TELKOM
NIKA
, Vol.13, No
.3, Septembe
r 2015, pp. 8
59~869
ISSN: 1693-6
930,
accredited
A
by DIKTI, De
cree No: 58/DIK
T
I/Kep/2013
DOI
:
10.12928/TELKOMNIKA.v13i3.2095
859
Re
cei
v
ed Ma
rch 2, 2
015;
Re
vised J
une
3, 2015; Accepted June 2
2
, 2015
Measur
e
ment of Ultra Wideband Channel Sounding
Using Vector Network Analyzer
Ahmed Alsh
abo*
1
, Peter
Vial
1
, Montserrat
Ros
1
, David Stirling
1
Muhammad
Abu Bakar S
i
dik
2
1
School of Elec
trical, Comp
ute
r
&
T
e
lecommu
nicati
ons En
gin
eeri
ng, Univ
ers
i
t
y
of W
o
llo
ng
o
ng,
Australi
a, Northfiel
d
s Aven
ue
, W
o
llong
on
g, Ph./F
ax:+
614
2
21-3
452-
54
74
2
Institute of High Voltag
e an
d High C
u
rre
nt (IVAT
), Universiti T
e
knologi Ma
l
a
y
s
ia,
Mala
ysi
a
, Ph.+
607-
553
57
17
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: amoa8
13@
u
o
w
m
ai
l.ed
u.au,
Peter_Via
l
@u
o
w
mai
l
.ed
u
.au,
montse@
u
o
w
mail.e
du.au, sti
r
ling
@
u
o
w
m
a
i
l
.
edu.au, a
baka
r
sidik@
utm.m
y
A
b
st
r
a
ct
T
h
is pa
per
an
a
l
y
z
e
s
th
e
me
as
ure
m
e
n
t of u
l
tra w
i
de
ban
d (U
W
B
) noise
ch
a
nne
ls i
n
d
i
ffere
nt in
door
envir
on
me
nts. All meas
ure
m
ents are d
one
using
a vecto
r
netw
o
rk
anal
y
z
er (VNA) w
h
ich a
llow
s
us
to
m
e
asur
e the noise channel tr
ansfer f
unctions. We find that the nois
e
po
wer of the system is decreased
by
incre
a
sin
g
th
e
inter
m
e
d
iate
fr
equ
ency
(IF
)
b
andw
idth
w
h
ic
h l
eads
to
an
i
n
creas
e i
n
ti
me take
n to
p
e
rfor
m
me
asur
e
m
ents
of th
e ch
an
nel
s. T
he
env
ir
on
me
ntal
n
o
ise
p
o
w
e
r be
en
me
as
u
r
ed
a
n
d
fi
nd
th
a
t
i
t
de
creased
w
hen enc
los
e
d in
a F
a
ra
da
y cage (ste
el
shed), w
i
thin
a
n
inte
nse multi
path me
asur
e
m
e
n
t
env
iron
ment.
Also, the Envi
ron
m
e
n
tal n
o
is
e decre
ases s
lightly
by usi
n
g the LPDA
a
n
tenn
a co
mp
a
r
ed to usi
ng t
h
e
T
eardro
p
and
Horn a
n
tenn
as
. Our results show
that
the Horn ante
n
n
a
is less suitabl
e for UW
B chann
e
l
me
asur
e
m
ents
co
mp
ared
to t
he
LPDA
direc
t
iona
l a
n
ten
n
a
s
bec
ause
of
l
o
w
e
r S11
(Ret
urn
Loss) v
a
lu
es.
Wh
i
l
e
fo
r om
ni
d
i
re
ctio
na
l
a
n
t
e
n
n
a
s
, th
e
Tea
r
d
r
op
an
te
nna
i
s
mu
ch
more
su
i
t
ab
le
th
an
th
e mo
no
cone
anten
nas
for
UW
B meas
ure
m
e
n
ts (d
ue t
o
low
e
r S
11 v
a
lues)
an
d
decr
eases
the
Env
i
ron
m
e
n
tal
n
o
i
s
e
pow
er. As s
e
c
ond
ary a
p
p
lica
t
ion, w
e
s
how
how
a fre
q
u
e
n
cy detecti
on
d
e
vice
can
b
e
u
s
ed to
re-
adj
us
t a
ma
la
djuste
d fr
equ
ency s
e
lect
ion
on
a re
mote contro
ll
er for
a g
a
rag
e
d
o
o
r
, in pr
esenc
e
of envir
on
ment
al
nois
e
pow
er.
Ke
y
w
ords
: ind
oor ultraw
id
eb
and (UW
B
), no
ise cha
n
n
e
ls
Copy
right
©
2015 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Over the l
a
st
few yea
r
s,
many re
se
arc
hers h
a
ve st
udied
and
re
ported
on va
rious
Ultra
Wide
ban
d (UWB
) Com
m
unication S
y
stems. UWB radio tech
nique
s allo
w low power
data
transmissio
n
over an
extremely wid
e
range
of
ban
dwidth i
n
the
indoo
r e
n
vironment [1, 2
]
.
Accu
rate
ch
a
r
acte
ri
zation
of UWB
ch
a
nnel p
r
op
aga
tion is e
s
sen
t
ial to many
comm
uni
cati
on
system
s [3, 4
]. In order to
validate the
UWB
r
adio
chann
el mea
s
urem
ents, th
e followin
g
th
ree
factors
nee
d
to be
investig
ated: the
noi
se level
of the
syste
m
, the
l
i
ght in
side
th
e me
asure
m
ent
environ
ment
and the envir
onmental n
o
i
s
e po
we
r.
