TELKOM
NIKA
, Vol.12, No
.2, June 20
14
, pp. 283~2
9
0
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v12i2.1870
283
Re
cei
v
ed
No
vem
ber 8, 20
13; Re
vised
Ma
rch 18, 20
14; Accepted
April 2, 2014
Bipolar-CMOS-DMOS Process-Based a Robust and
High-Accuracy Low Drop-Out
Regulator
Pan Lu
w
e
i
1
, Zhou Li*
1
, Sun Tao
2
1
School of Info
rmation Sci
enc
e and En
gi
neer
ing, Sha
n
d
ong
Univers
i
t
y
,
No.27, Sout
h Shan
da R
oad, Ji
nan 2
5
0
100,
C
h
in
a, Ph./F
ax:+
86-0
531
88
36
1
623
2
Shand
ong Pr
ovinci
al Ke
y L
a
borator
y of Net
w
o
r
k bas
ed
Intelli
ge
nt Comp
u
t
ing, Univ
ersit
y
of Jinan,
No.33
6
, W
e
st
Nan
x
i
n
zh
ua
ng
Roa
d
, Jina
n 25
002
2, Chi
na, Ph./F
ax:+
86-0
5
3
182
76
750
3
* Corres
pon
di
n
g
Author, e-ma
il:zho
u_l
i@sd
u.edu.cn
A
b
st
r
a
ct
A high-
accurac
y
and rob
u
st Low
Drop-Out Regu
lator w
a
s propos
ed an
d ta
pe-o
u
t in CSMC 0.5u
m
40V BCD
proc
ess; the LDO w
a
s int
egrate
d
in a LED C
ont
rol an
d Driv
er
SOC of outdoo
r appl
icatio
ns. T
h
e
prop
osed
L
D
O conv
erted
the
12V~
40V
i
nput
pow
er t
o
5
V
f
o
r the
l
o
w
volt
age
circu
i
ts i
n
s
i
de
the
SOC. T
h
e
robustn
ess
of
LDO w
a
s i
m
po
rtant bec
aus
e t
he
ap
plic
at
ion
cond
ition
of th
e
SOC
w
a
s
bad. It w
a
s si
mu
l
a
ted
in al
l process c
o
rner, -55
℃
~15
0
℃
te
mper
ature an
d 12V~
4
0V pow
er volta
ge con
d
iti
ons. Simulati
on res
u
l
t
show
s that the LDO w
o
rks ro
bustly in co
ndi
tions m
enti
one
d abov
e. T
he defau
lt
precisi
on of LDO out
pu
t
voltag
e
is ±2.7
5% max
in
al
l cond
itions, mo
reover,
by
util
i
z
i
n
g
a tri
m
circ
uit in
the fe
ed
back n
e
tw
ork, the
precisi
on c
a
n
b
e
i
m
pr
ove
d
to
±0.5%
max aft
e
r be
in
g tri
mmed by
3
bit d
i
git
a
l tri
m
si
gn
al T
r
im[3:1]. T
h
e
to
tal
si
z
e
of the pro
pose
d
LDO is 135
u
m
*4
50
u
m
and the
max
i
mum curr
ent con
s
umptio
n is 28
4uA.
Ke
y
w
ords
:
BC
D process, LE
D Driver, Low
Drop-Out Re
gu
lator, Dig
ital tri
m
sig
n
a
l
1. Introduc
tion
No
wday
s, Li
ght Emitting
Diod
e (LED) lamp
s a
r
e
widely u
s
e
d
in de
co
rative
lighting
becau
se LED has ma
ny advantage
s. In contrast
to traditional light
ing so
urce
s, LED ha
s lo
wer
energy
consumption, longer lifet
ime, smaller si
ze and
i
m
proved
phy
sical
robustness[1],[2]. In
outdoo
r de
co
rative lighting
applicati
on, LED lamp
s are use
d
outsi
d
e
the buildin
g
to form pictures
or video
s. Be
cau
s
e th
e ou
tdoor
enviro
n
m
ent va
ry si
g
n
ificantly am
ong
sea
s
o
n
s
and pl
aces, t
he
robu
stne
ss of
LED Drivers is impo
rtant.
A robu
st Lo
w Drop
-O
ut Reg
u
lator
(L
DO
) is d
e
si
g
ned
whi
c
h i
s
use
d
in
a Bip
o
lar-CM
OS-DMO
S (BCD)
p
r
o
c
ess LE
D
driv
er Syste
m
o
n
a
Chip
(SO
C
).
The
pro
p
o
s
e
d
L
D
O
provid
es
a 5V
po
we
r for LE
D
con
t
rol
circuit, se
rial tran
smitte
r a
nd
re
ceiver in
SOC.
