TELKOM
NIKA
, Vol.13, No
.1, March 2
0
1
5
, pp. 314~3
2
0
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i1.1265
314
Re
cei
v
ed O
c
t
ober 2
1
, 201
4; Revi
se
d Decem
b
e
r
20, 2014; Accept
ed Ja
nua
ry 5,
2015
Family Health Monitoring System Based on the Four
Session
s Internet of Things
Yang Jingjing
1
, Hao Shan
gfu
1
, Zhang
Xiao*
1
, Guo Ben
z
he
n
1
, Liu Yu
1
,
Dong Beibei
1
,
Liu Yun
2
1
School of Info
rmation Sci
enc
e and En
gi
neer
ing, He
bei N
o
rth Univ
ersit
y
Z
hang
jiak
ou 0
750
00, He
bei,
Chin
a
2
China S
y
stem
T
e
chnol
og
y L
ab,
IBM, Shangha
i 20
120
3, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: r78z@fo
x
mai
l
.com
A
b
st
r
a
ct
T
he accel
e
rati
ng pac
e of mo
dern lif
e result
s in the
lack of effective care
of
peop
le
’
s
h
e
a
lth status.
Now
adays, res
o
rting to the te
chno
logy
of the Inter
net of T
h
in
gs, w
e
can provi
de h
o
m
e
hea
lth mon
i
tori
n
g
services to
mi
ni
mi
z
e
th
e i
m
pact of the di
sease br
ou
ght
to peopl
e. In this article, w
e
propose
d
the
reali
z
a
t
io
n met
hod for th
e arc
h
itecture
of the
four sections
o
f
the Internet of T
h
ings or
ient
e
d
to ho
me
he
al
th
mo
nitori
ng
ser
v
ice, further
mo
re, the s
e
con
d
a
ry the s
m
ooth
ness i
n
d
e
x
me
thod
is a
ppl
ie
d
to the
mon
i
tori
ng
of hu
ma
n h
ealt
h
in
dex, d
a
ta from
bo
dy te
mp
erature
det
ecti
on ex
peri
m
ent
s verifie
d
the fe
asibi
lity of the f
o
u
r
sessio
n
s syste
m
, w
h
ich l
a
id fi
rm fou
n
d
a
tions
for the r
equ
ire
m
e
n
t of real-ti
m
e
and
accur
a
cy of the Intern
et
of Things bas
ed hom
e
health m
o
ni
toring syst
em
with a comm
on referenc
e
signific
anc
e and value in us
e.
Ke
y
w
ords
: four sessions, internet of things,
family h
ealth
monitor
i
ng, pr
edi
ction
1. Introduc
tion
In re
cent ye
ars,
with th
e co
ntinuo
us
improve
m
e
n
t of living
stand
ard
s
,for variou
s
rea
s
on
s,
su
ch as excessi
v
e intake
of
high-cal
o
rie
food, irreg
u
lar diet, enviro
n
m
ental p
o
llution,
aging of the
population
whi
c
h have
become in
creasi
ngly pro
m
inent, sud
d
en ca
rdiova
scula
r
dise
ase and
a variety of chroni
c d
i
sea
s
e in
cid
ence ha
s in
cre
a
sed a
n
n
ually[1]-[3]. This
way,Physiolo
gical indi
cato
rs of day-to
-
day ch
e
ck
can help pe
o
p
le kee
p
abreast of their own
health an
d ca
n also p
r
even
t and treat
so
me of the disease in adva
n
ce.
Gene
rally, there a
r
e t
w
o
ways fo
r p
e
o
p
le to obtai
n
their o
w
n
p
h
ysiolo
gical
indicators:
hospital exa
m
ination
an
d dete
c
tion
instru
ment
s. The
ho
spit
al che
c
k
ca
n p
r
ovide
you
a
comp
re
hen
si
ve and
reliabl
e result, and
t
he d
o
cto
r
ca
n
give
a
clea
r
explanation
o
f
the in
dicators,
but the hospital examinatio
n alway
s
takes a lon
g
time with co
mpl
e
x pro
c
edu
re
, expensive fee
s
and oth
e
r
d
e
fects.
Own
instrument
s detect, fo
r example, t
o
buy thei
r own
ele
c
tronic
sphygm
oma
n
o
meter blo
o
d
pressu
re te
sting, the m
e
thod i
s
sim
p
le
but th
e te
st
results can
n
o
t
get profe
s
sio
nal do
ctors'
expl
anation
so that the
singl
e test
result
s do n
o
t
have statistical
prop
ertie
s
an
d can n
o
t give warning in t
i
me
whe
n
ph
ysical
con
d
ition sh
ows re
d
light [4].