The obj
ect o
f
this pape
r
is to examin
e data fro
m
indoo
r UWB chan
nel
s. We a
r
e
particula
rly intereste
d
in te
chni
que
s whi
c
h de
crea
se t
he noi
se leve
l of the syste
m
, by choo
si
n
g
para
m
eters such a
s
intermediate freq
uen
cy (I
F) Band
width whi
c
h allo
ws th
e UWB chan
ne
l
calib
ration n
o
ise floo
r to
be improve
d
whe
n
u
s
in
g the Throu
gh / Refle
c
tion / Line (T
RL)
calib
ration
te
chni
que. T
h
e
s
e fa
cto
r
s ca
n pote
n
tially l
ead to
mo
re
accurate m
e
a
s
ureme
n
t of
UWB
cha
nnel
s. Th
e tran
sfer fu
nction
s of th
e UWB
cha
n
nels a
r
e o
b
tained th
roug
h the frequ
e
n
cy
domain te
chn
i
que u
s
ing a
vector n
e
two
r
k analy
z
e
r
(V
NA). The ZV
C-V
N
A whi
c
h
we u
s
ed in o
u
r
measurement
s ha
s a
n
op
e
r
ating
frequ
e
n
cy range
of
300
kHz to
8
GHz. We u
s
ed two i
denti
c
al
mono
con
e
a
n
tenna
s whi
c
h have a freq
uen
cy r
ang
e from 1 to 18 GHz and were manufa
c
tured
b
y
Ka
r
l
s
r
uh
e U
n
iver
s
i
ty,
G
e
r
m
a
n
y
. T
h
e
me
as
ur
e
m
ent pa
ram
e
te
rs u
s
ed
in th
ese
expe
rim
ents
are give
n in
Table 1. S
o
me mea
s
u
r
ements
we
re
obtained i
n
the Comm
u
n
icatio
n Systems
Labo
rato
ry of the Departm
ent of Electrical and
Tele
co
mmuni
cation Enginee
ring at
the
University
of
Woll
ongo
n
g
,
Australia. Other mea
s
u
r
eme
n
ts we
re
obtaine
d in
-situ, throug
h fi
eld
study wit
h
in
the confin
es
of a steel garage.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 859 – 869
860
2. Related Work
Ultra wi
deb
a
nd (UWB
) Communi
catio
n
s Te
chn
o
lo
gy is a new
techn
o
logy which h
a
s
emerged
in t
he la
st twent
y years a
nd
is u
s
e
d
e
s
p
e
c
ially for ind
oor environm
ents. It i
s
m
o
re
comm
only used for indu
st
rial appli
c
atio
ns such as
UWB ele
c
tro
m
agneti
c
se
nso
r
s a
nd UWB
rada
r
appli
c
at
ions.
UWB te
chn
o
logy
ha
s bee
n
used f
o
r
accu
rate
in
door lo
cali
zat
i
on a
ppli
c
atio
ns
[3-7]. The
r
e h
a
ve bee
n ma
ny studie
s
of
UWB
radi
o chann
el mea
s
urem
ents i
n
o
r
de
r to stu
d
y the
cha
nnel
characteri
stics [3], [8-37] i
n
diff
erent
environ
ments and
scenari
o
s. A
co
rre
ct
calib
rati
on
pro
c
e
ss of the mea
s
u
r
e
m
ent setup
is ne
ce
ss
ary
for accurate measurem
ent of wirel
e
ss
cha
nnel
s. A VNA can
be
defined a
s
a
n
instrum
ent
th
at can me
asu
r
e the chan
ne
l param
eters
(S-
para
m
eters) of physical wirele
ss n
e
two
r
ks, su
ch
a
s
pha
se and a
m
plitude. In [18] the autho
rs
kept the ind
o
o
r environme
n
t as st
atic a
s
possible d
u
ri
ng their UWB
chan
nel mea
s
ureme
n
ts. T
he
authors in [1
1] did not ide
n
tify whether
the pas
se
nge
r moved at al
l durin
g mea
s
urem
ent or n
o
t.
In [32, 33] they investig
ated the influen
ce of
different
scena
ri
os in a
car
occupi
ed by four
person
s
and
in e
m
pty cars o
n
the
UWB
ra
dio prop
agatio
n cha
nnel
s an
d
di
scusse
d
the
passe
nge
r in
fluence o
n
th
e me
asure
d
cha
nnel
s.
Ho
wever,
they
did n
o
t me
ntion
wheth
e
r the
passe
nge
rs
were in a st
ationary o
r
n
on-
stationa
ry situation. They also in
dicate
d that the
measurement
s were pe
rformed
with cali
bration
of
VNA – ZVC ove
r
frequ
en
cy the ra
nge
of three
to eight giga
h
e
rtz. Th
e UWB chan
nel me
asu
r
em
ent
s
were kept sta
t
ionary by en
suri
ng that th
ere
wa
s no m
o
ve
ment of peo
pl
e insi
de the
measurement
environ
ment
s in [10
-
11], [
15, 22], [25-2
6
],
[29, 31]. Althoug
h the a
u
thors in [29
], said
that the mea
s
u
r
e
m
ents
we
re
in a nea
r st
atic
environ
ment,
it is
not
cle
a
r
wheth
e
r the e
n
viro
n
m
ent was stati
onary. T
he
a
u
thors in
[8,
9]
measured n
o
n
-statio
n
a
r
y UWB
radi
o chann
els. So
the ch
ann
els were time-v
ariant a
nd
were
affected by the movement of peopl
e. Th
e authors in [3], [12-14], [17], [19-21], [23-24], [27, 34
],
[36-37] di
d n
o
t identify wh
ether
me
asurements
we
re
performed in
stationa
ry or
non-station
a
r
y
environ
ment
s. The a
u
tho
r
s in [3, 8], [12
-
17], [19], [21
-
30], [34
-
37]
did not
menti
on the val
ue
of
the Interme
d
iate Fre
quen
cy (IF) Band
widths
wh
ich were
u
s
ed. The
IF
ban
d
w
idth
is a
very
importa
nt parameter
sin
c
e
it result
s in
an incre
a
se or a de
crea
se in the
noi
se level of t
he
system
and
time me
asure
m
ent swe
epi
ng a
s
well
as
determining
the thre
sh
old
of the
stro
ng
est
path.
In [38] they u
nderto
ok a
st
udy whi
c
h m
easur
e
d
the wirel
e
ss chan
nel in ord
e
r t
o
detect
the presen
ce
and m
e
a
s
ure the am
oun
t of adultera
tion of die
s
el
and g
a
soline
with
kerose
ne,
usin
g typical
UWB
sen
s
o
r
comp
one
nts.
