TELKOM
NIKA
, Vol.13, No
.2, June 20
15
, pp. 670 ~ 6
7
7
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i2.999
670
Re
cei
v
ed
No
vem
ber 1
4
, 2014; Re
vi
sed
Febr
uary 25,
2015 Acce
pte
d
March 12, 2
015
Water Model Study on Removing Inclusion from Molten
Steel by Bubble Attachment in RH Degasser
Chunjie Yan
g
*, Fuping Tang, Mingga
ng Shen
Univers
i
t
y
of Scienc
e an
d T
e
chno
log
y
Lia
oni
ng,
Ansha
n
Cit
y
11
405
3, Lia
oni
ng
, China
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: chunj
ie
ya
ng
_
t
el@1
63.com
A
b
st
r
a
ct
In this p
a
p
e
r,
a w
a
ter
mod
e
l
is estab
lis
hed,
at ge
o
m
etric si
mi
larity r
a
tio
of 1:4, to si
mulat
e
a r
e
a
l
180-t RH vacu
um refi
nin
g
de
vice. Re
movi
n
g
inclus
io
n from molte
n
stee
l by bubb
le at
tachment in R
H
deg
asser is an
aly
z
e
d
usin
g th
e w
a
ter mod
e
l.
T
he effect
s of
varia
b
les suc
h
as bub
ble si
z
e
,
treatme
nt time
,
life-g
a
s flow
ra
te, amount a
n
d
time of N
a
H
C
O3 ad
diti
o
n
are i
n
vestig
ate
d
by us
ing
hi
g
h
spe
ed vi
de
o
and
imag
e-proc
ess
softw
are.
Ke
y
w
ords
: Bubb
le Attach
ment, Inclusio
n, W
a
ter Model,
RH Deg
a
sser
1. Introduc
tion
Tech
nolo
g
ie
s for clea
n ste
e
lmaki
ng a
r
e
being
contin
u
ously devel
o
ped to meet the ever
increa
sing d
e
m
and
s on ma
terial prope
rties [1]. The
co
mpositio
n, qu
antity and size distrib
u
tion
of
non-metalli
c inclu
s
io
ns a
r
e
all importa
nt in influen
cing
the physi
cal p
r
ope
rtie
s of st
eel. Inclu
s
ion
s
in ste
e
l g
r
e
a
tly affect its ph
ysical
an
d
ch
emical
p
r
op
erties, such a
s
fatigue life, m
a
chi
nability a
n
d
corro
s
io
n re
sistan
ce [2]. The big
si
ze
(diam
e
ter
more th
an 5
0
μ
m) in
clu
s
i
ons
are
re
m
o
ved
prima
r
ily by Stoke
s
floating
.
Howeve
r, inclu
s
ion
s
less
than 50 µm in
diameter
can
not rise
rapidl
y
and they ten
d
to re
main i
n
the
steel [3
]-[5]. Ox
ide
inclu
s
io
ns are
lighter
th
an molten steel an
d
can
float u
p
t
o
the
sla
g
su
rface,
sti
c
k to
the
wa
ll, o
r
stick to
bub
bl
es
and
be
tra
n
sp
orted
to t
h
e
surfa
c
e [6]. Some soli
d incl
usio
ns, such as alumi
na a
nd sili
ca, are
not wetted by
the liquid ste
e
l
and therefore
can be
remo
ved by attach
ment to gas b
ubble
s
[7].