Applying the
Internet
of Thing
s
to
home
health
monito
ring,
huma
n
p
h
ysiolo
gical
para
m
eters
collecte
d
by the sensor
te
rminal can be
sent to the
backg
rou
nd
server fo
r furt
her
pro
c
e
ss by the com
pute
r
or docto
r a
nd then
the tester can g
e
t feedba
ck
after a detail
ed
explanation
of the test result
s and h
ealth advic
e. The method
avoids the
dra
w
ba
cks of
the
hospital and
own e
quip
m
e
n
t detectio
n
a
nd can k
eep
peopl
e bein
g
awa
r
e of thei
r own h
ealth a
nd
provide im
portant help for p
r
evention a
n
d
tr
eatment of sud
den a
nd chroni
c di
sea
s
es.
2.
The Intern
et
of Things o
f
Four Sessio
n
s
Propo
sal of t
he con
c
ept o
f
the Internet
of Thing
s
ca
n be tra
c
e
d
back to 19
99
, with a
relatively narrow comp
reh
e
n
sio
n
at that time whi
c
h
is
confin
ed to the face that ob
jects lin
ks wit
h
Internet th
rou
gh radio
freq
uen
cy identifi
c
ation. A
fter ten yea
r
s of d
e
velopme
n
t, it is n
o
w
po
ssi
bl
e
to be unde
rstood a
s
n
e
t
work with
certain a
u
tom
a
ted data
collectio
n the
ability, agreed
comm
uni
cati
on p
r
oto
c
ol
s
whi
c
h
can
co
nne
ct re
al an
d virtual
good
s a
nd n
e
two
r
k
con
nectio
n
s
so
that it can inf
o
rmatio
n exchang
e inform
ation an
d
achieve a net
work
of in
tellig
ent identification,
interaction, m
anagement
and other functions [5],[6].
Nowadays
, there i
s
a very wide range of
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Family
Health Monitoring Sy
s
t
em Bas
e
d on The
Four
Ses
s
i
ons
Internet of .... (Ya
ng J
i
ngjing)
315
Internet of Thing
s
appli
c
a
t
ions, incl
udi
ng sma
r
t ho
me, telemedi
cine, ind
u
stri
al automation
,
etc.
[7],[8].
The d
e
si
gn
proce
s
s of th
e
system
of the
Inter
net
of T
h
ing
s
i
s
al
wa
ys mo
re
com
p
lex than
the
gen
eral engin
eeri
ng becau
se
in a
ddition
to
its hardwa
r
e
a
nd softwa
r
e
desi
gn, it is
also
involved
with the multi
-
sy
stem
stru
ctu
r
e, se
cu
rity, low
po
wer co
nsum
ption [9
] .The tra
d
itional
desi
gn
metho
d
s
of the
Inte
rnet
of Thi
n
g
s
u
s
u
a
lly hav
e a
thre
e-sta
ge
comm
on
p
r
ope
rty [10],[11],
that is, th
ree
-
tier
structu
r
e
:
the p
e
rcept
ion laye
r, n
e
twork layer,
a
pplication l
a
yer. Pe
rceptio
n
layer i
s
u
s
u
a
lly with lo
we
r h
a
rd
wa
re
confi
gurat
io
n a
nd
poor data
pro
c
e
ssi
ng
cap
a
bility, so, dire
ct
data co
mmun
i
cation inte
ra
ction with th
e
applicati
on l
a
yer thro
ugh
the netwo
rk layer is u
n
sta
b
le
or even cau
s
e a cra
s
h of the whol
e system. In
addition, the perce
ption layer is often includi
ng
more
equi
pm
ent, if there i
s
no
unified
manag
eme
n
t, the de
sign
work of the a
p
p
licatio
n laye
r is
too com
p
lex. With this si
tuation, this
pape
r
propo
se
s a four
se
ssi
on
s Internet of Thi
n
g
s
stru
cture, that perc
eption l
a
yer, co
ordi
n
a
tion layer, n
e
twork
laye
r, appli
c
ation la
yer. Data of the
perceptio
n la
yer is ma
nag
ed by the co
ordin
a
tion la
y
e
r, no lon
g
e
r
dire
ctly com
m
unicate wit
h
the
appli
c
ation la
yer, the appli
c
ation laye
r just co
mm
uni
cate with the
coo
r
din
a
tion l
a
yer thro
ugh
the
netwo
rk laye
r which is no l
onge
r interest
ed
in the deta
ils of the perception layer.