They al
so d
o
not identify
wheth
e
r the
measureme
n
ts
were taken in
stationa
ry or non-
station
a
r
y environ
me
nts. In [26]
the autho
rs u
s
e a thre
shol
d
of
25 dB below the stronge
st path
for case
s of LOS and NL
OS in order to me
asu
r
e the po
we
r
delay in the a
rrival time of resolve
d
multipath ele
c
trom
agneti
c
rays.
On the othe
r hand, in [2
4] they used
a
thre
shol
d
of 30 dB a
nd 20 dB b
e
low the
stron
g
e
s
t pat
h in orde
r to
avoid the effe
ct of noi
se
o
n
the arrival time of the mul
t
ipath in case
s of
LOS a
nd
NL
OS, re
spe
c
tively. They al
so did
not
men
t
ion the
value
of the
interm
ediate f
r
eq
ue
ncy
band
width which wa
s
set as
me
asure
m
ent
paramete
r
s
a
nd this
wi
ll affect the noise level of t
h
e
system. T
h
is
will al
so hav
e an e
ffect
on the
strongest path of th
e measured wire
less channel.
The auth
o
rs
in [17] measured th
e UWB chan
nel in
an offsho
re
oil platform a
nd used an I
F
band
width of
3 kHz in their measu
r
em
en
ts and a th
re
shold of 30 dB
below
the
stronge
st path to
avoid the effect of noise o
n
the arrival time of multipa
t
h rays.
The literatu
r
e
indicate
s tha
t
the noise e
ner
gy vari
es
over the time
and freq
uen
cy band
and th
e UWB sign
als are
affected
by
the envir
onm
ental
n
o
ise. The Ultra
Wi
deba
nd Noi
s
e
is
comp
osed of
thermal
noi
se
and the
othe
r interfe
r
en
ce
narro
wba
nd sign
als su
ch as
rada
r sign
als
and
comm
un
ication
sig
nal
s. In UWB
appli
c
ation
s
,
some
practi
cal a
pproa
ch
es n
eed to
be
improvin
g the UWB ra
da
r signal pe
rformance that
does n
o
t correlate with the UWB noi
se to
avoid any interferen
ce an
d unw
anted
sign
al at the receiver. While rad
a
r
si
gnal
s will affect
measurement
s, they are no
t normally en
cou
n
tere
d out
side of aviatio
n
[39].
3. Measurem
e
nt Me
thodo
log
y
The
UWB ch
annel
tran
sfe
r
fun
c
tion
ca
n be
obtai
ne
d u
s
ing
a V
N
A in th
e freque
ncy
domain. T
h
is
techni
que i
s
based o
n
the
sweep
of
freq
uen
cy point
s
in the freque
ncy rang
e of t
h
e
cha
nnel. The
S-
pa
ram
e
ter
co
efficient
s of
the
device
Und
e
r
Te
st
(DUT
) ca
n
b
e
measured usi
n
g
VNA. The ch
annel fre
que
ncy re
spo
n
se
is r
epresent
ed by S21 and the DUT will be the UWB
wirel
e
ss
ch
an
nel
which in
cl
ude
s the
tran
smitting
a
nd
receivin
g ante
nna
s. In o
u
r
measurement
s,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Measurem
ent of Ultra Wid
e
band
Cha
nne
l Sounding
Using Ve
ctor
Network…
(Ah
m
ed Alshabo
)
861
we
use a t
w
o po
rt, Ro
hd
e & Schwarz ZVC- vecto
r
n
e
t
wo
rk
an
alyz
e
r
. Th
is de
vic
e
is
s
h
ow
n
in
Figure 1.
Two i
denti
c
al
semi
-ri
gid
CRA213/V
coa
x
ial cabl
es
with a lengt
h
of 2.5 metre
s
an
d a
freque
ncy ra
nge
f
r
om DC
to 18 GHz we
re used
in the
s
e
m
easure
m
ent
s. Both
cabl
es are
terminate
d
by
male
50
Oh
m N-Type
co
nne
ctors. T
w
o ide
n
tical
m
ono
con
e
a
n
te
nna
s of th
e t
y
pe
sho
w
n i
n
Fi
gure
2 were
use
d
in the
measurem
e
n
ts for thi
s
study. The
conne
ction
of the
measurement
set-up i
s
sho
w
n in Figu
re
3.
Figure 1. The
vector net
wo
rk an
alyze
r
(VNA)
us
ed in this
s
t
udy
Figure 2. UWB monocone
antenn
a with
grou
nd pla
ne
of 100 mm
Figure 3. Measu
r
em
ent se
t-up
Table 1. Mea
s
ureme
n
t Parametre
s
Paremeter Value
Measured Band
w
i
dth
300 MHz-8
G
H
z
Freque
nc
y
Point
s
1601
IF filter Band
w
i
dt
hs
10kHz,1kHz and 10Hz
Sw
e
ep Time
272.77s,9.46s an
d810.49 ms
Transmitting Po
w
e
r
-10
dBm
UWB Antennas g
a
in
0 dBi (t
y
p
ical)
Antennas Height
100 cm
In
all
measurement
s,
TRL
cali
br
ation wa
s u
s
ed to get a
c
curate mea
s
urem
ent re
su
lts.
Furthe
r detail
s
of this cali
b
r
ation p
r
o
c
ed
ure
can be fo
und in [40]. The Log Pe
rio
d
ic Di
pole Array
(LPDA
)
, Teardrop and Horn antennas
have been us
ed to measure
the Environmental Nois
e and
R
e
turn loss (
S
11
) of t
he UWB
complex
Cha
nnel
coeffici
ents. Th
ese
antenn
as
were
manufa
c
tured
at the
Univ
ersity of
Woll
ongo
ng,
Au
stralia. T
he LP
DA an
d
Horn ante
nna
s
are
dire
ctional
an
tenna
s while
the Mon
o
con
e
and
Te
ard
r
op
ante
nna
s are omnidi
re
ctional
ante
n
n
a
s
and all anten
nas
can op
erate in the frequen
cy ra
n
g
e
of 1GHz to 8GHz. These antenn
as a
r
e
sho
w
n in Fig
u
re
s (4
-6
) re
s
pectiv
e
ly
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 859 – 869
862
Figure 4.