In orde
r to sa
tisfy the requi
reme
nts for the deg
ree of
clea
nline
ss in
steel, control
ling the
amount, si
ze
distrib
u
tion
and shap
e o
f
inclusi
o
n
s
is of gre
a
t importa
nt in the steel
ma
ki
ng
pro
c
e
ss. Th
e formation, m
odificatio
n
an
d removal
of
these in
clu
s
io
ns in liqui
d st
eel is controll
ed
by the vari
o
u
s
pro
c
e
s
sin
g
unit
s
[8]. As on
e
of th
e impo
rtant
refining
eq
ui
pments bet
ween
steelma
kin
g
and co
ntinuo
us ca
sting, RH vacuu
m
re
fining plays a
n
important role in removi
ng
the incl
usi
o
n
s
in th
e molt
en ste
e
l. RH
refining
process, to a
sig
n
ificant d
e
g
r
e
e
, has be
co
me a
main
refinin
g
ope
ratio
n
f
o
r
rem
o
ving
incl
usi
o
n
s
f
r
om li
quid
st
eel in
o
r
de
r to mini
mize
the
inclu
s
io
ns th
at could p
o
tentially form defect
s
in
th
e finishe
d
produ
ct or adv
ersely affect the
produc
t properties
[1],[9].
Duri
ng
steel
second
ary refining, aide
d by
surfa
c
e
tension fo
rces fro
m
non
wettin
g
conta
c
t, most
solid in
clu
s
i
ons ten
d
to collect on
su
rface
s
such a
s
bubble
s
[10]
-[11].The
refore,
spe
c
ial m
e
th
ods
have b
e
e
n
develo
ped t
o
rem
o
ve no
n-metalli
c in
cl
usio
ns f
r
om
molten
steel [
12]-
[13]. Miki and Thoma
s
d
e
velope
d a mathemati
c
al
model to predict the re
moval of alumina
inclu
s
io
ns fro
m
molten
st
e
e
l in
a
conti
nuou
s
ca
stin
g tundi
sh. Al
though
several pa
pers ha
ve
been
written
on incl
usi
on removal by ga
s bub
ble
s
flotation in wate
r modeling [14
]
-[17].
Ho
wever, the
r
e a
r
e fe
w p
apers
system
atica
lly stu
d
ying the fun
d
a
m
entals of in
clu
s
io
n
removal by b
ubble attach
ment in liquid
steel in
RH
vacuum d
ega
sser an
d the effects of bub
ble
s
i
ze, treatment time, life-gas
flow
rate etc
.
This pa
per
pre
s
ent
s fu
n
damental
mo
dels to
quan
tify the rem
o
val of in
clu
s
i
ons by
bubbl
es in m
o
lten
steel.
A wate
r m
o
d
e
l is u
s
ed
to
study th
e in
fluenci
ng th
e
rem
o
val of f
i
ne
inclusions(
<
5
0
µm diamete
r) in a 18
0-t RH vacu
um ref
i
ner.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Water Model
Study on Rem
o
ving Inclusion from
Molten Stell by Bubble .... (Chunjie Yang)
671
2. Experimental Principle and Metho
d
To ma
ke
the
prototype
an
d the m
odel
i
dentic
al
in bo
th
geom
etry and dynami
c
s,
a wate
r
model
of a
1
80-t
RH vacu
um de
ga
sser wa
s
esta
b
lished
with a
g
eometri
c
simi
larity ratio
of
1:4.
Table 1 sho
w
s
the ope
ra
tional
a
nd ge
ometri
cal
parameters
of th
e prot
otype a
nd the
phy
si
cal
model.
Table 1. Main
param
eters of the prot
otype and the p
h
y
sical mo
del (in mm)
Equipment Dimensions
Protot
ype
Model
Ladle Height
4428
1107
Lo
w
e
r inte
rnal diameter
3244
811
Lo
w
e
r inte
rnal diameter
2656
664
Liquid
level
4000
1000
Vacuum vassel
Internal diameter
1960
490
Height
3852
963
Snorkel Length
1660
415
Internal
diameter
560
140
A diagram o
f
the experimental app
a
r
atus i
s
sh
o
w
n in Figu
re
1. Liquid st
eel wa
s
simulate
d by
400L
of aci
d
i
f
ied wate
r, a
nd fine
in
clu
s
ions
by 20g
of high-den
sit
y
polypropyle
ne
bead
s (40
~
5
0
µm diamet
er or
so
), and
comp
re
ss
ed
air was u
s
e
d
as the lift gas. The inclu
s
io
ns
are p
u
t into
500ml
wate
r
in a be
aker
and
stirred u
s
ing
an ultra
s
oni
c
stirrer t
o
make
sure
the
in
c
l
us
ion
s
wer
e
fu
lly
w
e
tted
.