Figure 1. Co
mpari
s
o
n
of The three a
nd
four se
ssion
s
Internet of Thing
s
(1) T
he pe
rce
p
tion layer
The
perce
ption laye
r i
s
th
e skin
an
d fa
cial fe
atures
of the Inte
rn
et of Thi
n
g
s
with th
e
ability of object recognitio
n
and informat
ion colle
ction
.
Perception l
a
yer com
p
ri
si
ng a web
c
a
m
,
GPS, and various
othe
r se
nso
r
n
ode
s
which
mainly reco
gni
ze o
b
j
e
ct an
d
colle
ct inform
ation
,
is
the last layer of the entire IOT network. The perc
ept
ion layer devi
c
e
s
is mainly
constituted
b
y
the sen
s
o
r
a
nd micro-co
n
t
roller, the se
nso
r
ca
n tran
sform the me
asu
r
ed d
a
ta into an elect
r
i
c
sign
al, while
the micro
c
o
n
trolle
r re
cog
n
ize an
d furt
her p
r
ocess
the electri
c
sign
al whi
c
h
is
perfo
rmed to
dra
w
the digit
a
l quantity to be mea
s
u
r
e
d
whi
c
h me
a
n
s that the m
easure
ado
pted
ZigBee
or
WiFi se
nt to
coordi
nation
l
a
yer. Fu
rthe
rmore,
th
e se
nsin
g
laye
r device
s
dire
ctly
receive the control si
gnali
ng
pa
ckets issue
d
dire
ctly from co
ordi
na
tion layer.
(2) T
he coord
i
nation layer
The coo
r
dina
tion layer i
s
the ne
rve cen
t
er
of the b
r
ain, inform
ation tran
smi
s
si
on an
d
pro
c
e
ssi
ng
center
of the f
our
se
ssion
s
of Intern
et o
f
Thing
s
st
ru
cture.
The
co
ordin
a
tion lay
e
r
receives th
e raw d
a
ta uplo
aded from th
e perce
pti
on l
a
yer through
a variety of ways (Zi
g
Bee
or
WiFi) and
th
e ra
w d
a
ta
can be
pre-proce
s
sed
and
re-pa
c
ked i
n
to a u
n
ified
data format
to
facilitate the
appli
c
ation
layer p
r
o
c
e
s
sing. In
ad
di
tion, the
coo
r
dinatio
n lay
e
r m
onitors
the
perceptio
n la
yer device real-time,
in t
he ca
se
of out of the
application-l
a
yer control, t
he
coo
r
din
a
tion l
a
yer ca
n co
ntrol the pe
rcep
tion layer dev
ice autom
atically.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 314 – 3
2
0
316
(3) T
he network laye
r
The
netwo
rk
layer i
s
the
n
e
rve of
the I
n
ternet
of Thi
ngs an
d the
carrie
r of
info
rmation
transfe
r. Bet
w
ee
n p
e
rcept
ion laye
r a
nd
the coor
dinati
on laye
r, the
netwo
rk laye
r com
m
uni
cati
on
impleme
n
tation is
ba
sed
o
n
WiFi o
r
Zig
B
ee. Be
twee
n the ap
plication layer
and
the co
ordi
nati
o
n
layer, the network layer is
mainly r
eali
z
e
d
in the form of WiFi or 3G
.
(4) T
he appli
c
ation layer
The a
ppli
c
ati
on laye
r
can
combi
ne "
s
o
c
ial divisio
n
of
labo
r" an
d i
ndu
stry de
m
and
d to
achi
eve a
wi
de rang
e of
intelligen
ce. I
n
conjun
ction with the F
a
mily
Health, two front-end
prog
ram
s
sh
ould
be n
eed
ed: the
clie
nt termin
al a
n
d
termin
al a
p
p
lication
layer.
Clie
nt termi
n
al
can
intuitivel
y sho
w
phy
sical h
ealth
para
m
eters to the
peo
pl
e, wh
en
so
me p
a
ra
met
e
rs
excee
ded, th
e client termi
nal ca
n re
cei
v
e a co
rre
s
p
ondin
g
alert. The se
rvice termin
al com
b
ined
with a do
cto
r
or rel
e
vant i
n
formatio
n of
a kn
o
w
le
dg
e ba
se can f
eedb
ack advi
c
e to the
clie
n
t
terminal.
3. Sy
stem Design
3.1. Hard
w
a
r
e
design
Acco
rdi
ng to
the definitio
n of the fou
r
se
ssi
on
s Internet
of Thin
gs, the h
o
m
e
health
monitori
ng sy
stem ha
rd
ware block
dia
g
ram is shown in Figure 2.