UWB LPDA antenna
Figure 5. UWB Ho
rn Ant
enna
Figure 6. UWB Teard
r
op a
n
tenna
with g
r
oun
d plan
e o
f
100 mm
3. Measurem
e
nt and
Anal
y
s
is and Disscusion
s
3.1. The Noi
se Po
w
e
r o
f
the Dev
i
ce (
V
NA)
For this stu
d
y
, the noise power of the dev
ice (V
NA) has bee
n measure
d
at 10 kHz, 1
kHz and
10
Hz, as
sho
w
n
in Figu
re 1
6
where
we
can
see th
at, de
crea
sing
the IF
ban
dwi
d
th,
decrea
s
e
s
th
e noi
se
po
wer. Thi
s
lea
d
s
to
a
co
rre
s
po
ndin
g
in
crea
se
in th
e
time ta
ken
to
measure the
cha
nnel
(a
s shown in
Ta
ble 1
on
sw
ee
p
time). Expe
ri
ments are al
so cond
ucte
d i
n
the pre
s
en
ce
and ab
sen
c
e
of fluoresce
nt lighting.
Figu
re 17 sho
w
s t
he ch
annel transfe
r functio
n
with the light on and with t
he light off. Figure
18
s
h
ows
the abs
o
lute value diff
erenc
e
between
them. It can be cle
a
rly se
en that the
measured wi
rele
ss
ch
ann
el is affecte
d
slightly by the
pre
s
en
ce of fluore
s
cent lig
ht inside the
measur
ement
environme
n
t over the freq
uen
cy rang
e of
1.5 to 8 GHz.
Figure 7. Noi
s
e po
we
r of the device
(V
NA) at 10 kHz, 1kHz a
nd 1
0
Hz
0
1
2
3
4
5
6
7
8
-1
60
-1
50
-1
40
-1
30
-1
20
-1
10
-1
00
-9
0
-8
0
-7
0
-6
0
F
r
e
q
ue
nc
y
i
n
G
H
z
| S
21
| in
d
B
N
o
i
s
e p
o
w
e
r
at 10K
HZ
N
o
i
s
e P
o
w
e
r
at
1
K
H
Z
N
o
i
s
e P
o
w
e
r
at
1
0
Hz
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Measurem
ent of Ultra Wid
e
band
Cha
nne
l Sounding
Using Ve
ctor
Network…
(Ah
m
ed Alshabo
)
863
`
Figure 8. Measu
r
ed tran
sfer functio
n
s li
ght ON/OFF
Figure 9. Absolute value di
fference of m
easure
d
tran
sfer function
s l
i
ght ON/OFF
3.2. En
v
i
ron
m
ental Nois
e Po
w
e
r and
Retur
n
Loss
In
this expe
ri
ment,
the noi
se po
wers
of
the m
e
a
s
ure
m
ent e
n
viron
m
ent a
r
e
me
asu
r
ed
usin
g a VNA
in two scen
arios, one of
which in
clu
d
e
s
the pre
s
en
ce of a fluore
s
cent light
sou
r
ce
while the
oth
e
r do
es n
o
t. The two m
e
a
s
ureme
n
ts
a
r
e con
d
u
c
ted i
n
the sam
e
room in o
r
de
r to
determi
ne th
e
effect of li
ght
so
urce
s o
n
t
h
is
noi
se
. Thi
s
n
o
ise i
s
rep
r
esented
by t
r
an
sfer fun
c
tion
(S21).
W
e
cal
l
this noi
se ‘
environ
menta
l
noise
po
we
r’ (ENP
) an
d
to measure
it, we nee
d
to
con
n
e
c
t po
rt
1 on th
e V
N
A to an
N-type
match
conn
e
c
tor
and
po
rt
2 to the
UWB
anten
na. Thi
s
lead
s to recei
v
ing only the power comin
g
from
all obj
ects in
sid
e
the measurem
ent environ
m
ent.
The
con
n
e
c
tion of the
m
easure
m
ent
set-u
p
i
s
sh
own i
n
Fig
u
re 10. Fig
u
re
7 sho
w
s th
e
environ
menta
l
noise in b
o
th ca
se
s. Fig
u
re 8
shows
the ab
solute
value differe
n
c
e b
e
twe
en t
h
e
environ
menta
l
noise
po
we
rs. It can
be
see
n
cle
a
rly
that the ligh
t
has a
sligh
t
effect on the
magnitud
e
of
the S21
scattering
pa
ra
meter i
n
the
freque
ncy
sp
an of
5-8
G
H
z. At th
e ot
her
freque
nci
e
s,
the differe
nce bet
ween
th
em is ap
prox
imately equ
al
to zero.
We
mea
s
u
r
ed t
h
e
Environme
n
tal Noi
s
e of L
P
DA and T
e
a
r
drop ante
n
n
a
s by
conn
ecting the matched
conn
ecto
r t
o
Port 1 o
n
VNA and th
e tested anten
na
on po
rt 2
on
the VNA. We
mea
s
ured S
21 Paramete
r of
the wi
rele
ss
chann
el. We f
ound
that, th
e Enviro
nme
n
tal noi
se
de
cre
a
ses sli
ght
ly whe
n
u
s
ing
the
LPDA anten
n
a
com
pared t
o
the Tea
r
d
r
o
p
and
Horn
a
n
tenna
s. The
measure
d
re
sults
are
sho
w
n
in Figure (11,
12) re
sp
ectiv
e
ly.
In ca
se of di
rectio
nal a
n
tenna
s Fig
u
re
sho
w
s that, the LPDA a
n
t
enna d
e
crea
se
s the
Environme
n
tal Noise po
wer co
mpa
r
ed
to the Horn
di
rectio
nal ante
nna over the
entire freq
ue
ncy
rang
e of
30
0
MHz to
8G
Hz.
Whil
e in
an
omni
dire
ctional
ante
n
nas,
Figu
re
13
sho
w
s th
at,
Environme
n
tal noi
se po
wer de
crea
se
s usin
g the Te
ard
r
op
anten
na compa
r
e
d
to the Mono
con
e
antenn
a.