T
h
e wa
te
r
w
i
th
inc
l
us
ions
is
th
en
tra
n
s
f
e
r
r
e
d in
to
th
e
e
x
pe
r
i
me
nta
l
ves
s
el.
Figure 1. Sch
e
matic d
r
a
w
i
ng of the experime
n
tal app
aratu
s
1—hig
h
sp
e
ed video; 2
—
com
pute
r
; 3—water tan
k
; 4—vacuu
m
pump; 5
—
do
wnle
g
sno
r
kel; 6—l
adle; 7—va
cuum
cham
be
r; 8—u
p
le
g
-
-sno
rkel; 9—
d
i
stributio
n
ch
ambe
r for lift
-
ga
s
;10—valve; 11—velo
city-m
eter; 12—ai
r
cylinde
r
The si
ze (µm
)
distributio
n curve of inclu
s
i
on are
sho
w
n
in Figure 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 2, June 20
15 : 670 – 67
7
672
Fr
eq
ue
nc
y d
i
st
rib
u
tio
n
Cu
mul
a
ti
ve
dis
t
r
i
b
u
ti
on
P
a
rtic
le
s
i
z
e
distrib
u
tion
cu
rv
e
Figure 2. incl
usio
n’s p
a
rticl
e
size distri
bu
tion curve
Sahai and E
m
i
18
give the
following rela
tionshi
p:
(1)
Whe
r
e R —is
the radiu
s
,
λ
—is th
e g
e
o
m
etric
simil
a
ri
ty
ratio,
ρ
—i
s the
de
nsity, and
th
e
sub
s
cript
s
in
c,
m,
p,
st
a
n
d
w
indi
cat
e
v
a
lues
for inclusio
ns, m
o
d
e
l, prototype,
liquid
ste
e
l a
n
d
NaCl s
o
lution, res
p
ec
tively.
The relevant
para
m
eters
of the
media
(nam
ely, the den
sities
ρ
of the liquid
and th
e
inclu
s
io
ns) for the model a
nd prot
otype
are sho
w
n in
Table 2.
Table 2. Rel
e
vant param
eters of t
he me
dia for the mo
del and p
r
otot
ype
Densit
y Protot
ype
Model
ρ
li
q
uid
/kg m
-
3
7.0×10
3
(steel)
1.06×10
3
ρ
inc
/ kg m
-3
3.9×10
3
(Al
2
O
3
) o
r
or 2.7×10
3
(Si
O
2
)
0.91×10
3
(
pol
y
p
ro
p
y
lene)
The
co
ntact
a
ngle
of the
in
clu
s
ion
s
with
water i
s
1
18°,
The
mo
rph
o
l
ogy of the
in
clusio
ns
in the water
model a
r
e sh
own in Fig
u
re
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Water Model
Study on Rem
o
ving Inclusion from
Molten Stell by Bubble .... (Chunjie Yang)
673
Figure 3. Morpholo
g
y of the polypro
pyle
ne bea
ds in t
he wate
r mod
e
l
Substitution of
λ
=0.25
a
nd
the para
m
eters
fro
m
Table 2
into equatio
n
(1) gives
the
relation
shi
p
s betwe
en
th
e diamete
r
s
D of
the
i
n
cl
us
i
ons in
the
m
odel
and
in
the p
r
ototype.
Fo
r
Al
2
O
3
inclusi
o
ns.
2509
.
1
,
,
,
,
p
Dinc
m
Dinc
p
Rinc
m
Rinc
(1)
and so
2509
.