Figure 2. Fa
mily health monitorin
g
syst
em desi
g
n
(1) T
he pe
rce
p
tion layer
Contai
ning th
e temperature detectio
n
terminal
, the bl
ood pressu
re
monitor term
inal and
the bloo
d ox
ygen dete
c
tio
n
termi
nal. E
a
ch
term
i
nal
gathers th
e v
a
lue of
hum
a
n
phy
siologi
cal
para
m
eters
a
nd the
n
send
s the
value to
the
coo
r
di
n
a
tion laye
r d
e
vice
s. The
devi
c
e
of this laye
r
has a
lower requi
rem
ent of
hard
w
a
r
e config
urati
o
n
and the m
a
i
n
the controll
er sele
ction i
s
a
low-
po
we
r micro
c
o
n
troll
e
r.
(2) T
he coord
i
nation layer
The coo
r
dina
tion layer d
e
v
ice is p
r
im
arily re
spo
n
sible for d
a
ta
pre
-
processi
ng and
manag
eme
n
t of the perce
ption layer
d
e
vice, thu
s
requiri
ng the
coo
r
din
a
tion l
a
yer po
sse
s
sing
certai
n data
pro
c
e
ssi
ng
capabilitie
s an
d stro
ng
com
m
unication in
terface. In thi
s
sce
nari
o
, the
coo
r
din
a
tion
l
a
yer device maste
r
chip
i
s
a
Cortex
A8
p
r
o
c
e
s
sor clo
c
ked at
u
p
to 1G
Hz, with
comp
re
hen
si
ve periph
e
ral comm
uni
cati
on interfa
c
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Family
Health Monitoring Sy
s
t
em Bas
e
d on The
Four
Ses
s
i
ons
Internet of .... (Ya
ng J
i
ngjing)
317
(3) T
he network laye
r
This layer u
s
e
s
hi
gh-pe
rforman
c
e
ro
uters a
nd Zi
gBee m
odul
e of
coo
r
di
n
a
tor
as
h
a
r
dw
ar
e
lo
ad
.
(4) T
he appli
c
ation layer
Includi
ng se
rvice terminal
and client termin
al. Service termin
al sho
u
ld be pl
ace
d
in
comm
unity h
o
spital
s
with
profession
al
medi
ca
l
kn
owle
dge
and
experti
se,
or
profe
s
sio
nal
medical kno
w
led
ge. The
client te
rmina
l
contai
ns
m
obile p
hon
e, tablet, etc., whi
c
h
sho
u
ld
be
use
r-fri
endly i
n
tera
cting
wit
h
cu
stom
ers and users ca
n
visu
ally
ob
serve
indi
cat
o
rs of th
eir
o
w
n
body.
3.2. Soft
w
a
r
e
design
(1) A
c
cordi
n
g
to the definition of the four se
ssio
ns I
n
ternet of Th
ings the, the
family
health monito
ring sy
stem software d
e
si
g
n
is divided in
to five parts:
The h
a
rd
wa
r
e
ab
stra
ction
lay
e
r (
H
AL
) [
12]: it
hide
s the detail
s
of
hard
w
a
r
e i
n
te
rface
of
spe
c
ific
platfo
rm an
d provid
es a virtu
a
l h
a
rd
wa
re
platf
o
rm for th
e o
peratin
g sy
stem whi
c
h m
a
ke
s
it hard
w
a
r
e
-
in
depe
ndent, p
o
rtable
on
m
u
ltiple platfo
rms. Th
ese de
vices
are con
s
ide
r
ed
a
s
ot
her
parts of the
operating sy
stem and th
e can u
s
e
t
he form of machi
n
e
-
inde
pend
ent se
rvice
s
(functio
n
call
s a
nd m
a
cro
s
).
With h
a
rd
ware a
b
st
ra
ction layer services an
d in
dire
ct ha
rd
ware
addressin
g
, whe
n
porte
d to new h
a
rd
ware, the drive
r
s an
d co
re o
n
ly need to d
o
a few ch
an
ges.
The
Cro
s
s compile
r layer [13]: In the way of
comp
iler, compute
r
software
written i
n
advan
ced
co
mputer
lan
g
u
age co
de
i
s
t
r
ansfo
rme
d
in
binary co
de
whi
c
h com
put
er ca
n
recogn
ize
and
execute. Ho
weve
r, d
u
ring
the
de
velopment
of
emb
edde
d
system
s, the
targ
et platfo
rm
runni
ng the
p
r
og
ram typi
cally have limi
t
ed sto
r
ag
e space an
d co
mputing p
o
wer, ho
weve
r, the
gene
ral
com
p
iler tool
ch
ai
n req
u
ires
a lot of
storage spa
c
e and n
eed
a stro
ng CPU
p
o
wer. By
cro
s
s-com
p
il
er tool,
we
can
compil
e t
he p
r
og
ram
on
the ho
st platform with
stro
ng CPU
and
enou
gh sto
r
a
ge sp
ace ma
king it ex
ecutable for othe
r platforms.