0
1
2
3
4
5
6
7
8
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
F
r
e
q
ue
nc
y
i
n
G
H
z
| S
21
| in
d
B
Li
g
h
t
O
N
Li
g
h
t
O
F
F
0
1
2
3
4
5
6
7
8
-0.03
-0.02
-0.01
0
0.
01
0.
02
0.
03
F
r
e
q
ue
nc
y
i
n
G
H
z
| S
2
1
Li
gh
t
O
N
|-
| S
2
1
Ligh
O
F
F
|
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 859 – 869
864
Figure 10. Measure
m
ent set-up OF T
H
E Environme
n
tal Noi
s
e
Figure 11. Measure
d
environmental n
o
i
s
e po
we
r LP
DA and Te
ardrop a
n
tenn
a
s
.
Figure 12. Measure
d
environmental n
o
i
s
e po
we
r LP
DA and Horn antenn
as
Figure 13. Measure
d
environmental n
o
i
s
e po
we
r LP
DA and Te
ardrop a
n
tenn
a
s
To mea
s
u
r
e
the Return
Loss S11
of the LPDA
, Horn, Te
ardrop
and M
ono
con
e
antenn
as,
we
con
n
e
c
ted t
he mat
c
he
d
con
n
e
c
tor to
the re
ceive
r
side
(Po
r
t 2)
on the V
N
A
and
the tested a
n
tenna to th
e Tran
smitte
r side
(P
ort
1) on the V
N
A. The co
nne
ction of the
measurement
set-u
p
is
sh
own in
Figu
re 10. In
these mea
s
u
r
em
ents, we u
s
e
d
the VNA, two
0
1
2
3
4
5
6
7
8
-
130
-
120
-
110
-
100
-9
0
-8
0
-7
0
-6
0
Fr
e
quenc
y
in GH
z
| S
21
| in
d
B
E
n
v
i
r
onm
e
t
a
l
Noi
s
e
of
T
e
a
r
dr
op
A
n
te
n
n
a
E
n
v
i
r
onm
e
t
a
l
Noi
s
e
of
M
ono
c
one
Ant
e
nna
0
1
2
3
4
5
6
7
8
-
130
-
120
-
110
-
100
-9
0
-8
0
-7
0
-6
0
Fr
e
que
nc
y
in G
H
z
| S
21
|
in
d
B
E
n
v
i
r
o
n
m
e
t
al
N
o
i
s
e o
f
L
P
D
A
A
n
t
e
n
n
a
E
n
v
i
r
o
n
m
e
t
al
N
o
i
s
e o
f
H
o
r
n
A
n
t
e
n
n
a
0
1
2
3
4
5
6
7
8
-1
30
-1
20
-1
10
-1
00
-9
0
-8
0
-7
0
-6
0
Fr
e
que
nc
y
in GH
z
|S
21
| in dB
E
n
v
i
r
o
nm
e
n
t
a
l
No
i
s
e
of
LP
DA
A
n
t
e
n
n
a
E
n
v
i
r
o
nm
e
n
t
a
l
No
i
s
e
of
Te
a
r
dr
op
A
n
t
e
n
n
a
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Measurem
ent of Ultra Wid
e
band
Cha
nne
l Sounding
Using Ve
ctor
Network…
(Ah
m
ed Alshabo
)
865
identical Sem
i
-rigi
d
cable
s
of length
2.5
m
ea
ch,
th
e n
u
mbe
r
of f
r
eq
uen
cy poi
nts
wa
s
wet to
2
01,
the tran
smitted po
we
r PT
X= -1
0 dBm,
the frequ
en
cy ran
ge
wa
s 30
0MHz to
8GHz a
nd t
he
height of tra
n
s
mit anten
na
wa
s 80
cm. T
hen
we me
asured S
11 fro
m
the VNA
scre
en. Fig
u
re
14
sho
w
s the measure
d
Ret
u
rn lo
ss
(S1
1
) of t
he LPDA and the
horn a
n
tenn
a
s
. Comp
ari
n
g
the
grap
hs we
fo
und that, u
s
i
ng the LP
DA
antenn
a t
he
return lo
ss
d
e
crea
se
s alm
o
st by alm
o
st
15
dB over the
e
n
tire
ran
ge
of freq
uen
cie
s
.
While
Figu
re
15
sho
w
s tha
t
the
Return l
o
ss d
e
crea
se
s
more
whe
n
u
s
ing the Te
ardrop a
n
tenn
a
compa
r
e
d
to usin
g the Mo
nocone a
n
ten
na.
Figure 14. Measure
d
Retu
rn loss of LPDA and Horn antenn
as
We lo
cate
d a
steel (col
orb
ond)
ga
rage
on ste
e
l sla
b
-reinfo
r
ced
co
ncrete. Thi
s
p
r
odu
ce
d
radiatio
n. We
then mea
s
ured the
enviro
n
mental noi
se insid
e
the steel ga
rag
e
. This ga
rag
e
is
totally made from ste
e
l a
s
can b
e
seen i
n
Figure 18.
This inte
rnal
stru
cture pro
v
ides a multi
path
intensive e
n
vironm
ent. The
measurem
e
n
t was
set
by
conn
ectin
g
the N-type ma
tch co
nne
cto
r
to
port 1 in th
e
VNA. Figure
19 sho
w
s the
noise
mea
s
urem
ent of th
e garage. By comp
ari
ng the
measurement
s in Figure 1
6
and Figu
re
19, we can
see that the environ
menta
l
noise is le
ss in
the gara
ge th
an in the labo
ratory.