1
,
,
m
Dinc
p
Dinc
(2)
For SiO
2
incl
usions,
4733
.
1
,
,
,
,
p
Dinc
m
Dinc
p
Rinc
m
Rinc
(3)
and so
4733
.
1
,
,
m
Dinc
p
Dinc
(4)
Therefore,
according
to eq
uation
s
(2)
a
nd
(4), p
o
lypropylene
bea
d
s
of di
amete
r
40 µm
can
be u
s
e
d
to simul
a
te
31.98 µm
diamete
r
Al
2
O
3
inclusions
or
27.15 µ
m
diamete
r
SiO
2
inclusions.
The inc
l
us
ion removal rate
after the firs
t
j
time intervals
is
calculated from the formula
0
1
m
m
j
i
ti
j
(5)
Whe
r
e
i
t
m
is th
e removal a
m
ount of incl
usio
n in the
i
th time interval, and
0
m
is the
total amount of inclu
s
ion
s
.
Acidified NaHCO
3
wa
s u
s
e
d
to produ
ce f
i
ne bub
bles
o
f
CO
2
accordi
ng to the rea
c
tion
Na
HC
O
3
+ H
+
→
Na
+
+ H
2
O + CO
2
↑
(6)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 2, June 20
15 : 670 – 67
7
674
Bubble sh
ap
e
chan
ge
s wi
th
si
ze.
T
he asp
e
ct ratio
of
the bubbl
e
e
var
i
es
accor
d
ing to
the followin
g
empiri
cal rela
tionshi
p [19]:
e
=
1
+
0.163
E
o
0.757
(7)
whe
r
e
E
o is the Eötvös nu
mber, whi
c
h repre
s
e
n
ts
the
ratio betwee
n
the buoyan
cy and su
rface
tensio
n force
s
. Bubble
s
small than 3 m
m
are
sp
heri
c
al, bubbl
es 3
to 10 mm a
r
e
sph
e
roi
dal, a
n
d
bubbl
es la
rge
r
than 10 mm
are sphe
rical
-
ca
p s
hape
d[20-2
2
]. Almost all of bubbl
es p
r
odu
ce
d
by
addin
g
Na
HCO
3
to acidifie
d wate
r are
spheri
c
al d
ue t
o
their si
ze of
0.5~1.5mm.
The mo
rph
o
logy
of bubble in t
he wate
r mod
e
l wa
s sh
own
in Figure 4.
Figure.4. Morpholo
g
y of bubble in the water mod
e
l
The influen
ce
on the inclu
s
ion rem
o
val rate of treatment time, flow rate and met
hod of
addition of lift-ga
s, and am
ount and time
of NaHCO
3
a
ddition were
examined.
3. Results a
nd discussio
n
3.1. Process
of Inclusion
s
Adhe
red to
Bubble
1)
2)
3)
4)
5)
6)
Figure 5. The
process of in
clu
s
ion
s
ad
he
red to bubbl
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Water Model
Study on Rem
o
ving Inclusion from
Molten Stell by Bubble .... (Chunjie Yang)
675
The p
r
o
c
ess
of inclu
s
ion
s
adhe
red to b
ubble i
s
sho
w
ed in
Figu
re 5. The atta
chme
nt
pro
c
e
s
s can
be de
co
mpo
s
ed into
5
sub
-
processe
s
which th
e p
a
rti
c
le a
p
p
r
oa
ch
es a
nd
colli
d
e
s
the ga
s bub
b
l
e, the thin film of liquid b
e
twee
n the p
a
rticle
and th
e bubbl
e is f
o
rme
d
, the n
e
w
interface of g
a
s-soli
d ap
pe
ars after the
thin film
de
cre
a
se
s to le
ss t
han a
critical
thickne
ss
an
d
ruptu
r
e
s
, the
inclu
s
io
n slip
s to the b
o
ttom on t
he
bub
ble surfa
c
e,
and the i
n
cl
u
s
ion foll
ows t
he
bubbl
e in dyn
a
mic an
d sta
b
le state to floating up fina
lly.