BCD process
Integrate
d
Ci
rcuit (IC)
h
a
s
bee
n
widely
use
d
in
the fi
eld of
gre
en
energy-
saving
produ
cts
espe
cially
LED drive
r
s.
It m
anufa
c
tu
res bip
o
la
r d
e
vice
s, CM
O
S
device
s
an
d
DMOS d
e
vices o
n
the
sa
me chip. It co
mbine
s
t
he
a
d
vantage
of the hig
h
tra
n
s-co
ndu
ctan
ce
an
d
stron
g
l
oad
-d
rive
cap
ability of BJT
dev
ice, hi
gh i
n
te
gration
d
ensi
t
y and l
o
w p
o
we
r
of CM
OS
devic
es
and high power output of DMOS power devic
es
[3],[4].
The LE
D
dri
v
er SO
C i
s
desi
gne
d to
be u
s
e
d
in
harsh
outdo
o
r
envi
r
onm
en
t. The
robu
stne
ss o
f
the L
D
O i
s
gua
rante
ed
by a
wide
vo
ltage a
nd te
mperature
ra
nge
de
sign.
For
different LED display ap
p
lication
s
, the
input voltag
e of the SOC varie
s
fro
m
12V to 40V
depe
nding
on
the nu
mbe
r
of LED l
a
mp
s nee
ded to
b
e
drive
n
. The
workin
g temp
eratu
r
e
ran
g
e
of
the LDO i
s
from -55
℃
to
150
℃
. Mea
n
whil
e, the propo
se
d LDO can d
r
ive
200mA cu
rrent
maximally. The sp
ecifi
c
ati
on of the pro
posed L
D
O is sho
w
n in Ta
ble1.
Table 1. Spe
c
ificatio
n of LDO
Item
Specification
Min T
y
pical
Max
Reference Volta
ge Accurac
y
-1.5%
0(1.21V)
+1.5%
Output Voltage
Accuracy
-3%
0(5V)
3%
Line Regulation
Rate
-2.5%
0
+2.5%
Load Regulation
Rate
-2.5%
0
+2.5%
Quiescent Cur
r
e
n
t
300uA
500uA
Load Drive Cu
rre
nt
100mA
200mA
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 2, June 20
14: 283 – 29
0
284
2.
Design a
nd Analy
s
is of LDO
As is sho
w
n i
n
Figure1, th
e pro
p
o
s
ed hi
gh-
a
c
cu
ra
cy and robu
st L
D
O in
clud
es
Bandga
p
Referen
c
e (0
1), Erro
r Amplifier (02
)
, Feedba
ck Network (03
)
, Pass Element PMOS transi
s
t
o
r P0
(04
)
, and F
r
e
quen
cy Co
m
pen
sation
Ca
pacito
r
Cc
(0
5) [5]. VDDH is the input
sup
p
ly voltage;
Bandga
p Ref
e
ren
c
e
(01
)
gene
rate
s a referen
c
e voltage VBGR
whi
c
h is a
r
o
und 1.21V; Erro
r
Amplifier (02), Feedba
ck
Networ
k (03), Pass Ele
m
ent P0 (0
4)
and F
r
eq
uen
cy Co
mpen
sation
Cap
a
cito
r Cc (05) con
s
titute the regulat
ion loop
of L
D
O; the outp
u
t of LDO is VDDL
whi
c
h is a
5V stable vol
t
age. The Error Amplifie
r (02) p
r
ovid
es
gain for th
e regulatio
n loo
p
. A 3 bit digi
tal
control sig
nal
Trim[3:1] co
ntrols the Fe
edba
ck Ne
twork (03
)
to trim the LDO o
u
tput voltage by
cha
ngin
g
the
sampl
ed fee
d
back voltag
e
VFB. W
hen t
he outp
u
t voltage d
e
viates
from the d
e
si
gn
spe
c
ification
cau
s
e
d
by proce
s
s variati
ons, t
he o
u
tp
ut voltage ca
n meet the requireme
nts
by
adju
s
ting Tri
m
[3:1]. The Pass Ele
m
en
t (04) d
r
ives l
a
rge
amou
nts of cu
rrent. The ph
ase margi
n
of regulatio
n loop is imp
r
ov
ed by the Fr
e
quen
cy Com
pen
sation
Ca
pacito
r
Cc (0
5).