Figure 15. Measure
d
Retu
rn loss of Tea
r
drop an
d Mo
nocone ante
nna
s
Figure 16. Measure
d
environmental n
o
i
s
e po
we
r with
/ without light
0
1
2
3
4
5
6
7
8
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fr
e
que
nc
y
in
G
H
z
|S
11
|
in
d
B
R
e
t
u
r
n
Lo
s
s
Horn Ant
e
n
n
a
Re
t
u
r
n
L
o
s
s
L
P
DA
An
t
e
n
n
a
0
1
2
3
4
5
6
7
8
-35
-30
-25
-20
-15
-10
-5
0
Fre
q
ue
n
c
y
i
n
GH
z
|S
11
| in
d
B
R
e
t
u
rn Los
s
Te
a
r
drop A
n
t
e
nna
R
e
t
r
un Los
s
M
onoc
one
A
n
t
e
nna
0
1
2
3
4
5
6
7
8
-
110
-
100
-9
0
-8
0
-7
0
-6
0
-5
0
-4
0
F
r
e
q
ue
nc
y
i
n
G
H
z
| S
21
| in
d
B
E
n
v
i
r
o
n
m
en
t
a
l
N
o
i
se Li
g
h
t
O
N
E
n
v
i
r
o
n
m
en
t
a
l
N
o
i
se Li
g
h
t
O
F
F
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 859 – 869
866
Figure 17. Absolute valu
e differen
c
e of measur
ed en
vironme
n
tal n
o
ise Po
we
rs
with / without
light
Figure 18. Steel garage
Figure 19. Environme
n
tal n
o
ise me
asure
d
insid
e
the steel gara
g
e
3.3 Remote Con
t
ral of G
a
rage
Door
We al
so u
s
e
d
the VNA
as a
sign
al
detecto
r to repair th
e fre
quen
cy setti
ng of a
maladju
s
ted remote co
ntro
l garag
e doo
r operatin
g
de
vice by confi
gurin
g the followin
g
settin
g
s
on the VNA: start freq
uen
cy =400 M
H
z ,
stop fr
eq
uen
cy = 500 M
H
z, numb
e
r of freque
ncy poi
nts
= 1
601, IF
b
and
width
=
1
0
KHz a
nd t
r
ansmitte
d
po
wer = -10
dBm. We
conn
ected
the m
a
tch
con
n
e
c
tor to
port 1
on
the
VNA an
d we
con
n
e
c
ted
po
rt 2 to th
e
UWB ante
nna.
We
then
turned
on the
devi
c
e
and
me
asured the
tra
n
sf
er fu
nctio
n
(S
21
) of thi
s
sig
nal. Fig
u
re
2
0
sho
w
s the
noise
power a
nd th
e mea
s
u
r
ed
pea
k si
gnal
s
of the defe
c
ti
ve device at
a frequ
en
cy of 427 M
H
z.
After
that,
we
adj
u
s
ted
th
e devi
c
e’
s set frequ
ency point
m
anually and o
b
se
rved the p
eak si
gnal on
the
VNA screen
until we
attai
ned
a pe
ak si
gnal at
a
freq
uen
cy of 43
3
MHz, a
s
sho
w
n i
n
Fig
u
re
21.
This
wa
s th
e
n
teste
d
on
th
e ga
rag
e
do
o
r
sy
st
em
a
nd found
to ope
rate
no
rmally. This appli
c
ati
o
n
sho
w
s ho
w t
he VNA
can
be u
s
ed
as a
sign
al dete
c
t
o
r for a g
a
ra
ge do
or
rem
o
te cont
rol in t
h
e
pre
s
en
ce of e
n
vironm
ental
noise po
wer.
0
1
2
3
4
5
6
7
8
-0
.
0
3
-0
.
0
2
-0
.
0
1
0
0.01
0.02
0.03
F
r
e
q
ue
nc
y
i
n
G
H
z
| S
21
Light
O
N
|-
| S
21
LighO
FF
|
0
1
2
3
4
5
6
7
8
-1
3
0
-1
2
0
-1
1
0
-1
0
0
-9
0
-8
0
-7
0
-6
0
F
r
e
q
ue
nc
y
i
n
G
H
z
| S
21
|
in
d
B
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
1693-6
930
Measurem
ent of Ultra Wid
e
band
Cha
nne
l Sounding
Using Ve
ctor
Network…
(Ah
m
ed Alshabo
)
867
Figure 20. Peak si
gnal of d
e
fect
rem
o
te control of garage do
or
Figure 21. Peak si
gnal of fixed
remote
control of ga
ra
ge doo
r
4. Conclusio
n
Based
on
our mea
s
ureme
n
ts an
d a
nalysis,
we
co
ncl
ude that th
e
noise is de
creased b
y
increa
sing t
he IF ba
nd
width. Thi
s
lead
s to the
need fo
r
more time
to take
ch
an
nel
measurement
s. The wi
rel
e
ss ch
ann
els are al
so
sh
own to be a
ffected by fluore
s
cent lig
ht
sou
r
ces in
sid
e
the me
asurement e
n
viro
nment ov
e
r
t
he fre
que
ncy
ran
ge b
e
twe
en 5 to
8 G
H
z.
We m
e
a
s
ure
d
the envi
r
o
n
mental n
o
ise insi
de
the
measurement
environ
ment
and fou
nd t
hat
fluore
s
cent light sou
r
ce
s had a small
effect on it. In the
steel
garag
e, we
found that the
environ
menta
l
noise
de
cre
a
se
d
sig
n
ificantly comp
ared to the me
asu
r
em
ents
perfo
rmed i
n
ou
r
laboratori
e
s.
We
al
so fou
n
d
that, the Environme
n
tal noise dec
rease slig
htly by using LP
DA
antenn
a
com
pare
d
to th
e
Teardro
p
a
n
d
Ho
rn
anten
n
a
s. Fig
u
res 1
4
an
d 1
5
sho
w
that th
e LP
DA
antenn
a is
more
suita
b
l
e
for the
UWB chann
el
measureme
n
ts than th
e
Horn di
re
ctional
antenn
as. While for
omni
dire
ctional a
n
t
enna
s, the Tear
dro
p
ant
enna p
e
rfo
r
m
better than the
mono
con
e
a
n
tenna
s.
Ba
sed o
n
figu
re
s 20
and
21, t
he VNA
can
be u
s
e
d
a
s
a
dete
c
tor
and
to
adju
s
t the f
r
e
quen
cy of
re
mote
control
gara
g
e
doo
r controlle
rs
in the
p
r
e
s
en
ce
of
environme
n
tal
noise. Futu
re work
will
investig
ate
the
effects of the
mo
vement of
peopl
e in
sid
e
the
measurement
environm
ent.