Finer bu
bble
s
provid
e a larger g
a
s/l
i
quid interfa
c
ial area an
d
higher atta
chme
nt
prob
ability of inclu
s
io
ns to bubbl
es [23]. Inclu
s
ion
s
te
nd to pass the midpoint of
the bubble a
nd
first touch the bubbl
e su
rface to
ward the bottom si
de. If the normal distan
ce
from the incl
usi
o
n
cente
r
to the
surfa
c
e
of the
bubble
qui
ckly becom
es
l
e
ss than the i
n
clu
s
io
n ra
di
us the
n
colli
si
on
attac
h
ment tak
e
s
plac
e [24].
It can be co
n
c
lud
ed that the smalle
r bu
b
b
les h
a
ve a g
r
eate
r
rate of
inclu
s
ion
s
re
moval.
This con
c
lusi
on i
s
in
ag
reement
with
Zha
ng’
s fun
damental
an
alysis [23]-[2
6
]. The
averag
e
equivalent si
ze of bubble
s
is estimate
d to be 0.5~1.
5
mm in diamet
er in the mol
d
investigate
d
in
this
work
.
3.2. Effec
t
of treatm
e
nt ti
me on inclusion remov
a
l
rate
The
relatio
n
ship b
e
twe
en i
n
clu
s
io
n rem
o
val rate
an
d
treatment tim
e
is sho
w
in
Figure 6.
The incl
usi
o
n removal rate increa
se
d grad
ually with increa
si
ng treatme
nt time, and most
inclu
s
io
ns
we
re rem
o
ved b
e
twee
n 0 and
15 min.
0
2
4
6
8
10
3
3
.5
4
4.5
L
i
fe
-
g
a
s
fl
o
w
r
a
te
/
m
3
h
-1
I
n
clu
s
io
n
rem
o
v
a
l ra
t
e
/
%
T
r
ea
t
m
en
t
ti
m
e
/
m
i
n
0-
5
5-
10
10-
15
15-
20
Figure 6 . Rel
a
tionship bet
wee
n
incl
usio
n removal rate and treatm
ent time
3.3. Effec
t
of
lift-gas
flo
w
rate on inclu
s
ion rem
o
v
a
l rate
As can b
e
se
en from
Figu
re 7, for
a tre
a
t
ment time of
20 min, the
in
clu
s
ion
rem
o
val rate
increa
sed rap
i
dly as the lift-gas flow
rate wa
s rai
s
ed from 3.0 m
3
h
-1
to 5.0 m
3
h
-1
, af
ter which it
tended to sta
b
ilize.
With in
cre
a
sing lift-ga
s
flow rate, t
he ci
rculatio
n rate initia
lly incre
a
ses, and
con
s
e
que
ntly so doe
s, the
inclu
s
io
n rem
o
val rate.
However, if the lift-gas
flow rate bec
omes
too
large, the flo
w
pattern of the liquid ste
e
l is alte
re
d. Over-rapi
d flow of liquid
steel inhi
bits
the
floation and
removal of inclusio
ns. Th
ere is the
r
ef
ore
an optimum
value of the life-ga
s flow
ra
te:
in this experi
m
ent, the incl
usio
n rem
o
va
l rate wa
s gre
a
test wh
en th
e lift-gas flo
w
rate wa
s ab
o
u
t
4.5 m
3
h
-1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 2, June 20
15 : 670 – 67
7
676
0
5
10
15
20
33
.
5
44
.
