p
a
ram
e
ter
(b) F
eedin
g
line A
(c) Fee
d
ing li
ne B
Figure 6. De
sign paramete
r
Figure 7. Re
ctangula
r
microstrip p
a
tch a
n
tenna a
r
rays desig
n
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1345 – 135
0
1348
3.
Deplo
y
ment and Ch
arac
teriza
tion
Based o
n
the desi
gn de
scrib
ed in the
previo
u
s
se
ction, the pro
t
otype of Rectang
ul
a
r
patch Ante
nn
a Array i
s
re
alize
d
to be
cha
r
a
c
teri
ze
d
experim
ental
ly as sho
w
n i
n
Figu
re 8. a
nd
Figure 9. respectively. In
addition, the
desi
gn
re
sults Return Lo
ss, VSWR, rad
i
ation patte
rn
an
d
gain al
so de
p
i
cted togeth
e
r in each resp
ected figu
re a
s
a co
mpa
r
ison.
Although the
results of th
e experim
ent
al cha
r
a
c
teri
zation of Retu
rn Lo
ss and
VSWR
sho
w
n i
n
Fig
u
re 1
0
. slig
htly different from the resul
t
s obtain
ed f
r
om
CST
simulator de
si
gn
softwa
r
e, h
o
w
ever in
ge
neral
both
re
sults have
si
milar te
nde
n
c
y to o
ne
a
nother.
Fro
m
the
resea
r
ch, the
prototype
a
n
tenna
ha
s
a Retu
rn
Lo
ss of -31.92
4 dB a
nd V
S
WR
1.052
at a
freque
ncy of 9.4
G
H
z. Wh
erea
s at
the same
fre
que
ncy with
the desi
gn
o
ne h
a
s Retu
rn Lo
ss
-
29.359 dB an
d VSWR 1.07
0.
Figure 8. Picture of re
alize
d
antenn
a arrays
prototype (to
p
view)
Figure 9. Picture of re
alize
d
antenn
a
arraysp
r
ototype (bottom vi
ew)
Figure 10. Measure
d
and
desi
gn re
sult
s of VSWR
Figure 11 a
n
d
Figure 12 i
s
an a
z
im
uth
and elevat
io
n radi
ation p
a
tterns,
sho
w
that the
antenn
a is a
n
unidi
re
ction
a
l be
cau
s
e h
a
lf power
b
e
a
mwidth
(HPBW) for
azi
m
uth dire
ction
is
arou
nd 4
o
an
d elevation di
rectio
n is a
r
o
und 27
o
.
Figure 11. Measure
d
and
desi
gn re
sult
s of
radiatio
n pattern (azim
u
th)
Figure 12. Measure
d
and
desi
gn re
sult
s of
radiatio
n pattern (elevation
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Re
ctang
ular
Patch Antenn
a Arra
y for Radar
Ap
plication (Yudi Yuli
yu
s Maula
n
a
)
1349
Figure 13 i
s
a re
sults
gra
ph of the p
o
lariza
tion m
e
a
s
ureme
n
ts, showed that t
he large
s
t
and
smalle
st
received p
o
wer i
s
-2
9.99d
Bm and
-57.
13dBm
re
spe
c
tively. From
these val
u
e
s
, it
can p
r
od
uce
23.735
comp
arison of maj
o
r and mi
no
r.
The comp
a
r
iso
n
of the result
s obtain
ed
that is elliptical polari
z
atio
n measureme
n
t
result
s with
the conditio
n
s
, 1 < ellip
se
<
∞
.
Figure 13. Measure
d
of polari
z
ation
Figure 14 sh
ows that the gain
of the si
mulation re
su
lts of micro
s
trip anten
na is 16.6
6
dB. This proves that by ma
ki
ng the a
r
ray antenna in
creases g
a
in.
Figure 14. Ga
in simulatio
n
results
The cal
c
ul
ation of gain is
expre
s
sed in
(1).