Ackn
o
w
l
e
dg
ements
The autho
rs
wish to gratef
ully ackn
owl
e
dge
the help
of Dr. Madele
i
ne Strong Ci
ncotta in
the final lang
uage e
d
iting
of this pape
r.
Referen
ces
[1]
J Gomes, BK
Mishra. P
e
rformanc
e Eva
l
uatio
n of UW
B W
i
reless
Li
nk.
Internati
o
n
a
l Jo
urn
a
l of
Information &
Network Security (IJINS).
201
2;
1(3): 188-1
9
9
.
[2]
L Jinh
u, M F
e
ihu. An im
prove
d
Ch
ann
el
Estimatio
n
Algorithm fo
r Ultra W
i
deb
and W
i
re
le
s
s
Communication S
y
stems.
Int
e
rnati
ona
l Jour
nal of Infor
m
at
ion & Network
Security (IJINS).
2013;
11(7):
412
9-41
33.
40
0
410
420
43
0
440
450
460
470
480
490
500
-130
-120
-110
-100
-90
-80
-70
-60
-50
Fr
equ
e
n
cy i
n
MH
z
| S
21
| in
d
B
Pe
a
k
Sig
n
a
l
E
n
v
i
r
o
n
m
en
t
a
l
N
o
i
s
e
P
o
w
e
r
40
0
410
42
0
430
44
0
450
460
47
0
48
0
49
0
50
0
-130
-120
-110
-100
-90
-80
-70
-60
F
r
e
q
ue
nc
y
i
n
M
H
z
| S
21
| in
dB
Pe
ak Sig
n
a
l
E
n
v
i
r
o
n
m
en
t
a
l
N
oi
s
e
P
o
w
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 16
93-6
930
TELKOM
NIKA
Vol. 13, No. 3, September 20
15 : 859 – 869
868
[3]
B Alavi, N Als
i
ndi, K Pa
hl
av
an
. UW
B Cha
nne
l Meas
ure
m
e
n
ts for
Accurate Indoor Locali
z
a
tion
. in
Militar
y Comm
unic
a
tions C
o
n
f
erenc
e. W
a
shi
ngton D
C
, MILCOM 2006
IEE
E
. 2006: 1-7.
[4]
HA Kha
n
, WQ Malik, DJ E
d
w
a
rds, CJ Stev
e
n
s.
Ultra
w
i
d
e
b
and multi
p
le-
i
n
put multi
p
l
e
-ou
t
put
rad
a
r
. In
Rad
a
r Confer
e
n
ce, 200
5 IEEE Internatio
nal.
2005: 9
00-9
0
4
.
[5]
R Kn
oche
l, A
Gulck, F
Dasc
hner, O Sc
him
m
er.
UW
B-Se
nsors for
Indu
strial A
ppl
icati
ons
. In
Ultra-
Wideb
and, 2
0
0
7
, ICUWB 200
7, IEEE Internati
ona
l Conf
eren
ce. Singa
por
e. 200
7: 529-
534.
[6]
M Ressler, L Happ, L Nguyen, T
T
uan, M Bennett.
T
he Army Res
earc
h
Lab
oratory u
l
tra-w
i
de ba
n
d
testbed ra
dars
.
In Rad
a
r Co
n
f
erence, R
e
cor
d
of the I
EEE
199
5 Intern
atio
nal. Al
e
x
an
dri
a
, VA. 1995:
686-
691.
[7]
Rovn
x
,
kova
J, D Kocur
. UW
B radar sign
al proc
essin
g
for throug
h w
a
ll
tracking of multipl
e
movi
ng
targets
. In Rad
a
r Confer
ence
(EuRAD), 20
10
Europe
an. Par
i
s. 2010: 3
72-3
75.
[8]
QH Abbasi, A
Sani, A Alom
ai
n
y
, H Ya
ng. E
x
perime
n
ta
l C
h
a
r
acterizati
on a
nd Statistical A
nal
ysis
of the
Pseud
o-D
y
n
a
m
ic Ultra
w
i
de
ban
d On-Bod
y Ra
di
o Cha
nne
l.
Antenn
a
s
and W
i
rel
e
ss Propag
atio
n
Letters, IEEE.
201
1; 10: 748-
751.
[9]
F Bellens, F Quitin,
F Ho
rl
in
,
P D
e
D
o
n
cke
r
.
UWB channel
analysis
wi
th
in a
m
o
vi
ng
ca
r
. In
Intelligent
T
r
ansport S
y
st
ems T
e
lecom
m
unic
a
tions, (I
T
S
T
)
, 2009 9t
h
Internatio
na
l
Confer
enc
e.
Lil
l
e. 20
09: 6
81-
684.
[10]
S Chi
u
, J Ch
u
ang, DG Mic
h
elso
n. Ch
aract
e
riza
ti
on of
U
W
B Chan
nel
Impuls
e
Res
p
o
n
ses W
i
thi
n
th
e
Passenger Cabin of a B
o
eing 737-
200 A
i
rcr
a
ft.
Antennas a
nd Pro
pag
atio
n, IEEE Transactions.
2
010
;
58(3): 93
5-9
4
5
.
[11]
S Chi
u
, DG Michels
on. Effect of Huma
n
Presenc
e o
n
UW
B Rad
i
o
w
ave Pro
p
a
gati
on W
i
thi
n
th
e
Passen
ger
Ca
bin
of a
Mids
iz
e Airl
in
er.
Ante
nnas
an
d Pr
op
agati
on, IEEE
Transactio
n
s.
201
0;
58(3):
917-
926.
[12]
BM Donl
an, D
R
McKinstr
y
,
RM Buehr
er. T
he UW
B in
do
o
r
chan
nel: l
a
rg
e an
d small sc
ale mo
de
lin
g.
Wireless Comm
unic
ations, IEEE Transactions.
200
6;
5(1
0
): 2863-
28
73.
[13]
MA Elmanso
u
r
i
, DS F
ilipovic.
Pulse Distorti
on
an
d Mitigati
on T
hereof in Spiral A
n
ten
n
a
-
Based UW
B
Communication S
y
stems.
Ant
ennas and Propagat
ion, IEEE Transactions.