5
5
L
i
fe
-gas
fl
ow
r
a
te
/
m
3
h
-1
I
n
c
l
us
i
o
ns
r
e
m
o
v
a
l
r
a
t
e
/
%
N
a
HC
O3
a
dde
d/
m
o
l
0
1
2
Figure. 7 . Relationship bet
wee
n
incl
usio
n removal rate and lift-ga
s flow rate
3.4. Effec
t
of amount and
time of Na
HCO
3
addition
on inclusion remov
a
l rate
Figure 8 sh
o
w
s the
relati
onship bet
we
en incl
usi
on
removal
rate
and the am
ount and
time of NaHC
O
3
a
ddition
for a t
r
eatm
ent time of 2
0
min a
nd th
e optimum
value of th
e lift-g
a
s
flow rate 4.5
m
3
h
-1
. It can
be seen th
at the incl
usi
on
removal
rate
increa
sed
gra
dually with th
e
addition
of g
r
eater amo
unt
s of
Na
HCO
3
, althoug
h, u
nder conditio
n
s
of
ind
u
st
rial produ
ction,
to
avoid the introdu
ction of
excessive amount
s
of impuritie
s, variou
s facto
r
s need to be
con
s
id
ere
d
. The effect is was greate
s
t when the NaHCO
3
wa
s at the begi
nning.
Figure.8. Rel
a
tionship bet
wee
n
incl
usio
n removal rate and amo
unt
and time of Na
HCO
3
addi
tion
4. Conclusio
n
s
The influen
ces of treatm
ent time, lift-gas flo
w
rate
and amo
unt
and time of NaHCO
3
addition
on th
e incl
usi
on re
moval rate
h
a
ve bee
n inv
e
stigate
d
u
s
i
ng a
wate
r m
odel of 1:4 li
n
ear
scale for a 18
0-t RH-TB de
gasse
r. The followin
g
co
nclusio
n
s
can b
e
dra
w
n from
the results:
1.
The incl
usi
o
n
removal rat
e
increa
se
s grad
ua
lly wit
h
increa
sing
treatment tim
e
, with most
inclu
s
io
ns be
ing remove
d
between
5
and
18 mi
n. In this wate
r mo
del
exp
e
rime
nt, the
treatment tim
e
wa
s ch
osen
as 20 min to
obtain the be
st effect.
2.
The incl
usi
o
n
removal rate
increa
se
s wit
h
in
crea
sing li
ft-gas flow
rat
e
until an optimum value
is rea
c
h
ed, which in thi
s
experim
ent wa
s 4.5 m
3
h
-1
.
3.
The in
clu
s
ion
removal
rate
increa
se
s g
r
adually
with the ad
dition of
Na
HCO
3
, an
d the effect
is gre
a
test when all of the Na
HCO
3
is added at the b
eginni
ng.
4.
The small
e
r
b
ubble
s
have a
g
r
eate
r
rate
of
in
clu
s
ion
s
removal.
The
average
equi
valent si
ze
of bubble
s
is
estimated to
be 0.5~1.5m
m in diamet
er in the mold investigate
d
in this wo
rk.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Water Model
Study on Rem
o
ving Inclusion from
Molten Stell by Bubble .... (Chunjie Yang)
677
Referen
ces
[1]
P Kaushik, M Lo
w
r
y, H Yin,
H Piel
et. Inclusion C
haracter
i
satio
n
for Cle
an Steelm
a
ki
n
g
and Qu
alit
y
Contro
l.
Ironmakin
g an
d Stee
lmakin
g.
201
2; 39: 284-
30
0.
[2]
J Che
ng, R
Er
iksson, P J
ons
son. Det
e
rmin
a
tion
of macr
o
i
nclus
i
o
n
s d
u
ri
ng cl
ea
n stee
l
prod
uctio
n
.
Ironmaki
ng Ste
e
l
m
aki
ng.
20
03
; 30: 66–7
2.
[3]
R Dekk
ers. No
n-metall
ic i
n
clu
s
ions
in
Liq
u
i
d
Steel.
Ph
D the
s
is.
Kathol
iek
e
Univers
i
teit L
e
u
ven.