S
T
S
T
P
P
G
G
log
10
(
1
)
For:
G
S
= Refe
ren
c
e
antenn
a gain
G
T
= Total gain
P
T
= Mea
s
u
r
ed receive
d
ante
nna po
we
r
P
S
= Refe
ren
c
e
receive
d
ante
nna po
we
r
The
different
results of exp
e
rime
ntal
cha
r
acte
ri
zation
are
also fou
n
d
for the val
u
e of g
a
in
value a
s
sh
o
w
n i
n
the
cal
c
ulatio
n of th
e me
asur
e
m
ent results.
Ho
wever,
it i
s
see
n
that
the
experim
ental
ch
ara
c
te
riza
tion re
sult
s
have the
sa
me tend
en
cy. By using
(1), the
re
alized
Re
ctang
ular
Patch Anten
na Array p
r
o
t
otype has
g
a
in of 15.26
dB at freque
ncy of 9.4G
Hz
freque
ncy, whilst the desi
gn re
sult is 1
.
46dB hi
ghe
r than the measu
r
ed
re
sult
s, i.e. 16.66d
B.
There are
some possibiliti
e
s
whi
c
h
evokes these di
scre
pancies. One of
them is caused
by the
diele
c
tric l
o
ss of Duroid/RT
5880 di
ele
c
tri
c
sub
s
tr
ate u
s
ed in th
e re
alizatio
n. It should b
e
not
ed
that the diele
c
tri
c
loss and
relative perm
i
ttivity
in the d
e
sig
n
are
set to be con
s
tan
t
and assum
e
d
to be flat for
all frequ
en
cy rang
es.
Whil
st in impl
emen
tation, the die
l
ectri
c
lo
ss
an
d the diele
c
tri
c
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 14, No. 4, Dece
mb
er 201
6 : 1345 – 135
0
1350
con
s
tant a
r
e
almost f
r
equ
ency-dep
end
ent. In ca
se
of mea
s
ured
gain, it is
pro
bably cau
s
ed
by
the diele
c
tric
loss whi
c
h h
a
s a
c
tual value slig
ht
ly higher tha
n
in the desi
gn. Due to the highe
r
value of the
diele
c
tric l
o
ss, some
amou
nt of ene
rgy from the
input
port that
sho
u
ld be
actu
all
y
transmitted to the output port is then
abso
r
be
d by
the dielectric sub
s
trate
affecting to the
decrea
s
e of
measured gai
n [7].
4. Conclu
sion
The
Cha
r
a
c
terization of
Re
ctang
ular
Patch Anten
na Arrays fo
r rad
a
r a
ppli
c
ations
h
a
s
been d
e
mon
s
trated num
eri
c
ally and exp
e
rime
ntally
. The Antenn
as
whi
c
h ha
s be
en de
sign
ed t
o
work
a
r
ou
nd freque
ncy
of 9.4GHz
ha
s been con
s
tr
u
c
ted by use of 1x16
patch antenn
a array.
The prototy
pe Re
ctang
ular patch antenn
a
a
r
rays
h
a
s
al
so bee
n
im
plemente
d
o
n
a
Duroid/RT58
80 di
ele
c
tric su
bst
r
ate.
Although
t
here
were
some
di
scre
pan
cie
s
in
the
experim
ental
ch
ara
c
te
riza
tion re
sult
s f
o
r
Retu
rn
L
o
ss, VSWR, radi
ation
p
a
ttern a
nd
g
a
in
comp
ared to
the desi
gn
results. In g
eneral,
the realized p
r
oto
t
ype
has sh
own accepta
b
le
perfo
rman
ce
to work at th
e desi
r
e
d
wo
rkin
g freq
uen
cy of 9.4GHz for rad
a
r a
p
p
licatio
ns. Th
e
reali
z
ed
proto
t
ype has
dem
onstrated the
gain of 15.2
6dB at freq
ue
ncy of 9.4G
Hz with th
e valu
e
of VSWR of 1
.
052. The
de
sign
ante
nna
has sho
w
n
th
e gai
n of
16.6
6dB with
the
value of VS
WR
of 1.070.
In
additio
n
, a
furthe
r i
n
ve
stigatio
n
on
the
enh
an
cement
of th
e ante
nna
a
rray
perfo
rman
ce
by implement
ing some d
e
sign metho
d
for the fo
rm of
patch
es a
n
d
feed sy
stem
is
still in the progress
where t
he re
sults
will
be reported l
a
ter [7].