The se
rvice
end of the co
ordin
a
tion lay
e
r: the se
rve
r
of this layer mainly plays the role
of the di
strib
u
tion, coordi
nat
ion
of dat
a. The
ope
ra
ting sy
stem
comm
only u
s
ed in
the A
R
M
pro
c
e
s
sor in
cludi
ng Lin
u
x
, Wince, Androi
d, etc.
On the ba
si
s of this op
erating
syste
m
,
developm
ent
of service
s
to the sen
s
in
g layer
and
appli
c
ation la
yer se
rvice t
o
coo
r
din
a
te the
sen
d
ing a
nd receivin
g of all device data,
is the
co
re pa
rt of the the entire soft
ware
system.
The appli
c
ati
on layer server: receiving dat
a from
the coordin
a
tor se
rver
end and
analyzi
ng th
e spe
c
ific m
eanin
g
of th
e data
com
b
ined
with
the
kno
w
le
dg
e ba
se
o
r
t
h
e
recomme
ndat
ions of the profession
als, then processe
d data is retu
rned to the
cl
ient appli
c
ati
on
layer.
The a
pplication layer cli
e
nt: the client
is in
tuitively pre
s
ente
d
to
the user,
so i
t
shoul
d
have a
go
od
use
r
i
n
terfa
c
e an
d u
s
e
r
e
x
perien
c
e.
Currently, pop
ular clie
nts in
clud
e IOS-ba
sed
client an
d Android
-
b
a
sed client.
(2) T
he com
m
unication p
r
incipl
e of the whol
e system
:
Coo
r
din
a
tion
layer and a
pplication layer mu
st esta
blish
comm
u
n
icatio
n so
cket and
coo
r
din
a
tion l
a
yer
sho
u
ld f
i
rst
enter the
list
eni
ng
sta
t
e, and th
en
the ap
plicatio
n layer socket
issue
s
co
nne
ction requ
est
by the netwo
rk layer,
and network
layer
dis
t
ributes
the reques
t to the
coo
r
din
a
tion l
a
yer to creat
e a so
cket to comm
uni
cate
, if there is a
con
n
e
c
tion re
que
st sent fro
m
other cu
stom
ers,
th
en cre
a
te
a
so
cket. Therefore, th
e de
sign
pr
ocess
of
the pro
g
ram sh
ould be:
coo
r
din
a
ted l
a
yer first sta
r
t
,
and the
n
sta
r
t the a
ppli
c
at
ion laye
r to m
a
ke
it esta
blish a
con
n
e
c
tio
n
with the
coo
r
dination
layer at
some
poi
n
t. Coo
r
din
a
tio
n
an
d a
ppli
c
a
t
ion laye
rs st
art
with a
socket
and co
ordina
tion layer bu
ndle
s
the so
cket togethe
r with a local n
e
twork ad
dre
ss, an
d then the
so
cket is rea
d
y to receive
a passive sta
t
e, it
also pro
v
ides re
que
st
queue len
g
th. After this, the
coo
r
din
a
tion
layer can re
ceive a
pplica
t
ion la
yer
co
nne
ction. Th
e appli
c
ation
layer reque
sts
sen
s
o
r
data t
r
an
smi
ssi
on, and the
coo
r
dination la
ye
r sen
d
s the
sensor d
a
ta via the network
layer to
the
a
pplication l
a
yer i
n
the
form
of a
socket.
Ho
wever,
to
write
a
po
rt progra
m
, the
si
gnal
flow meth
od
must b
e
con
s
ide
r
ed
an
d
data st
ru
cture sh
ould
be
defined,
the
prog
ram
m
er must
also
und
erst
and d
a
ta tra
n
smi
ssi
on
of the sen
s
or
side,
so m
u
lti-thre
ade
d te
chn
o
logy m
u
st be
use
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 314 – 3
2
0
318
3.3 The pred
iction algorithm of the ap
plication la
y
e
r
Exponential smoothing method [14
],[15] is a common method of
production forecast
s.
The simpl
e
a
v
erage meth
od can
comp
letely use all the time seri
es data; The
moving avera
g
e
rule d
o
e
s
no
t consi
d
e
r
the longe
r-te
r
m data, and
give the recent data larg
er weight in
the
weig
hted mo
ving average
method; Th
e
index smooth
i
ng
rule i
s
co
mpatible
with
the whole te
rm
averag
e and
the moving a
v
erage
whi
c
h
do not give
up the pa
st d
a
ta and o
n
ly gives a
wani
ng
impact, n
a
me
ly, as the
dat
a wane
s a
w
a
y
, it can
p
r
e
s
ent weights
whi
c
h g
r
a
dua
lly conve
r
ge
to
zer
o
.