200
2.
available at http://members.home.nl/
rob.dekkers/pdf-f
iles/contents.pdf
[4] AW
Cramb.
Inclusio
n
formati
o
n
and re
mov
a
l.
Aug
u
st 199
8. Availa
bl
e
at
http://neon.me
ms.cmu.edu/af
s/afs2/form.html.
[5]
LF Zhang, BG T
homas. Proc.
7th European Electric Steelmakin
g Conf.,
Venice,
Italy
. May
.
2002:
277
–2
86.
[6]
M Söd
e
r. Gro
w
t
h
a
nd r
e
mov
a
l
of inc
l
usi
ons
duri
n
g
la
dl
e st
irring.
Lic
entiat
e
T
hes
is.
Ro
ya
l Institute
of
T
e
chnolog
y, St
ockho
l
m, S
w
e
d
en. 200
0.
[7]
F
T
ang, Z
Li,
X W
a
ng, B
C
h
en, P F
e
i. Cl
e
ani
ng IF
mo
lte
n
stee
l
w
i
t
h
dis
perse
d i
n
-situ
hetero
p
h
a
ses
ind
u
ced
b
y
th
e
composite s
p
here e
x
pl
osive
reaction i
n
R
H
lad
l
es.
Int. J. Miner. Metall.
Mater
. 2011;
18: 144
–1
49.
[8]
CJ T
r
eadgo
ld.
Behav
iour
of I
n
clusi
o
n
i
n
R
H
Vacu
um
deg
a
sser.
Iron
mak
i
ng an
d
Ste
e
l
m
akin
g
. 2
003;
30: 120-
12
4.
[9]
JH W
e
i,
HT
Hu. Mathem
atic
al M
o
ld
ell
i
n
g
of
Mo
l
t
en
Stee
l
Flo
w
i
n
a
Wh
o
l
e D
e
g
a
s
se
r du
ri
ng
RH
Refini
ng Proc
e
ss.
Ironmaki
ng and
Stee
l
m
aki
n
g
. 200
5; 32: 4
27-4
34.
[10]
L Z
han
g, B R
i
e
t
o
w
, K E
a
ki
n, BG
T
homas. Lar
ge i
n
cl
us
io
ns i
n
pl
ain-c
a
rb
on
steel i
n
g
o
ts ca
st b
y
botto
m
teemin
g.
ISIJ I
n
ter
. 2006: 4
6
.
[11]
Y Miki, S
T
a
keuchi. Internal Defects of
C
ontin
uo
us Castin
g Sla
b
s
Cause
d
b
y
As
y
mmetric
Unb
a
la
nce
d
Steel Flo
w
in Mol
d
.
ISIJ Int
. 2003; 43: 154
8-15
55.
[12]
T
Lee, HJ Kim
,
BY Kang, SK
H-
w
a
ng. Effec
t
of incl
usio
n si
ze on
t
he
nuc
l
eatio
n of
acicu
l
ar ferrite
i
n
we
l
d
.
ISIJ Int
.
200
0; 40: 126
0
.
[13]
H Yin, H Shi
b
a
t
a,
T
Em
i, M Suzuki. Ch
aract
e
ristics of ag
gl
omer
ati
on of v
a
rio
u
s incl
usi
o
n particl
es on
molten stee
l su
rface.
ISIJ Int
.
199
7; 37: 946
–
955.
[14]
HJ Schulz
e
. in Devel
opm
ents in
Min
e
ral Proc
essin
g
. 198
4; 4: 65-66.
[15]
L W
ang, HG
Lee, P Ha
ye
s.
Pr
edictio
n of
the Optimum
Bubb
le Siz
e
for Inclusi
on R
e
mova
l from
Molten Stee
l b
y
F
l
otati
on.
ISIJ Int
. 1996; 36: 7-16.
[16]
X Z
h
e
ng, P
Ha
yes, HG Le
e.
ISIJ Int
. 1997; 37: 1091-
10
97.