Figure1. Block diag
ram of the pro
p
o
s
ed
LDO
Con
s
id
erin
g
different a
ppl
ication
condit
i
ons,
to
ma
ke the
LDO
work
ro
bu
stly in all
situation
s
, th
e sim
u
lation
ca
se m
u
st
co
ver all
pro
c
e
s
s corn
er, te
mperature
an
d po
we
r volt
age
con
d
ition
s
. The LDO is si
mulated on a
ll proces
s corners incl
udin
g
Typical
-
nm
os-Typical-p
mo
s
ca
se(
TT),
Fa
st
-nm
o
s
-
Fa
st
-pmo
s ca
se
(
FF),
S
l
ow-
n
m
o
s-S
l
ow
-pm
o
s ca
se (S
S
)
,
Fast
-
n
mo
s- S
l
ow
pmos-ca
s
e (FS) and Slo
w
-n
mo
s-F
a
st-pmos
ca
se
(SF); 25 ro
om tempe
r
at
ure, 15
0 hi
gh
temperature
and -55 lo
w tempe
r
atu
r
e; 24V
norm
a
l voltage, 4
0
V high volta
ge and
12V
low
voltage con
d
i
t
ions. The ro
bustn
ess of LDO in
15
0
high temp
eratu
r
e condi
tion is the most
importa
nt poi
nt of the desi
gn.
2.1. Refe
ren
ce V
o
ltag
e
The
refe
ren
c
e voltage
produ
ced
by id
eal referen
c
e
voltage
so
urce
sh
ould
be
stabl
e
when
supply voltage, process a
nd tem
p
erature vary.It provides
the reference voltage (VFB
) f
o
r
LDO
to p
r
od
uce
outp
u
t voltage. Th
e
pre
c
isi
on
an
d tempe
r
atu
r
e characte
ri
stics
of refe
re
nce
voltage dete
r
mine that of the output
of
LDO. In a
c
tu
al desi
gn, Ba
ndga
p Refe
re
nce
circuit is
the
best
ch
oice
for
referen
c
e
voltage
sou
r
ce[6]. As is sh
own
in Fi
gure 2, the B
a
n
dgap
Refe
re
nce
inclu
d
e
s
Start
up Ci
rcuit (1
1
)
, Prop
ortion
a
l
to Absol
u
te
Tempe
r
atu
r
e
(PTAT)
Cu
rre
nt Gene
ration
Circuit (12),
Referen
c
e V
o
ltage G
ene
ration Ci
rcuit (
13).
Startup Circuit
(11) consi
s
ts of
re
sistor
R15
and
NM
OS tran
sisto
r
s N15, N16,
i
t
is used to
p
r
event the
ref
e
ren
c
e volta
g
e
so
urce i
n
zero
state du
ring
power on
proce
s
s. PTAT Current Ge
neratio
n Ci
rcuit (12) g
ene
rates
a po
sitive
temperature
coeffici
ent
cu
rre
nt, and
PMOS P
15
an
d P16 i
n
the
Referen
c
e V
o
ltage
Gen
e
ration
Circ
uit
(13) mirror the PTA
T
c
u
rrent. It flows
thr
oug
h t
he resi
sto
r
R14 a
nd tran
si
stor
Q13
with
a
negative tem
peratu
r
e coef
ficient to gen
erate
a 1.21
V Bandgap
Referen
c
e vo
ltage (VBGR) [7
].
Since the i
n
p
u
t sup
p
ly voltage VDDH varie
s
from
12
V to 40V, 40
V high voltag
e MOS tran
si
stors
are used. Hi
gh
voltage
NMOS
tran
si
stors N11, N12, N13,
N14
and
hig
h
voltage P
M
OS
transi
s
to
rs P
11, P12, P13,
P14
and
re
si
stors R11, R12,
R1
3 constitute self-bia
s casco
de
circuit
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Bipolar-CMO
S-DM
OS Pro
c
e
s
s-Ba
sed a
Robu
st and
High
-Accu
r
a
c
y ….. (Pan Lu
wei)
285
to improve t
he Power S
upply Rej
e
cti
on Ration (P
SRR) of the
Bandga
p Referen
c
e[8].
The
simulatio
n
re
sults
sh
ow th
at the Band
g
ap Refe
re
nce
circuit can provide
1.21V referen
c
e
voltage
in all pro
c
e
s
s co
rne
r
, -55
~15
0
temperatu
r
e a
n
d
12V~40V p
o
we
r voltage
conditio
n
s.
The
temperature coeffici
ent
is 6.2ppm/
@ typical
ca
se.