The
se
con
d
a
r
y expon
entia
l smo
o
thing
method [1
5] is al
so
kn
own
as B
r
o
w
n ex
pone
ntial
smoothi
ng. Q
uadratic exp
onential smo
o
thing val
ue
St(2) is de
no
ted, which is an exponent
ial
smoothi
ng va
lue of St (1), i.e.:
(2
)
(
1
)
(2
)
1
(1
)
t
tt
SS
S
(1)
The se
co
nda
ry exponenti
a
l smoothi
ng
method
is mainly use
d
for predi
ctio
n of the
varying p
a
ra
meters lin
ear tren
d time
serie
s
. Th
e ex
pre
ssi
on
of v
a
rying
pa
ram
e
ters of
a lin
ear
trend forecast
ing model i
s
as the follo
wi
ng equ
ation:
ˆ
tT
tt
ya
b
T
(2)
The difference betwe
en th
e pre
d
ictio
n
model
of the
formula
(2)
with a ge
neral line
a
r
trend m
odel i
s
that at a
nd
bt are th
e pa
ramete
r vari
a
b
les
whi
c
h
chang
e with th
e ch
ang
e of the
time variabl
e
t, i.e. the slope a
nd inte
rce
p
t of a
straight line i
n
each pe
riod
may differ; T
is
forecas
t
periods
from period t.
(1
)
(
2
)
(1
)
(
2
)
2
()
1
t
t
t
t
t
t
aS
S
bS
S
(3)
Accordi
ng
equatio
n (3
),
the value of
each pa
ram
e
ter vari
able
s
can b
e
calculate
d
,
whe
n
the val
ues
used by
equatio
n (2
),
it has in
defin
i
t
ely ability to forecast. In t
he case of o
n
ce
predi
ction,
(
1
)
(
2)
(
1
)
(
2)
(
1
)
(
2)
1
21
ˆ
2(
)
11
1
t
tt
tt
t
tt
t
y
ab
S
S
S
S
S
S
(4)
Whe
n
m
onito
ring
the
onlin
e op
eration
o
f
the
system,
the first
15
histori
c
al
dat
a is be
use
d
a
s
a
sa
mple to
predi
ct the
next da
ta ba
se
d
on
the
sampl
e
d
a
t
a with
se
co
n
dary exp
one
n
t
ial
smoothi
ng m
e
thod. After compa
r
ison of
real-tim
e a
c
ce
ssed data
and fore
ca
st
data the syst
em
can
dete
r
min
e
whethe
r th
ere
is ab
normal
sign
s.
If
10
con
s
e
c
uti
v
e point
s
exceed th
e th
re
shold
rang
e of th
e
forecast
data
,
it is
con
s
id
e
r
ed
as no
rma
l
state, oth
e
rwise, it give
s alarm. Spe
c
i
f
ic
step
s are a
s
f
o
llows:
First ste
p
, acce
ss the hi
sto
r
ical d
a
ta and
calculate the
value of exponential
smo
o
thing;
Secon
d
ste
p
, calculate th
e quad
rati
c e
x
ponentia
l
smoothing val
ue of St(1) o
f
the first
step a
c
cordi
n
g to the formula (1
);
Third
step, ca
lculate the p
a
r
amete
r
s of
t
he value of the variable at
and bt;
Fourth
step, calcul
ate the trend predi
ct
value
s
acco
rdi
ng to (4) a
nd
(2);
Fifth step, th
e
syste
m
o
b
tai
n
s
a
new val
ue a
nd
co
mp
are
s
it
with th
e p
r
edi
cted
value
and
the new valu
e is used a
s
the ne
w sam
p
le data, re
turn to the firs
t step to c
ontinue to run.
4. Exeprimental Re
sults
and An
aly
s
is
In accordan
ce with this a
r
ticle, the co
or
din
a
tion la
yer device
p
r
ocesso
r of the four
se
ction
s
Internet of Things model is eq
uippe
d with ARM Co
rtex A8, running f
r
equ
en
cy 1G
Hz,
1GB of me
m
o
ry, oute
r
ex
pan
sion
ZigB
ee, WiFi
com
m
unication m
odule. T
he
n
e
twork l
a
yer i
s
a
local
area
net
work setup
wi
th wi
rele
ss ro
uter. Th
e
P
C
works as
the serve
r
sid
e
of
the a
ppli
c
ati
on
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Family
Health Monitoring Sy
s
t
em Bas
e
d on The
Four
Ses
s
i
ons
Internet of .... (Ya
ng J
i
ngjing)
319
layer whil
e the android ph
one wo
rks a
s
a client of
the application l
a
yer. A temperatu
r
e collection
terminal
deve
l
oped
with
Zi
gBee
wirel
e
ss tra
n
smissio
n
fun
c
tion i
s
use
d
a
s
a
se
nsin
g laye
r.