[17]
N Ahm
ed, GJ
Jamson. M
i
ner
al Pr
ocessi
ng
and
E
x
tractive
Metall
urg
y
Rev
i
e
w
.
M
e
tall. Re
v
. 198
9; 5:
77-9
9
.
[18]
Y Sahai, T
Emi. Criteria for
w
a
ter mode
lin
g of melt flo
w
a
n
d
inclus
io
n re
moval in co
ntin
uous casti
n
g
tundis
hes.
ISIJ Int.
1996; 36: 116
6–
117
3.
[19]
RM Wellek, A
K
Agra
w
a
l, AHP Skelland. S
hap
e of li
qui
d drops m
o
vin
g
in l
i
qu
id me
dia’.
AIChE J
.
196
6; 12: 854-
862.
[2
0
]
Y Sa
ha
i
,
R
I
L
Gu
th
ri
e
.
Hy
drody
n
a
m
i
cs o
f
ga
s stirred
melt
s: Part I. Gas/liqui
d c
oup
li
ng.
Metallurgical
T
r
ansactio
n
s B
. 1982; 13: 19
3
-
202.
[21]
H T
o
kunaga,
M Iguchi, H T
a
temi
chi. T
u
rbul
ence structur
e
of botto
m-bl
o
w
i
ng
bub
bli
ng
je
t in a molte
n
W
ood’s meta
l bath.
Metall
urg
i
cal a
nd Materi
als T
r
ansacti
on
s B.
1999; 30: 61-6
6
.
[22]
M Iguchi,
H T
o
kun
a
g
a
, H T
a
temich
i. Bub
b
l
e a
nd
liq
ui
d fl
o
w
ch
aracteris
t
ics in
a
w
o
od
’
s
metal
bath
stirred b
y
botto
m heli
u
m gas i
n
jecti
on.
Metall
urgic
a
l T
r
ansa
c
tions B
. 199
7; 28: 105
3-10
61
.
[23]
LF
Z
hang, S T
ani
guch
i
, K Ma
tsumoto. W
a
ter model
St
ud
y o
n
Inclus
ion
Re
moval from L
i
q
u
id Ste
e
l b
y
Bubb
le F
l
otati
o
n und
er
T
u
rbul
ent Con
d
iti
ons.
Ironmakin
g an
d Steel
mak
i
ng
.
2002; 2
9
: 326
–33
6.
[24]
LF
Z
han
g, Ju
n
A, Bria
n GT
. Inclusi
o
n
Rem
o
val
b
y
Bu
bb
le
F
l
otation
in
a
Conti
nuo
us
Ca
sting M
o
ld.
Metall
urgic
a
l a
nd Materi
als T
r
ansacti
on B
. 2
006; 37B: 3
6
1
–
379.
[25]
Indra
w
at
i I, Irmeil
ya
na
I, Fitri
MP, Meiza
PL.
Cob
b
-Do
ugl
as
s Utilit
y F
unctio
n
i
n
Optimiz
i
n
g
the I
n
terne
t
Pricing
Sch
e
m
e
Mo
del.
T
E
L
K
OMNIKA T
e
lec
o
mmunic
a
tio
n
Co
mp
uting
El
e
c
tronics
and
C
ontrol.
20
14;
12(1): 22
7-2
4
0
.
[26]
HuiL
ai
S, Ch
u
n
J, Sh
u
y
an
g
Z
,
Hai
y
on
g T
.
Ev
alu
a
tion
Re
search
of T
r
action Mot
o
r Perf
ormanc
e for
Mine
Dum
p
T
r
uck Bas
e
d
o
n
R
oug
h S
e
t
T
heor
y
.
T
E
LK
OMNIKA T
e
le
communic
a
tio
n
Co
mputin
g
Electron
ics an
d Contro
l.
201
4; 12(2): 33
3-3
42.
Evaluation Warning : The document was created with Spire.PDF for Python.