Figure 2.Ban
dgap
Referen
c
e ci
rcuit
2.2. Error
Amplifier and Pass Element
The re
gulatio
n loop of the
prop
osed L
D
O
con
s
ist
s
of Erro
r Amp
lifier (02
)
, Fe
edba
ck
Network (0
3), Pass Elem
ent (04
)
and
Frequ
en
cy
C
o
mpe
n
s
a
tion
C
a
pa
c
i
tor
(
0
5)
. T
h
e
Err
o
r
Amplifier (0
2) provide
s
gai
n for the re
gu
lation l
oop; its performan
ce
has si
gnifica
nt effects on t
he
LDO[9]. Sin
c
e the i
nput
su
pply voltage
VDDH of
L
D
O is 40V
hig
h
voltage i
n
co
ntrast
with
th
e 5V
ouput voltage
VDDL, in o
r
der to ma
ke t
he LDO wo
rk robu
stly, esp
e
cially when t
he load
cu
rre
nt
is a
r
o
und
se
veral mi
cro
Ampere,
the
output VP
of
the
E
rro
r
A
m
plifier (0
2) sho
u
ld produ
ce a
voltage
clo
s
e
to the
su
pply
voltage to
ma
ke th
e Pa
ss
Element d
r
ivi
ng
small
loa
d
cu
rrent. Th
u
s
, a
cla
s
s-AB
sta
ge i
s
u
s
e
d
a
s
the
outp
u
t
stage
of
Erro
r Amplifie
r to
gen
erate
la
rge o
u
tput vol
t
age
swi
ng[10].
Figure 3
sho
w
s th
e ci
rcuit
of Erro
r Am
plifie
r (02). T
he two i
nput
s are
co
nne
ct
ed to the
output VBGR of Bandgap
Referen
c
e (0
1) an
d the feedba
ck voltage VFB from
the Feedb
a
c
k
Network
(03
)
individually.
Since
the v
o
ltage VBG
R is
1.21V a
n
d
when
the
LDO
works,
the
voltage of VFB is arou
nd
1.21V too.
A pair of
larg
e-si
ze
d PMO
S
transi
s
tors P21 and P22
is
use
d
a
s
th
e i
nput of E
rro
r Amplifier
(0
2
)
to e
n
sure t
he tra
n
sco
n
d
u
ctan
ce
an
d
matchin
g
of t
h
e
input stag
e.In the output drive st
age of Erro
r Amplifier
(02
)
, the size of MOS transi
s
tors N24 an
d
P24 are set t
o
four time
s
that of N23 a
nd P23
to en
sure that the
Erro
r Amplifier ha
s e
nou
g
h
drive
cap
abili
ty and voltag
e sle
w
rate,
highe
r b
and
width and
volta
ge sl
ew rate
will imp
r
ove t
h
e
transi
ent re
sp
onse of the LDO.
VFB
VB
G
R
VP
VD
DH
P2
1
P
2
2
P2
3
P2
4
N2
1
N
2
2
N2
3
N2
4
GN
D
Figure 3. Erro
r amplifier
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 2, June 20
14: 283 – 29
0
286
The
size
of the Pass Ele
m
ent (0
4) m
u
st be l
a
rg
e
enou
gh to d
r
ive large
cu
rrent. As
sho
w
n i
n
Fig
u
re
1, multi-fi
nger structu
r
e and
la
rge
size of
high vo
ltage PMOS t
r
an
sisto
r
P0
are
use
d
to m
a
ke the L
D
O
provide
20
0
m
A load
cu
rr
ent a
c
crodin
g
to the
LDO’s
sp
ecifi
c
a
t
ion.
Ho
wever, th
e
larg
e Pa
ss
Element PM
OS tran
si
stor ha
s la
rge
capa
citan
c
e
which l
ead
s th
e
se
con
d
do
minant pol
e mo
ve to the lo
w-freque
ncy
an
d ma
ke
s the
pha
se m
a
rgi
n
of the regula
t
ion
loop
worse[1
1
]. So it is necessa
ry to
improve
th
e
pha
se m
a
rg
in of re
gulati
on loo
p
by the
Freq
uen
cy Compen
satio
n
Cap
a
cito
r (0
5
)
.
2.3. Frequen
c
y
Compens
a
tion
As sh
own in
Figure 1, the Fre
que
ncy
Comp
en
sati
on Capa
citor Cc
(05
)
is
conne
cted
betwe
en the
output of LDO and the fe
edba
ck end
(V
FB) of Fee
dba
ck
Netwo
r
k[12]. By ad
ding
the Freq
uen
cy Compen
sat
i
on Cap
a
cito
r (05), a pair
of pole and zero is g
ene
ra
ted to play th
e
role of frequ
e
n
cy com
pen
sation. Figure
4 sho
w
s
the
small si
gnal
model of the LDO p
r
op
ose
d
in
Figure 1. Ro
a is the outp
u
t resi
st
an
ce
of the amplifier, Ro
_pa
ss i
s
the output resi
stan
ce of the
pass
eleme
n
t, gma a
nd
gmp
refe
r to
the tran
sc
o
ndu
ctan
ce
of the
amplifie
r a
nd th
e p
a
ss
element, Cpa
r
is the
pa
ra
sitic ca
pa
citan
c
e introd
uced
by the pa
ss
e
l
ement, Co
a
nd Resr a
r
e t
h
e
cap
a
cita
nce and
the
ele
c
trical se
rie
s
resi
stan
ce
of
the outp
u
t
cap
a
cito
r, Cb is th
e byp
a
ss
cap
a
cit
o
r and
RL is t
he loa
d
resi
st
an
ce.