The
experim
ental
results
sho
w
n
in Table1,Fig
u
re 3 an
d Fig
u
re 4.
Table 1. Co
m
parin
g the two kind
s of Internet of Thin
gs re
sult
s
List
Run
Time
Packet Loss
Rate
The s
y
stem
breakdo
w
n
times
the Fou
r
Sessions Internet of
Things
1000hour
0.0002%
3
the Thr
ee Sessions Internet of
Things
1000hour
0.0032%
19
Figure 3. Alarm appea
re
d whe
n
tempe
r
atur
e fluctu
ates with h
u
ma
n intervention
Figure 4.Test
result
s with n
o
rmal b
ody tempe
r
ature
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 1, March 2
015 : 314 – 3
2
0
320
Table 1 in
di
cate
s the su
perio
rity of the four
se
ssions of the i
n
ternet of thi
ngs.Th
e
experim
ental
verification
Fi
gure
3
and
Fi
gure
4
sh
ows
two experi
m
ental situatio
ns.
O
ne situa
t
ion
is
whe
n
the
t
e
mpe
r
ature
sensor
is exert
ed in
hu
man
i
n
tervention
re
sulting
in
anal
og tem
peratu
r
e
anomali
e
s a
n
d
there exi
s
ts great differe
nce b
e
twe
en the
pre
d
icted results with
the
expe
rimen
t
al
data, the application layer
client
will
alarm. T
he
other is the m
onitoring of
the norm
al body
temperature,
wh
en
the
p
r
edi
cted
and
the
actu
al
t
e
mpe
r
ature
sensor mea
s
u
r
eme
n
t result is
basi
c
ally
con
s
iste
nt with t
he ap
plicatio
n layer,
in t
h
is
ca
se, the
client d
o
e
s
not alarm. T
h
e
experim
ental
results verifie
d
the fa
ct that the four se
ssions Internet
of Things
stru
cture p
r
o
p
o
s
e
d
in this pap
er
has id
eal dat
a transmissio
n stab
ility, cle
a
r structu
r
e a
nd a strong fe
asibility.
5. Conclusio
n
In this pa
per,
the structu
r
e
of the four
sessio
n
s
Internet of Thing
s
is propo
se
d
at first,
then o
n
th
e
basi
s
of thi
s
stru
cture, the
ha
rd
wa
re a
n
d
softwa
r
e
of the
home
h
ealth m
onitori
ng
system i
s
de
signed a
nd the
second
expo
nential sm
oot
hing is
applie
d at the appli
c
ation laye
r for
real
-time fore
ca
sting an
d monitori
ng th
e health
stat
us of the hu
man body. F
i
nally, with the
human
bo
dy temperature
detectio
n
a
pplication, th
e expe
riment
al
re
sult
s v
e
r
i
f
i
ed t
he
sy
st
em
descri
bed i
n
this arti
cle. T
h
is stu
d
y laid
firm
foundati
ons fo
r meeti
ng the re
qui
rements
of re
al-
time prop
erty and accu
ra
cy of the home health
mo
nitoring
syste
m
base
d
on
the Internet
of
Thing
s
with a
commo
n refe
ren
c
e an
d use value.
Ackn
o
w
l
e
dg
ements
This
work
was supp
orte
d
by Hebei
Nort
h University (No. Q20
1
4002, No.ZD2013
01,
No.ZD201
30
2, No.Z
D2
01
303,
No.Q2
0
1400
5, No.Q
2014
008
) a
n
d
the
Edu
c
ati
on
Dep
a
rtme
nt of
Heb
e
i Provin
ce (No.Q
N
20
1418
2).
Referen
ces
[1]
Brook RD, F
r
anklin B, Casc
i
o
W
,
et al. Air pol
l
u
tion a
n
d
cardiov
a
scul
a
r diseas
e A statement for
hea
lthcare
prof
essio
nals from
the e
x
p
e
rt pa
n
e
l o
n
p
opu
lati
o
n
an
d pr
eve
n
ti
on sci
enc
e of t
he Amer
ican
Heart Associ
ati
on.
Circu
latio
n
. 2004; 1
09(2
1
): 2655-
26
71.