201
1; 59(1
0
): 3863-
387
1.
[14]
J Gelab
e
rt, DJ
Ed
w
a
r
d
s, CJ S
t
evens. E
x
p
e
ri
m
ental eva
l
uati
on of
UW
B
w
i
r
e
less
c
o
mmu
ni
cation
w
i
th
i
n
PC case.
Elec
tronics Letters.
2011; 4
7
(13):
773-
775.
[15]
M Ghaddar, L T
a
lbi.
NLOS UW
B Unde
rmi
n
in
g Experi
m
e
n
tal Ch
ara
c
teri
z
a
t
i
o
n
& Performanc
e
Evalu
a
tion Usi
ng
MB-OF
D
M
. Procee
din
g
s of
the Progress I
n
Electroma
g
n
e
tics Rese
arch
S
y
mp
osium.
Marrakes
h
. 20
11: 153
0-1
534.
[16]
SS Ghassemz
ade
h, R Ja
na,
CW Rice, W Turin, V T
a
rokh.
A sta
t
i
s
ti
ca
l
pa
th
l
o
ss
mo
de
l fo
r i
n
-home
UW
B chann
els
. In Ultra Wide
ban
d S
y
stems
and T
e
chno
lo
gies, 2
002. D
i
gest of Pap
e
rs
. 2002 IEEE
Confer
ence. B
a
ltim
ore. 2
002:
59-64.
[17]
L H
ong,
J Me
ng, S
Li, Z
Z
hou.
UWB Channel M
easurement an
d Data Analysis
in Offshore Oil
Platform
. In C
o
mmunic
a
tio
n
s
and Mob
ile C
o
mputi
ng, 2
0
0
9
. CMC '
09. WRI Internation
a
l
Confer
ence.
W
a
shin
gton. 2
009: 47
6-4
80.
[18]
V Hovin
en, M
Hamal
a
i
nen, T
Patsi.
Ultra w
i
deb
an
d in
door
radi
o cha
n
n
e
l
mo
de
ls: prel
imi
nary resu
lts
.
In Ultra W
i
de
ban
d S
y
stems
and T
e
chnol
ogi
es, 200
2. Digest of Pap
e
rs. 2002 IEE
E
Confere
n
ce.
Baltimor
e. 200
2: 75-79.
[19]
Y Kata
yam
a
, K T
e
rasaka, K
Higas
hik
a
tura
g
i
, I Matunam
i, A Kaji
w
a
ra.
Ult
ra-W
ideb
an
d I
m
p
u
ls
e-Ra
dio
Propa
gati
on fo
r In-Vehic
l
e W
i
reless
Link
. In
Vehic
u
lar T
e
ch
nol
og
y C
onfer
ence, 2
0
0
6
. V
T
C-2006 F
a
ll
.
2006 IEEE 64
th
. 2006: 1-5.
[20]
J Keign
a
rt, N Dani
el
e.
Subn
anos
eco
nd U
W
B channe
l so
und
ing i
n
frequ
ency an
d te
mp
oral d
o
m
ai
n
. In
Ultra Wid
eba
n
d
S
y
stems a
n
d
T
e
chnol
ogi
e
s
, Digest
of P
apers, 2
0
0
2
IEEE Conf
eren
ce. Baltimor
e.
200
2: 25-3
0
.
[21] T
Koba
yashi.
Measur
e
m
ents
an
d C
har
acte
ri
z
a
t
i
o
n
of
Ult
r
a
W
i
d
eba
nd
P
r
opa
gatio
n
Ch
ann
els
in
a
Passen
ger-C
ar
Co
mpart
m
e
n
t
. In Sprea
d
Sp
ectrum T
e
chni
ques
and A
p
p
l
icatio
ns, 200
6
IEEE Ninth
Internatio
na
l Symp
osi
u
m on.
Mana
us-Amaz
on. 200
6: 228-
232.
[2
2
]
L
L
i
an
g
,
SV H
u
m. Ex
p
e
r
i
m
en
ta
l
C
h
a
r
a
c
te
riza
ti
o
n
o
f
U
W
B Be
a
m
fo
rme
rs Ba
se
d
o
n
Mu
lti
d
i
m
en
si
onal
Beam F
ilters.
Antennas and Propagati
on, IEEE Transactions.
201
1; 59(
1): 304-3
09.
[23]
A Muq
a
ib
el,
A Safaa
i
-Jazi,
A Bay
r
am, AM Attiy
a
,
S
M
Riad.
Ultra
w
i
deba
nd t
h
ro
ugh-th
e-w
a
l
l
prop
agati
o
n
. M
i
cro
w
av
es, Antenn
as an
d Pro
pag
atio
n, IEE
Procee
din
g
s. 2
005: 58
1-5
88.
[24]
Y Naka
hata, K
Ono,
I Matsunami, A Ka
ji
w
a
ra.
Perfor
ma
n
c
e Eval
uatio
n
of Vehic
u
lar
Ul
tra-W
i
deb
an
d
Radi
o Ch
an
nel
s
. In Vehicular
T
e
chnolog
y
C
o
nferenc
e, VT
C
200
8-Fall, IEEE 68
th
. Calgar
y. 2008: 1-5.
[25]
B Nkaka
n
o
u
,
GY Delis
le, N
Hakem.
Ex
p
e
ri
ment
al
eval
uatio
n of th
e
ultra-w
i
de
ban
d
prop
ag
atio
n
chan
nel i
n
an
und
ergro
u
n
d
mi
ne
. In Anten
nas an
d Prop
a
gatio
n (APSU
RSI), 2011 IE
EE Internatio
n
a
l
S
y
mp
osi
u
m. Spoka
ne. 20
11: 278
1-27
84.
[26]
B Nkakan
ou, GY Delisle, N
Hakem. Exp
e
rim
ent
al Ch
a
r
acterizati
on o
f
Ultra-W
ideb
a
nd Ch
ann
el
Parameter M
easur
ements
in a
n
U
nder
grou
nd Mi
ne.
Journ
a
l of
Co
mp
uter Netw
orks
an
d
Co
mmun
icati
o
ns.
2011.
Evaluation Warning : The document was created with Spire.PDF for Python.