Figure 4. Small-si
gnal mo
del of LDO
circuit
In Figure 4, di
sconn
ect the
feedba
ck loo
p
at point VFB, the open-l
oop gai
n Av is:
A
g
R
∙
∙
(1)
Whe
r
e Z is th
e impeda
nce see
n
at outpu
t VDDL, be
ca
use the o
u
tpu
t
capa
citan
c
e
is
much la
rg
er than the bypa
ss
cap
a
cita
nce
C
≫C
:
ZR
_
//
R
/
/
_
_
_
//
(2)
By equation (1) and
(2), we obtain that t
he tran
sfer fu
nction of the
LDO h
a
s the
followin
g
four poles a
nd two zeros:
P
π
_
(3)
P
π
(4)
P
π
(5)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Bipolar-CMO
S-DM
OS Pro
c
e
s
s-Ba
sed a
Robu
st and
High
-Accu
r
a
c
y ….. (Pan Lu
wei)
287
P
π
//
(6)
Z
π
(7)
Z
π
(8)
Poles
P1
、
P2
、
P3 an
d the ze
ro Z
1
belon
g to the reg
u
lation
loop of LDO
without
Freq
uen
cy Compen
satio
n
Cap
a
cito
r (0
5
)
[13]. Since t
he loop
gain
of LDO d
o
e
s
n’t drop to 0
d
B
at the freque
ncy wh
ere th
e pole P3 re
si
des, the ph
ase margi
n
of the loop is le
ss
than 45 ° which
may cau
s
e th
e LDO un
sta
b
le. In Figure
4, the effe
ct of Comp
en
sa
tion Cap
a
cito
r Cc (0
5) i
s
that
a pole-ze
ro
pair Pc a
nd
Zc are add
e
d
. The frequ
enc
y of the zero Z
c
re
sid
e
s is
clo
s
e t
o
the
freque
ncy
of pole
P
3
re
sid
e
s, so
the ze
ro
Z
c
will com
pen
sate
th
e p
hase shift ca
use
d
by
pole
P3.
Acco
rdi
ng to
eqution
s
(5),
(6) a
nd (8), t
he freq
uen
cy
of pole Pc resid
e
s i
s
hig
her tha
n
pole
P3
and zero Z
c
resi
de. Figu
re 5 sho
w
s the pole-ze
ro
l
o
catio
n
of the comp
en
sat
ed loop, after P3
has
bee
n co
mpesated by Zc,
the
l
oop
gain
of LD
O
drop
s to
bel
o
w
0
d
B at the
freque
ncy
wh
ere
the pole
Pc
resid
e
s, thu
s
t
he ph
ase ma
rgin
of
the re
gulation l
oop
can
achieve t
o
more tha
n
45
°and the
stabi
lity of LDO is improve
d
[14].
Figure 5. Pole-zero locatio
n
2.4. Feedba
c
k
Net
w
o
r
k a
nd T
r
im Con
t
rol Circuit
The
different
appli
c
ation
condition
an
d
tape-o
u
t p
r
o
c
ess p
a
ramet
e
r va
riation
will ma
ke
the Bandga
p Referen
c
e ou
tput VBGR deviate from
the desi
gn spe
c
ificatio
n whi
c
h will ma
ke t
h
e
voltage of
L
D
O’
s o
u
tput
VDDL
deviat
e
from
5V
. T
herefo
r
e, th
e
Feed
ba
ck
Network uses 3bit
digital cont
rol
signal T
r
im[3
:1] to trim the
output
voltage VDDL. As
shown in Figure 6, by setting
different di
gital si
gnal
Trim
[3:1] , the 8 t
o
1 An
alog
Switch
can
sel
e
ct different
cha
nnel
(CH1
~
CH8) to ch
an
ge the feedb
a
ck voltag
e VFB, t
he voltage of VDDL is al
so chan
ged b
y
it.
Figure 6. Re
sistor feed
ba
ck network
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 2, June 20
14: 283 – 29
0
288
The map
p
ing
relation
shi
p
betwe
en the
digital co
ntrol
signal T
r
im[
3
:1] and the
LDO’
s
output voltag
e VDDL i
s
sh
own in Ta
ble
2.The mini
mu
m value of VDDL is 4.8V whe
n
Trim[3:
1
] is
000. The def
ault voltage o
f
VDDL is 5V
when T
r
im[3
:1] equals to1
00 and the m
a
ximum voltage
of VDDL is 5
.