[2]
Menotti A, Kro
m
hout D, B
l
ac
kburn
H, et a
l
.
F
ood i
n
take
pa
tterns an
d 2
5
-
y
ear morta
lit
y fr
om coro
nar
y
heart
dise
ase:
cross-cultur
al
correl
a
tio
n
s i
n
the S
e
ve
n
Cou
n
tries St
ud
y.
Eur
ope
a
n
jo
urn
a
l
of
epi
de
mi
olo
g
y
. 199
9; 15(6): 50
7-51
5.
[3]
Bhatna
gar A.
Enviro
nmenta
l
cardi
o
lo
g
y
stud
yi
ng mec
h
a
n
istic li
nks b
e
t
w
e
en
pol
luti
o
n
an
d h
eart
dise
ase.
Circu
l
a
tion res
earch
.
2006; 9
9
(7): 6
92-7
05.
[4]
McGregor C, E
k
lun
d
J M. Ne
xt gener
at
io
n re
mote critica
l
ca
re throu
gh s
e
rv
ice-ori
ente
d
ar
chitectures
:
chall
e
n
ges a
n
d
opportu
niti
es.
Service Orie
nted Co
mputin
g
and Ap
plic
atio
ns
. 2010; 4(
1): 33-4
3
.
[5]
L. T
z
orj, A.
Ier
a
, G. Morabito.
T
he Internet o
f
T
h
ings: A sur
v
e
y
.
C
o
mput
er
Netw
orks
. 201
0; 54: 27
87-
280
5.
[6]
Lu Yan, Ya
n Z
hang, L
a
w
r
e
n
ce T
.
Yang,
et al.
T
he Internet of T
h
ing
s
; F
r
om RF
ID
to the Ne
xt-
Generati
on Per
v
asive N
e
t
w
ork
ed S
y
stems.
Auerb
a
ch Pu
blic
ations(
book). 2
008.
[7]
John
Di
ll, R
a
e
Earns
h
a
w
. E
x
pan
din
g
th
e F
r
ontiers
of
Vis
u
al A
nal
ytics
a
n
d
Vis
ual
izatio
n
.
Sprin
ger
Lon
do
n. 201
2: 397-
415.
[8]
C. Amard
eo, I
dentiti
e
s i
n
th
e
F
u
ture I
n
tern
et of T
h
ings.
W
i
reless Pers
ona
l
C
o
mmu
n
i
c
ations
. 20
09;
49(3): 35
3-3
6
3
.
[9]
B Jia, YJ
Ya
ng
, CS C
u
i,
L
Li.
Intelli
gent
Sup
e
rvisio
n
an
d T
r
acin
g S
y
stem
for F
o
o
d
Qu
alit
y
Un
der t
h
e
Internet of T
h
ings.
Journa
l of Co
mp
utation
a
l
Information Sy
stems
. 20
12; 8
(
17): 711
3-7
1
2
0
.
[10]
Liu
Y,Chu
XL,
W
ang
L. Des
i
g
n
for th
e Inter
n
et
of T
h
ings
B
a
sed
on
T
h
ree
-
Stage M
e
tho
d
s.
Co
mp
uter
Systems & Ap
plicati
ons.
2
0
1
1
; 20(7): 5-10.
[11]
K Gama, L T
ouse
au, D D
o
nsez. Com
b
in
i
ng h
e
tero
gen
e
ous serv
ice te
chno
log
i
es for
buil
d
i
ng a
n
Internet of T
h
ings midd
le
w
a
re.
Computer C
o
mmu
n
icati
ons
.
201
2; 35(4): 40
5–4
17.
[12]
Modem
Hard
ware Abstracti
o
n La
ye
r Ap
plic
ation Pr
ogr
am Interface(Vers
ion:2.1
1
.1). Joi
n
t T
a
ctical
Radi
o S
y
stem Standar
d . 200
7.
[13]
Miller
G, Hal
l
K, Willis W, et
al.
T
h
e
Evol
u
t
ion
of Pow
e
rtrain M
i
croco
n
trollers
a
nd It'
s Impact
o
n
Devel
o
p
m
ent Processes a
n
d
T
ools
. SAE Confere
n
ce Proc
eed
ings. 1
998:
423-4
36.
[14]
Z
hang
L,
Xi
ng
X. Stu
d
y
o
n
th
e o
p
timizati
on
estimatio
n
met
hod
of smo
o
thi
ng c
oefficie
n
ts.
Jo
u
r
na
l
of
Xi'
an Institute o
f
T
e
chnolo
g
y
.1
998; 18(
3): 217
.
Evaluation Warning : The document was created with Spire.PDF for Python.