Ackn
o
w
l
e
dg
ements
This work wa
s finan
cially sup
porte
d by Ministry of Re
sea
r
ch, Tech
nolo
g
y and High
e
r
Educatio
n of the Repu
bli
c
of Indone
sia (R
ISTEKDIKTI) under t
he schem
e of the nation
a
l
innovation systems re
se
arch
in
ce
ntives (Insi
n
a
s
).
Than
ks al
so to Ele
c
tri
c
al Engin
eeri
n
g
Dep
a
rtme
nt, University of Indon
esi
a
for sup
portin
g
on
simulation.
Referen
ces
[1]
Merrill I Skoln
i
k
.
Radar Ha
nd
b
ook. T
h
ird Edition. T
he McGra
w
-
H
il
l Comp
an
i
e
s. 2008.
[2]
M W
ahab, Y W
a
h
y
u, YP Saputer
a.
Sma
l
l
antenn
a usi
n
g transmissio
n
line u
n
ifor
m for X-band
navi
gatio
n ra
d
a
r
. Anten
na T
e
chn
o
lo
g
y
(iW
A
T
)
, 2015 Inte
rnatio
nal W
o
rk
shop
on. Se
ou
l. 201
5: 30
9-
312.
[3]
RA F
a
ya
dh, M
F
A Malek,
HA
F
adhi
l, F
H
W
e
e. Pl
a
nar F
i
ng
er-Sha
ped
Ant
enn
a us
ed
in
U
l
tra-W
i
deb
an
d
Wireless S
y
st
ems.
TELKOMNIKA Teleco
mmu
n
icati
on
Co
mp
uting E
l
ectronics
and
Contro
l
. 201
4;
12(2): 41
9-4
2
8
[4]
OM Bucci, T
Iserni
a, AF
Mor
abito. Optim
a
l
S
y
nt
hesis
of C
i
rcular
l
y
S
y
mm
etric Sh
ape
d B
eams.
IE
EE
T
r
ans. Antenn
as Propa
g.
201
4; 62(4): 19
54-
196
4.
[5]
John D Kra
u
s. Antennas for
all a
ppl
icatio
n.
3rd
Editio
n. Ne
w
De
lh
i:
T
a
ta MC Gra
w
-H
ill Pu
blis
hin
g
Comp
an
y Ltd. 200
3.
[6]
David M P
o
za
r,
Danie
l
H Sc
hau
bert. Micro
s
trip ante
nnas:
T
he ana
l
y
sis
and d
e
sig
n
o
f
microstrip
antennas and
array
s
. IEEE Book. 1995.
[7]
A Mun
i
r, YY
Maul
ana.
Ch
ar
acteri
z
a
ti
on
of
2-stage
RF
po
w
e
r ampl
ifier f
o
r F
M
CW
rad
a
r a
ppl
icati
on.
Electrical
En
gi
neer
ing
a
nd
C
o
mputer
Scie
n
c
e (IC
EECS),
201
4 Inter
nati
ona
l C
onfer
en
ce o
n
. Kuta.
201
4: 381-
384.
[8]
KK Paras
har.
Desig
n
a
nd
A
nal
ysis
of ISlo
tted
Recta
ngu
l
a
r Microstri
p
Patch Ante
nn
a
for W
i
reless
Appl
icatio
n.
Internati
ona
l Jour
nal of Electric
al
and Co
mputer
Engin
eeri
ng (I
JECE)
. 2014; 4
(
1): 31-36.
[9]
M W
ahab, Y Sula
eman, Su
l
i
st
y
a
ni
ngsi
h
.
Evalu
a
tion
on d
e
tection r
ang
e
of ISRA S-band c
oasta
l
surveil
l
a
n
ce r
a
dar
. Ra
dar, A
n
tenn
a, Micro
w
a
v
e, El
ectron
ics, an
d T
e
lec
o
mmunic
a
tio
n
s
(ICRAMET
)
,
201
5 Internati
o
nal co
nfere
n
ce
on. Band
ung.
201
5: 64-6
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.