15V wh
en T
r
im[3:1] equ
a
l
s to 1
11. As Trim[3:1] in
crea
se
s fro
m
000 to
111, t
he
voltage of V
D
DL in
crea
ses
50mV
per bit. After ta
pe-o
u
t, if the
pro
c
e
s
s d
e
viation ma
ke
s the
voltage of
VDDL hi
ghe
r t
han
5V
whe
n
Trim[3:1]
eq
uals to
100,
Trim[3:1]
can
be
set lo
wer to
make the volt
age of VDDL smalle
r; if the proc
ess devi
a
tion makes t
he voltage of VDDL
smalle
r
than 5V whe
n
Trim[3:1] equal
sto 100, Trim[3:1] can
be set highe
r to make the
voltage of VDDL
highe
r.
Table 2. Map
p
ing bet
wee
n
Trim[3:1] an
d VDDL
Trim[3:1]
VDDL
()
V
000 4.8
001 4.85
010 4.9
011 4.95
100(default
)
5
101 5.05
110 5.1
111 5.15
2.5. La
y
out
Design
As the
propo
sed
L
D
O i
n
volves
high
voltage
d
e
vice,
the
spa
c
e
a
nd i
s
olation
betwe
en
40V high volt
age d
e
vice
s
and 5V lo
w
voltage devi
c
es a
r
e
parti
cularly imp
o
rt
ant. Mean
whi
l
e,
sin
c
e the L
D
O drive
s
a
200mA loa
d
curre
n
t, place a
nd ro
u
t
e of Pass Element play
s an
importa
nt part in LDO’
s pe
rforma
nce e
s
peci
a
lly it
s efficien
cy. The l
a
yout desi
gn
of the prop
osed
LDO i
s
ba
se
d on
CSM
C
0.5µm 2P3M
BCD
proc
ess which
sup
p
o
rts
2 poly l
a
yers
and
3 m
e
tal
layers.
The to
p metal i
s
thi
c
k Aluminu
m
and its curr
en
t den
sity is la
rge. Pa
rallel
routing of
Met
a
l
2 and Metal 3 is use
d
for routing of pass eleme
n
t to redu
ce the
wiring resi
st
ance. The sp
ace
betwe
en high
voltage device and low voltage device
should be la
rg
e enoug
h to redu
ce the cro
s
s
interferen
ce.
Figure 7
sh
o
w
s the layo
ut of the
Control and
Driver
SOC a
nd the
positio
n of L
D
O
in the SO
C. L
D
O p
r
ovide
s
power fo
r the
LED
sign
al receive
r
circuit
and LE
D d
r
ive co
ntrol
circuit
insid
e
the SOC. The area size of the pro
posed L
D
O is 135um*
450
u
m
.
Figure 7. Layout of the LDO in
sid
e
LED Drive and
Co
ntrol SOC
3. Simulation Resul
t
s
The lin
e regu
lation si
mulat
i
on results
are show
in Fi
gure
8,
set th
e load
curren
t of the
LDO
to
200
mA and
pe
rf
orm
a tran
sie
n
t sim
u
lation
that
when
th
e L
D
O
po
we
rs up, th
e
su
pply
voltage VDDH is 24V, ma
ke the su
pply
voltage jump
from 24V to 12V in 1us a
nd from 12V
to
24V in 1u
s, then the
suppl
y voltage jumps from
24V
to 40V in 1u
s
and from
40V
to 24V in 1u
s
(sh
o
wn in the
lower bl
ock of Figure 8
)
. Corne
r
s, be
st
case and wo
rst ca
se
simu
lation wave
s of
VDDL i
s
sho
w
n in the
up
per bl
ock of
Figure
8, the
maximum d
e
viation of VDDL wh
en V
D
DH
jumps i
s
less
than ±10
0
mV
, that is
≤
±2
% to the default value of VDDL.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Bipolar-CMO
S-DM
OS Pro
c
e
s
s-Ba
sed a
Robu
st and
High
-Accu
r
a
c
y ….. (Pan Lu
wei)
289
The load
reg
u
lation sim
u
l
a
tion re
sults
are
sho
w
in F
i
gure 9,
set the su
pply po
wer
of the
LDO
to 1
2
V, 24V
and
40
V individually
, perfo
rm
a t
r
an
sient
sim
u
lation th
at
whe
n
the
L
D
O
powers up, the load curre
n
t jumps fro
m
0mA to 200mA in 1us a
nd from 20
0
m
A to 0mA in 1us
(sh
o
wn
in
the
upp
er blo
c
k of
Figu
re 9). Corne
r
s, be
st
ca
se
an
d wo
rst ca
se
sim
u
lation wave
s of
VDDL
is sho
w
n i
n
the
lo
wer blo
c
k of
Figu
re
9,
th
e
maximum
deviation of VDDL
when
load
curre
n
t jumps is less than ±87.5mV, that is
≤
±1.7
5% to the default value of VDDL.
Figure 8. Simulation re
sult
s of Line
Reg
u
lation Chara
c
te
r
Figure 9. Simulation re
sult
s of Load
Re
gulation
C
h
ar
ac
te
r
The detaile
d simulatio
n
re
sults a
r
e sho
w
n in Tabl
e 3. The simul
a
tion re
sults
sho
w
tha
t
the p
r
op
osed
LDO i
n
thi
s
pape
r
ha
s g
o
od p
e
rfo
r
m
a
n
c
e
i
n
all simul
a
tion ca
se
s
i
n
clu
d
ing
process
corne
r
s, -5
5
~15
0
temperatu
r
e an
d 12V~4
0V
po
wer voltag
e condition
s. Th
e Output Voltage
Accu
ra
cy is ±2.75% max
by all simulation con
d
itio
ns befo
r
e tri
m
, thus we can elimi
nate
the
output voltag
e deviation
caused by the
tape-o
u
t pr
o
c
e
ss
paramet
er vari
ation throu
gh the
di
gital
control si
gnal
Trim[3:1]. As each ste
p
of
the digital
co
ntrol si
gnal
T
r
im[3:1] ca
n
make th
e out
put
voltage cha
n
ge 50mV and
the Trim ran
ge is -4% to
+3%, so the
actual O
u
tput
Voltage Accura
cy
can b
e
impro
v
ed to ±0.5% (25mV
)
ma
x after being trimmed by Trim[3:1].
Table 3. Simulation Results
Simulation Items
Simulation Results
Load Drive Cu
rre
nt
≥
215mA
Quiescent
Curre
nt
≤
284uA
Load Regulation
Rate
±1.75%
Line Regulation
Rate
±2%
Loop Gain
≥
43.9dB
Phase Margin
≥
53.7º
Reference Volta
ge Accurac
y
±1.5%
Output Voltage
Accuracy
≤
±2.75%
Output
Trim Ran
ge
-4% to +3
%
Output Voltage
Accuracy
Aft
e
r
Trimmed
≤
±0.5%
PSRR
≥
51.7@1kHz
≥
43.5@10kHz
≥
35.6@100kHz
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 12, No. 2, June 20
14: 283 – 29
0
290
4. Conclusio
n
A robu
st and
high a
c
cura
cy Low
Drop
-Out
Regul
ator ba
se
d on
40V BCD
proce
s
s i
s
prop
osed, it’s use
d
in an
outdoo
r de
co
rative
lighting
LED Control
and Dr
iver
SOC. Since th
e
environ
ment
of outdoo
r a
pplicat
ion
s
varys
significa
ntly, the
robustne
s
s of LED Drive
r
s i
s
importa
nt. The input suppl
y voltage is
12V~4
0V
an
d the output
voltage suppl
ies 5V p
o
wer for
other mo
dule
s
insi
de the
SOC. Moreo
v
er, the
appli
c
ation con
d
ition
and
the t
ape-out process
variation
woul
d make the L
D
O’
s output v
o
ltage deviat
e
from the
sp
ecification, 3b
it digital control
sign
al Trim[3
:1] and a trim circuit we
re use
d
to improve the a
c
curacy of th
e LDO’
s out
put
voltage. Th
e l
oad
cu
rrent
o
f
LDO i
s
1
0
0
m
A typi
cally and 200
mA maximally
wh
ile
the
quie
scent
curre
n
t of the LDO is l
e
ss
than 284
uA. Simula
tion re
sults
sho
w
th
at the prop
osed LDO wo
rks
robustly in
all process
corner, -55
℃
~1
50
℃
te
mperature
a
nd 12V
~40V
power volt
age
con
d
ition
s
. The default p
r
eci
s
io
n of L
D
O outp
u
t voltage is
±2.
75% max in all conditio
n
s,
more
over, th
e p
r
e
c
isio
n
can b
e
im
prov
ed to
±0.5%
after b
e
ing
tri
mmed
by 3
b
i
t digital
cont
rol
s
i
gnal Trim [3:1].
Referen
ces
[1]
Nan C, H
enr
y
SHC. A Drivin
g T
e
chnolo
g
y
for Re
trofit LE
D Lamp for F
l
uores
c
ent Li
gh
ting F
i
xtures
With Electronic Ballasts.
IEEE TRANSACTIONS ON
POWE
R ELECTRONICS.
2011; 2
6
(2
): 588-58
9.
[2]
Hon
g
min
g
Y, Jan WMB,
T
i
m CWS. Illuminat
i
on Se
ns
ing i
n
LED
Li
ghtin
g S
y
stem
s Based o
n
F
r
eque
nc
y-Div
i
s
ion M
u
ltip
le
xi
ng.
IEEE TRANSACTIONS ON
SIGNAL PROCESSING.
200
9; 57(
11)
:
426
9-42
70.
[3]
Z
heng
yu
a
n
Z
,
Z
h
iche
ng
F
,
Yong, J
i
an
ge
n
L,
Xia
o
g
ang
L.
A new
met
hod
to re
duce
VDMOS on-
resistanc
e i
n
B
CD pr
ocess.
10
th
IEEE
International Confer
ence on So
lid-
State and In
tegrated Circ
u
it
T
e
chnolog
y (IC
S
ICT
)
. Shangh
ai. 201
0: 117-
1
19.
[4]
Cha
ng-T
z
u W
,
Ming-D
ou K. ESD Protectio
n
Desi
gn W
i
th
Lateral DMO
S
T
r
ansistor i
n
40-V BCD
T
e
chnolog
y.
IE
EE TRANSACTIONS ON
EL
ECTRON DEVICES.
2010; 57
(12): 339
5-3
3
9
6
.
[5]
Gabrie
l ARM, Phill
ip EA. A low
-
v
o
lta
ge,
lo
w
qui
escent curr
ent, lo
w
dro
p
-o
ut regul
ator.
IEEE Journal of
Soli
d-State Cir
cuits.
1998; 3
3
(
1): 36-44.
[6]
Bogoda A, Indika UK,
Shun
suke O, T
o
ru I, Kenji T
.
An
Area-
Efficient CMOS
Bandgap Reference
Utilizi
ng
a S
w
it
ched-
Curre
nt T
e
chnique.
IE
EE TRANSACTIONS ON CIRCUITS AND
SYSTEMS—II:
EXPRESS BRIEFS.
2010; 57(
10): 762-
76
3.
[7]
Ming-D
ou K, Jung-S
h
e
ng C. Ne
w
Curv
ature
-
Comp
e
n
sati
on
T
e
chniq
ue for CMOS Bandg
a
p
Refere
nc
e
W
i
th Sub-1-V
Operatio
n.
IEEE TRANSAC
TIONS ON CIRCUI
TS AND
SYSTEMS—II: EXPRESS
BRIEFS
. 2006; 53(8): 667-
66
8.
[8]
Behzad
R.
De
sign
of An
al
og
CMOS Integrat
ed C
i
rcu
i
t
. Che
n
Guica
n
, Ch
en
gJun, Z
h
an
gR
uizhi.
Xi’
An
:
Xi
’ An Jia
o
T
ong Univ
ersit
y
Pr
ess. 2003: 3
2
4
-
325.
[9]
Robert JM, J
o
se SM
,
Edg
a
r SS. F
u
ll On-Chi
p CMOS Lo
w
-
Dr
opo
u
t
Voltage R
e
gul
ator.
IEEE
TRANSACTIONS ON CIRCUITS A
ND SYSTEMS—I: REGULAR PAPERS.
2007; 54(
9): 1885-
18
86.
[10]
Gianl
uca G, Gaetano P, E
s
ter S.
Low
-voltag
e
LDO C
o
mpe
n
satio
n
Strategy bas
e
d
on Curr
ent
Amp
lifiers.
IEE
E
Internatio
nal
S
y
mp
osi
u
m on
Circuits
an
d Systems. Seattl
e, W
A
. 2008: 2681-
268
4.
[11]
T
sz YM, Philip
KT
M, Mansun C.
A
Hi
gh S
l
e
w
-R
ate P
u
sh
–Pul
l Output
A
m
plifier
for
Lo
w
-
Qu
iesc
ent
Current L
o
w
-
D
r
opo
ut Regu
lat
o
rs W
i
th T
r
ansient-R
espo
nse
Improveme
n
t.
IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS—II: EXPRESS B
R
IEFS.
2007; 54(9): 75
5-7
5
9
.
[12]
Xu
e
w
e
n
W
,
F
eng
ge W
,
Z
h
o
n
g
w
e
i
L.
T
he A
nalysis
of LDO
and th
e Stab
i
lity of Lo
op C
o
mpe
n
satio
n
.
201
0 Internati
o
nal C
onfere
n
ce
on Electrica
l
a
nd Co
ntrol En
g
i
ne
erin
g.
W
uha
n. 2010: 4
368-
437
0.
[13]
Gabrie
l ARM,
Phil
lip
EA. Optimized F
r
e
que
nc
y-Sh
api
n
g
Circ
u
it T
opolo
g
ies
for L
D
O’s.
IEEE
T
r
ansactio
n
s o
n
Circuits a
nd
Systems II Ana
l
og a
nd Di
gita
l Sign
al Process
i
ng.
19
98; 45(
6
)
: 703–7
08.
[14]
Phill
ip EA, Do
ugl
as RH.
CM
OS Analog IC
Desig
n
. F
eng
Jun, LiZ
h
i
q
u
n
. Beiji
ng
:
Electr
onic Ind
u
str
y
Press. 2011: 2
06-2
07.
Evaluation Warning : The document was created with Spire.PDF for Python.